Prevalence and Associated Factors of Compliance Behaviors among Middle-Aged and Older Hypertensive Patients in China: Results from the China Health and Retirement Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Population
2.3. Description of Measures
2.3.1. Compliance Behaviors
2.3.2. Predictor Variables
2.4. Statistical Analysis
2.5. Ethical Statements
3. Results
3.1. General Information
3.2. Univariate Analysis
3.3. Multi-Factor Regression Analysis
3.3.1. Compliance with Medication Behavior
3.3.2. Compliance with Blood Pressure Monitoring Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ageing in China: A ticking bomb. Lancet 2016, 388, 2058. [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2019. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm. (accessed on 10 May 2020).
- Puchner, K.P.; Rodriguez-Fernandez, R.; Oliver, M.; Solomos, Z. Non-communicable diseases and tuberculosis: Anticipating the impending global storm. Glob. Public Health 2019, 14, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Chen, Z.H.; Zhang, M.; Zhao, Z.P.; Huang, Z.J.; Zhang, X.; Li, C.; Guan, Y.Q.; Wang, X.; Wang, Z.H.; et al. [Study of the prevalence and disease burden of chronic disease in the elderly in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2019, 40, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Liu, R.; Du, S.; Qiu, C. Trends in incidence of hypertension in Chinese adults, 1991–2009: The China Health and Nutrition Survey. Int. J. Cardiol. 2014, 175, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Dai, Y.; Chen, Z.W.; Yang, Y.J. Prevalence of hypertension in Chinese adults based on 2017 ACC/AHA guideline. Chin. Remed. Clin. 2019, 19, 214–216. [Google Scholar]
- Li, Z.Y.; Li, J.J.; Chen, G.; Zheng, X.Y.; Pei, L.J. Effect of hypertension on activities of daily living in Chinese elderly population: A cohort study. Chin. J. Hypertens. 2019, 27, 958–963. [Google Scholar]
- Haynes, R.B. Compliance in Health Care; The Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- A Salazar, J.; Poon, I.; Nair, M. Clinical consequences of polypharmacy in elderly: Expect the unexpected, think the unthinkable. Expert Opin. Drug Saf. 2007, 6, 695–704. [Google Scholar] [CrossRef]
- Dragomir, A.; Côté, R.; Roy, L.; Blais, L.; LaLonde, L.; Bérard, A.; Perreault, S. Impact of adherence to antihypertensive agents on clinical outcomes and hospitalization costs. Med. Care 2010, 48, 418–425. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yoon, S.-J.; Oh, I.-H.; Lim, J.H.; Kim, Y.A. Medication Adherence and the Occurrence of Complications in Patients with Newly Diagnosed Hypertension. Korean Circ. J. 2016, 46, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Akoko, B.M.; Fon, P.N.; Ngu, R.C.; Ngu, K.B. Knowledge of Hypertension and Compliance with Therapy Among Hypertensive Patients in the Bamenda Health District of Cameroon: A Cross-sectional Study. Cardiol. Ther. 2016, 6, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Li, H.; Zhang, R.; Zhang, H.Y.; Tang, L.L.; Zhang, J.H. Medication adherence rate among hypertensive patients in mainland China 2006–2016: A meta-analysis. Chin. J. Public Health 2018, 34, 1425–1429. [Google Scholar]
- Mancia, G.; De Backer, G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; E Kjeldsen, S.; Laurent, S.; et al. 2007 Guidelines for the Management of Arterial Hypertension. J. Hypertens. 2007, 25, 1105–1187. [Google Scholar] [CrossRef] [PubMed]
- Chinese Hypertension Committee of the Chinese Medical Doctors Association; Chinese Hypertension League; Chinese Society of Cardiology of the Chinese Medical Association. Home blood pressure monitoring: A consensus document of China. Chin. J. Hypertens. 2012, 20, 525–529. [Google Scholar]
- Huang, Z.J.; Wang, H.X.; Zhou, Z.H.; Chen, B.X.; Ou, W.S.; Wu, W.L.; Yang, Z.P.; Zhang, M.; Zhong, Y.Y.; Wang, J.J. Application Effect and Associated Factors of Comprehensive Community Interventions for Hypertension Control Based on Remote Ambulatory Blood Pressure Monitoring. Chin. Gen. Pract. 2018, 21, 82–86. [Google Scholar]
- Wang, D. Analysis of current status and influencing factors of compliance with medication in elderly patients with essential hypertension in community. Chin. Pract. Med. 2018, 13, 188–190. [Google Scholar]
- Li, J. Influencing factors of compliance behaviors in elderly patients with hypertension. Henan Med. Res. 2019, 28, 3105–3106. [Google Scholar]
- Ming, H.; Fu, Q.; He, Z.F.; Xian, Y.; Tang, S.F.; Fu, H.; Fang, H.Q.; Feng, Z.C. Analysis of Treatment Compliance and Influencing Factors of Patients with Hypertension in Rural China. Med. Soc. 2017, 30, 55–59. [Google Scholar]
- Zhang, L.Q.; Cai, L. Research status of medication compliance and influencing factors in patients with hypertension. Chin. J. Hypertens. 2020, 28, 25–29. [Google Scholar]
- World Health Organization. Adherence to Long-Term Therapies: Evidence for Action. Available online: https://www.who.int/chp/knowledge/publications/adherence_introduction.pdf?ua=1 (accessed on 15 May 2020).
- Xu, G.Y.; Wang, Y.Y.; Pang, X.Q.; Liu, W.W. Self-management of hypertensive patients in Beijing rural area. Chin. Gen. Prac. 2016, 19, 3725–3728. [Google Scholar]
- Peng, M.; Gong, Y.; Ding, J. Study on possession situation of home hemopiezometer and blood pressure self measurement among families of Nantong. Chongqing Med. J. 2017, 46, 3387–3389. [Google Scholar]
- Cao, X.X.; Xu, C.J.; Hou, Y.B.; Wang, Y.; Pan, N.; Xu, F.S.; Wang, Y.G. The epidemic trend and prediction of chronic diseases with high incidence in China from 1990 to 2025. Chin. J. Prev. Contr. Chron. Dis. 2020, 28, 14–19. [Google Scholar]
- Wong, K.C.; Tam, W.S.W.; Cheung, C.S.; Tong, E.L.; Sek, A.C.; Cheung, N.; Leeder, S.; Griffiths, S. Medication adherence to first-line antihypertensive drug class in a large Chinese population. Int. J. Cardiol. 2013, 167, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liang, H.; Li, X.; Chen, J.; Zhao, L.; Lv, Y.; Yang, Y.; Zhou, B. A survey of situation and influencing factors of medication compliance among patients with hypertension in communities of Shenyang. Chin. J. Prev. Control Dis. 2010, 18, 584–586. [Google Scholar]
- Ghozzi, H.; Kassis, M.; Hakim, A.; Sahnoun, Z.; Abderrahmen, A.; Abbes, R.; Maalej, S.; Hammami, S.; Hajkacem, L.; Zeghal, K. Observance médicamenteuse chez un échantillon d’hypertendus dans la région de Sfax (Tunisie). Ann. Cardiol. Angeiol. 2010, 59, 131–137. [Google Scholar] [CrossRef]
- Chinese Government. Healthy China Action (2019–2030). 2019. Available online: http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm (accessed on 15 August 2020).
- Chen, L.; Zhang, X.; Xu, X. Health insurance and long-term care services for the disabled elderly in China: Based on CHARLS Data. Health Policy 2020, 13, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H. How do co-and non-esidential children impact your subjective life expectancy: An empirical study on CHARLS Data. Int. J. Health Plan. Manag. 2020, 35, 532–544. [Google Scholar] [CrossRef]
- Hypertension Branch of Chinese Geriatrics Society; National Clinical Research Center for Geriatric Diseases-Chinese Alliance of Geriatric Cardiovascular Disease. 2019 Chinese guidelines for the management of hypertension in the elderly. Chin. J. Hypertens. 2019, 27, 111–133. [Google Scholar]
- Rayner, G. Conventional and ecological public health. Public Health 2009, 123, 587–591. [Google Scholar] [CrossRef]
- Jang, H.-Y. Factors associated with successful aging among community-dwelling older adults based on ecological system model. Int. J. Environ. Res. Public Health 2020, 17, 3220. [Google Scholar] [CrossRef]
- Helen, K.; Bernim, M. Understanding health: A determinants approach; The Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Qian, J.; Li, N.; Ren, X. Obesity and depressive symptoms among Chinese people aged 45 and over. Sci. Rep. 2017, 7, srep45637. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Fang, M.W.; Xiao, C.H.; Ma, X. Activities of daily living and depressive symptoms in the Chinese elderly. Chin. Gen. Pract. 2020, 23, 2852–2855. [Google Scholar]
- Yu, S.-C.; Lin, Y.-H.; Hsu, W.-H. Applying structural equation modeling to report psychometric properties of Chinese version 10-item CES-D depression scale. Qual. Quant. 2011, 47, 1511–1518. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Y. Effects of education on cognition at older ages: Evidence from China’s Great Famine. Soc. Sci. Med. 2013, 98, 54–62. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, S. Association between undiagnosed hypertension and health factors among middle-aged and elderly Chinese population. Int. J. Environ. Res. Public Health 2019, 16, 1214. [Google Scholar] [CrossRef] [Green Version]
- Al Daken, L.I.; Eshah, N.F. Self-reported adherence to therapeutic regimens among patients with hypertension. Clin. Exp. Hypertens. 2017, 39, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Augustin, B.; Fu, Z.; Yan, M.; Fu, A.; Yin, P. Geographic Distributions in Hypertension Diagnosis, Measurement, Prevalence, Awareness, Treatment and Control Rates among Middle-aged and Older Adults in China. Sci. Rep. 2016, 6, 37020. [Google Scholar] [CrossRef] [PubMed]
- Umemura, S.; Arima, H.; Arima, S.; Asayama, K.; Dohi, Y.; Hirooka, Y.; Horio, T.; Hoshide, S.; Ikeda, S.; Ishimitsu, T.; et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens. Res. 2019, 42, 1235–1481. [Google Scholar] [CrossRef]
- Benetos, A.; Bulpitt, C.J.; Petrovic, M.; Ungar, A.; Rosei, E.A.; Cherubini, A.; Redon, J.; Grodzicki, T.; Dominiczak, A.; Strandberg, T.; et al. An expert opinion from the European Society of Hypertension—European Union Geriatric Medicine Society Working Group on the management of hypertension in very old, frail subjects. Hypertension 2016, 67, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Xu, L.Z.; Han, K.Y. Analysis of the influencing factors of medicine taking behavior among hypertensive patients in Shandong Province based on generalized estimating equation. J. Shandong Univ. Health Sci. 2017, 55, 66–70. [Google Scholar]
- Xiao, J.; Li, Y.C.; Zong, L.; Mao, Y.D.; Chen, W.; Tu, Q.; Gao, Y.X. Related rise factors and the status of taking antihypertensive drugs among hypertensives in Nangtong city. Chin. J. Hypertens. 2013, 21, 163–169. [Google Scholar]
- Reaven, G. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2003, 88, 2399–2403. [Google Scholar] [CrossRef] [PubMed]
- Abinaya, S.; Aanandhi, M.V. An improvement in patient compliance in diabetes mellitus. Res. J. Pharm. Technol. 2018, 11, 587. [Google Scholar] [CrossRef]
- Li, W.-W.; Stotts, N.A.; Froelicher, E.S. Compliance with antihypertensive medication in chinese immigrants: Cultural specific issues and theoretical application. Res. Theory Nurs. Pract. 2007, 21, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Heymann, A.D.; Gross, R.; Tabenkin, H.; Porter, B.; Porath, A. Factors associated with hypertensive patients’ compliance with recommended lifestyle behaviors. Isr. Med. Assoc. J. 2011, 13, 553–557. [Google Scholar]
- Lee, C.-Y.; Huang, C.-C.; Shih, H.-C.; Huang, K.-H. Factors influencing antihypertensive medication compliance in Taiwan: A nationwide population-based study. Eur. J. Prev. Cardiol. 2012, 20, 930–937. [Google Scholar] [CrossRef]
- Ricardo, M.S. Inequality in China revisited. The effect of functional distribution of income on urban top incomes, the urban-rural gap and the Gini index, 1978–2015. China Econ. Rev. 2017, 42, 101–117. [Google Scholar]
- Xie, Y. Current status of self-management of rural patients with coronary heart disease and community nursing needs survey. J. Qilu Nurs. 2010, 16, 58–60. [Google Scholar]
- Li, Y.Y.; Chao, J.Q.; Song, L.; Zong, M.M. Influence of Health Education on Medicine-Taking Compliance of Chinese Hypertensive Patients: A Bayesian Meta-Analysis. Chin. J. Evid. Based Med. 2014, 14, 211–215. [Google Scholar]
- Al-Rubaey, M.G.; Shwaish, M.I. Impact of hypertension education on treatment compliance among hypertensive patients in Baghdad 2017. J. Pak. Med. Assoc. 2019, 69, S9–S12. [Google Scholar]
- Wang, Y.; Wang, S.; Wan, S.X.; Wang, M.M.; Chen, X.P.; He, J.Y.; Zhong, G.Y.; Zhou, Y.F.; Pan, P. Home blood pressure monitoring in hypertensive patients in communities of Wuhou strict, Chengdu city. Chin. J. Hypertens. 2014, 22, 142–145. [Google Scholar]
Variable | Categories | All Participants | Medication Compliance | Blood Pressure Monitoring Compliance | ||
---|---|---|---|---|---|---|
n (%) | No (%) | Yes (%) | No (%) | Yes (%) | ||
Sex | Male | 2958 (46.9) | 26.2 | 73.8 *** | 57.7 | 42.3 * |
Female | 3350 (53.1) | 20.0 | 80.0 | 60.8 | 39.2 | |
Age (years) | 45–54 | 1381 (21.9) | 31.2 | 68.8 *** | 60.2 | 39.8 |
55–64 | 2293 (36.4) | 22.6 | 77.4 | 59.8 | 40.2 | |
65–74 | 1783 (28.3) | 19.3 | 80.7 | 58.6 | 41.4 | |
≥75 | 851 (13.5) | 17.6 | 82.4 | 58.2 | 41.8 | |
BMI (kg/m2) | Normal (18.5–23.9) | 1791 (28.4) | 27.9 | 72.1 *** | 65.0 | 35.0 *** |
Underweight (<18.5) | 187 (3.0) | 23.5 | 76.5 | 69.0 | 31.0 | |
Overweight (24–27.9) | 3266 (51.8) | 21.6 | 78.4 | 56.5 | 43.5 | |
Obese (≥28) | 1064 (16.9) | 18.1 | 81.9 | 56.6 | 43.4 | |
Number of complications | 0 | 1391 (22.1) | 29.3 | 70.7 *** | 63.0 | 37.0 *** |
1 | 1764 (28.0) | 24.5 | 75.5 | 60.4 | 39.6 | |
2 | 1381 (21.9) | 23.4 | 76.6 | 60.5 | 39.5 | |
≥3 | 1772 (28.1) | 15.8 | 84.2 | 54.4 | 45.6 | |
ADL | Normal | 3844 (60.9) | 25.2 | 74.8 *** | 56.8 | 43.2 *** |
Declined | 2464 (39.1) | 19.2 | 80.8 | 63.3 | 36.7 | |
Smoking | No | 4581 (72.6) | 20.9 | 79.1 *** | 58.2 | 41.8 ** |
Yes | 1727 (27.4) | 28.1 | 71.9 | 62.4 | 37.6 | |
Current drinking | No | 4298 (68.1) | 19.7 | 80.3 *** | 58.8 | 41.2 |
Yes | 2010 (31.9) | 29.6 | 70.4 | 60.5 | 39.5 | |
Regular exercise | No | 4032 (63.9) | 22.6 | 77.4 | 59.1 | 40.9 |
Yes | 2276 (36.1) | 23.4 | 76.6 | 59.7 | 40.3 | |
Sleep duration | <6 h | 1944 (30.8) | 21.1 | 78.9 | 62.2 | 37.8 *** |
6–8 h | 3806 (60.3) | 23.6 | 76.4 | 57.1 | 42.9 | |
≥9 h | 558 (8.8) | 23.8 | 76.2 | 64.7 | 35.3 | |
Depressive mood | No | 4153 (65.8) | 24.1 | 75.9 ** | 57.4 | 42.6 *** |
Yes | 2155 (34.2) | 20.5 | 79.5 | 63.1 | 36.9 | |
Cognitive function score | <10 | 2573 (40.8) | 21.3 | 78.7 * | 66.8 | 33.2 *** |
≥10 | 3735 (59.2) | 23.9 | 76.1 | 54.2 | 45.8 | |
Marital status | Non-married | 1088 (17.2) | 22.4 | 77.6 | 61.9 | 38.1 |
Married | 5220 (82.8) | 23.0 | 77.0 | 58.8 | 41.2 | |
Educational level | 0 | 1528 (24.2) | 19.8 | 80.2 ** | 67.4 | 32.6 *** |
6 years | 3253 (51.6) | 23.8 | 76.2 | 60.3 | 39.7 | |
9 years | 950 (15.1) | 22.9 | 77.1 | 54.4 | 45.6 | |
≥10 years | 577 (9.1) | 25.8 | 74.2 | 40.2 | 59.8 | |
Place of residence | Urban | 1861 (29.5) | 20.5 | 79.5 ** | 46.5 | 53.5 *** |
Rural | 4447 (70.5) | 23.9 | 76.1 | 64.7 | 35.3 | |
Personal income | No | 4209 (66.7) | 21.9 | 78.1 ** | 61.7 | 38.3 *** |
Yes | 2099 (33.3) | 24.9 | 75.1 | 54.5 | 45.5 | |
Medical insurance | No | 447 (7.1) | 26.0 | 74.0 | 63.5 | 36.5 |
Yes | 5861 (92.9) | 22.6 | 77.4 | 59.0 | 41.0 | |
Health education | No | 2676 (42.4) | 29.4 | 70.6 *** | 64.2 | 35.8 *** |
Yes | 3632 (57.6) | 18.1 | 81.9 | 55.7 | 44.3 |
Variable | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 4 OR (95% CI) |
---|---|---|---|---|
Downstream Factors | ||||
Sex (vs. Male) | ||||
Female | 1.33 (1.18–1.50) *** | 1.08 (0.93–1.26) | 1.41 (1.24–1.61) *** | 1.14 (0.97–1.33) |
Age (vs. 45–54) | ||||
55–64 | 1.55 (1.33–1.81) *** | 1.53 (1.31–1.78) *** | 1.60 (1.37–1.87) *** | 1.57 (1.34–1.84) *** |
65–74 | 1.92 (1.62–2.28) *** | 1.86 (1.57–2.22) *** | 1.96 (1.65–2.34) *** | 1.89 (1.58–2.25) *** |
≥75 | 2.23 (1.78–2.79) *** | 2.11 (1.68–2.66) *** | 2.39 (1.89–3.02) *** | 2.25 (1.77–2.85) *** |
BMI (vs. Normal) | ||||
Underweight | 1.06 (0.74–1.52) *** | 1.07 (0.75–1.54) *** | 1.05 (0.73–1.51) *** | 1.07 (0.74–1.54) |
Overweight | 1.50 (1.31–1.72) *** | 1.49 (1.30–1.71) *** | 1.45 (1.26–1.66) *** | 1.44 (1.25–1.65) *** |
Obese | 1.89 (1.56–2.29) *** | 1.85 (1.53–2.25) *** | 1.75 (1.44–2.13) *** | 1.72 (1.41–2.09) *** |
Number of complications (vs. 0) | ||||
1 | 1.24 (1.06–1.46) ** | 1.23 (1.05–1.45) * | 1.21 (1.03–1.43) * | 1.20 (1.02–1.42) * |
2 | 1.25 (1.05–1.49) * | 1.24 (1.04–1.47) * | 1.18 (1.00–1.41) | 1.16 (0.97–1.39) |
≥3 | 1.89 (1.58–2.27) *** | 1.83 (1.53–2.20) *** | 1.71 (1.42–2.05) *** | 1.65 (1.37–1.98) *** |
ADL (vs. Normal) | ||||
Declined | 1.09 (0.95–1.24) | 1.04 (0.90–1.20) | 1.09 (0.95–1.25) | 1.04 (0.90–1.20) |
Midstream Factors | ||||
Smoking (vs. No) | ||||
Yes | 0.89 (0.77–1.04) | 0.87 (0.75–1.02) | ||
Current drinking (vs. No) | ||||
Yes | 0.72 (0.62–0.83) *** | 0.71 (0.61–0.82) *** | ||
Depressive mood (vs. No) | ||||
Yes | 1.08 (0.94–1.24) | 1.09 (0.95–1.26) | ||
Cognitive function score (vs. <10) | ||||
≥10 | 1.01 (0.88–1.15) | 0.95 (0.82–1.09) | ||
Upstream Factors | ||||
Residence location (vs. Urban areas) | ||||
Rural areas | 0.86 (0.75–0.99) * | 0.85 (0.74–0.99) * | ||
Educational level (vs. 0) | ||||
6 years | 0.94 (0.80–1.11) | 0.96 (0.81–1.14) | ||
9 years | 1.06 (0.85–1.33) | 1.09 (0.87–1.37) | ||
≥12 years | 0.84 (0.65–1.08) | 0.88 (0.67–1.14) | ||
Personal income (vs. No) | ||||
Yes | 0.90 (0.79–1.02) | 0.93 (0.81–1.06) | ||
Health education (vs. No) | ||||
Yes | 1.95 (1.72–2.20) *** | 1.97 (1.75–2.24) *** | ||
Hosmer–Lemeshow test | χ2 = 4.02 p = 0.855 | χ2 = 5.21 p = 0.734 | χ2 = 13.37 p = 0.100 | χ2 = 13.74 p = 0.089 |
Variable | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 4 OR (95% CI) |
---|---|---|---|---|
Downstream Factors | ||||
Sex (vs. Male) | ||||
Female | 0.89 (0.80–0.99) * | 0.86 (0.76–0.97) * | 1.03 (0.92–1.15) | 0.94 (0.83–1.07) |
Age (vs. 45–54) | ||||
55–64 | 1.08 (0.94–1.24) | 1.13 (0.98–1.30) | 1.14 (0.99–1.32) | 1.16 (1.00–1.34) * |
65–74 | 1.18 (1.01–1.36)* | 1.25 (1.08–1.46) ** | 1.28 (1.09–1.49) ** | 1.29 (1.11–1.51) ** |
≥75 | 1.35 (1.13–1.63) ** | 1.45 (1.20–1.75) *** | 1.48 (1.22–1.80) *** | 1.49 (1.22–1.81) *** |
BMI (vs. Normal) | ||||
Underweight | 0.81 (0.58–1.12) | 0.84 (0.61–1.18) | 0.87 (0.62–1.22) | 0.89 (0.64–1.24) |
Overweight | 1.45 (1.28–1.63) *** | 1.36 (1.20–1.53) *** | 1.30 (1.15–1.47) *** | 1.25 (1.11–1.42) *** |
Obese | 1.46 (1.24–1.71) *** | 1.37 (1.16–1.60) *** | 1.32 (1.12–1.56) ** | 1.27 (1.07–1.49) ** |
The number of complications (vs. 0) | ||||
1 | 1.15 (1.00–1.34) | 1.15 (1.00–1.34) | 1.11 (0.95–1.28) | 1.11 (0.96–1.29) |
2 | 1.16 (1.00–1.36) | 1.15 (0.98–1.34) | 1.08 (0.92–1.27) | 1.08 (0.92–1.27) |
≥3 | 1.58 (1.36–1.83) *** | 1.55 (1.33–1.81) *** | 1.38 (1.18–1.61) *** | 1.39 (1.18–1.62) *** |
ADL (vs. Normal) | ||||
Declined | 0.69 (0.61–0.77) *** | 0.76 (0.68–0.86) *** | 0.81 (0.72–0.91) ** | 0.85 (0.75–0.95)** |
Midstream Factors | ||||
Smoking (vs. No) | ||||
Yes | 0.75 (0.66–0.86) *** | 0.76 (0.66–0.87) *** | ||
Sleep duration (vs. 6–8 h) | ||||
<6 h | 0.88 (0.78–0.99) * | 0.87 (0.78–0.99) * | ||
≥9 h | 0.81 (0.67–0.98) * | 0.87 (0.71–1.05) | ||
Depressive mood (vs. No) | ||||
Yes | 0.93 (0.83–1.05) | 0.97 (0.86–1.09) | ||
Cognitive function score (vs. <10) | ||||
≥10 | 1.55 (1.39–1.74) *** | 1.29 (1.14–1.46) *** | ||
Upstream Factors | ||||
Place of residence (vs. Urban areas) | ||||
Rural areas | 0.59 (0.52–0.66) *** | 0.61 (0.54–0.69) *** | ||
Educational level (vs. 0) | ||||
6 years | 1.21 (1.05–1.39) ** | 1.13 (0.98–1.31) | ||
9 years | 1.49 (1.24–1.79) *** | 1.33 (1.09–1.61) ** | ||
≥12 years | 2.27 (1.82–2.83) *** | 1.98 (1.58–2.49) *** | ||
Personal income (vs. No) | ||||
Yes | 1.11 (0.99–1.24) | 1.11 (0.99–1.25) | ||
Health education (vs. No) | ||||
Yes | 1.30 (1.17–1.45) *** | 1.29 (1.16–1.44) *** | ||
Hosmer–Lemeshow test | χ2 = 12.52 p = 0.129 | χ2 = 10.08 p = 0.259 | χ2 = 3.41 p = 0.906 | χ2 = 6.47 p = 0.595 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yang, Y.; Zhou, J.; Liu, T.; Zhang, W.; Wei, L.; Wu, S. Prevalence and Associated Factors of Compliance Behaviors among Middle-Aged and Older Hypertensive Patients in China: Results from the China Health and Retirement Longitudinal Study. Int. J. Environ. Res. Public Health 2020, 17, 7341. https://doi.org/10.3390/ijerph17197341
Liu J, Yang Y, Zhou J, Liu T, Zhang W, Wei L, Wu S. Prevalence and Associated Factors of Compliance Behaviors among Middle-Aged and Older Hypertensive Patients in China: Results from the China Health and Retirement Longitudinal Study. International Journal of Environmental Research and Public Health. 2020; 17(19):7341. https://doi.org/10.3390/ijerph17197341
Chicago/Turabian StyleLiu, Jianjian, Ying Yang, Jiayi Zhou, Tianyu Liu, Wenjie Zhang, Liuyi Wei, and Shaotang Wu. 2020. "Prevalence and Associated Factors of Compliance Behaviors among Middle-Aged and Older Hypertensive Patients in China: Results from the China Health and Retirement Longitudinal Study" International Journal of Environmental Research and Public Health 17, no. 19: 7341. https://doi.org/10.3390/ijerph17197341
APA StyleLiu, J., Yang, Y., Zhou, J., Liu, T., Zhang, W., Wei, L., & Wu, S. (2020). Prevalence and Associated Factors of Compliance Behaviors among Middle-Aged and Older Hypertensive Patients in China: Results from the China Health and Retirement Longitudinal Study. International Journal of Environmental Research and Public Health, 17(19), 7341. https://doi.org/10.3390/ijerph17197341