Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers
Abstract
:1. Introduction
1.1. Debates on Internet Gaming Disorder
1.2. Pro-Gamers vs. Patients with IGD
1.3. Resting-State Functional Magnetic Resonance Imaging (MRI) and Fractional Amplitude of Low-Frequency Fluctuation
1.4. Hypothesis
2. Methods
2.1. Participants
2.2. Clinical Scales
2.3. Brain Image Acquisition and Processing
2.4. Statistics
3. Results
3.1. Comparison of Demographic and Psychological Data
3.2. Comparison of the Changes in fALFF between Student Pro-Gamers and IGD Adolescents after a Year
3.3. Correlation between the fALFF and CBCL Scores in All Adolescents (Student Pro-Gamers and IGD Adolescents)
4. Discussion
4.1. Mproved Problematic Behavioral Scores in Student Pro-Gamers Compared to IGD Adolescents
4.2. Increased Brain Activity within the Attention Network (parietal lobe) in Response to One-Year Internet Gameplay in Both Groups
4.3. Increased Brain Activity within the Orbitofrontal Cortex of the IGD Adolescents in Response to a Year of Internet Gaming
4.4. Association between fALFF Values within the Orbitofrontal and the CBCL-Externalizing Scores
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Psychiatry Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- World Health Organization. Public Health Implications of Excessive Use of the Internet, Computers, Smartphones and Similar Electronic Devices Meeting Report; World Health Organization: Tokyo, Japan, 2014. [Google Scholar]
- World Health Organization. The ICD-11 Classification of Mental and Behavioral Disorders: Diagnostic Criteria for Research; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Gentile, D. Pathological video-game use among youth ages 8 to 18: A national study. Psychol. Sci. 2009, 20, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Stockdale, L.; Coyne, S.M. Video game addiction in emerging adulthood: Cross-sectional evidence of pathology in video game addicts as compared to matched healthy controls. J. Affect. Disord. 2018, 225, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hull, J.G.; Brunelle, T.J.; Prescott, A.T.; Sargent, J.D. A longitudinal study of risk-glorifying video games and behavioral deviance. J. Pers. Soc. Psychol. 2014, 107, 300–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, A.; Lejoyeux, M. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction. Am. J. Addict. 2015, 24, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.G.; Potenza, M.N. Diagnostic and classification considerations regarding gaming disorder: Neurocognitive and neurobiological features. Front. Psychiatry 2019, 10, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kang, E. Internet game overuse is associated with an alteration of fronto-striatal functional connectivity during reward feedback processing. Front. Psychiatry 2018, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, L.; Yuan, K.; Hu, Y.; Zheng, H.; Du, X.; Dong, G. Cortical thickness and volume abnormalities in internet gaming disorder: Evidence from comparison of recreational internet game users. Eur. J. Neurosci. 2018, 48, 1654–1666. [Google Scholar] [CrossRef]
- Zilverstand, A.; Huang, A.S.; Alia-Klein, N.; Goldstein, R.Z. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review. Neuron 2018, 98, 886–903. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Jeong, E.J.; Ferguson, C.J.; Lee, S.J. Pathological gaming in young adolescents: A longitudinal study focused on academic stress and self-control in South Korea. J. Youth Adolesc. 2019, 48, 2333–2342. [Google Scholar] [CrossRef]
- Pang, S.; Abdin, E.; Chong, S.A.; Chua, B.Y.; Lee, S.P.; Picco, L.; Satghare, P.; Vaingankar, L.; Verma, S.; Subramaniam, M. Correlates of online game play motivations, social anxiety and psychological distress. Ann. Acad. Med. Singap. 2017, 46, 443–446. [Google Scholar] [PubMed]
- Cerniglia, L.; Griffiths, M.D.; Cimino, S.; De Palo, V.; Monacis, L.; Sinatra, M.; Tambelli, R. A latent profile approach for the study of internet gaming disorder, social media addiction, and psychopathology in a normative sample of adolescents. Psychol. Res. Behav. Manag. 2019, 12, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Guicciardi, M.; Sinatra, M.; Monacis, L.; Simonelli, A.; Cimino, S. The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behav. Sci. 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Latham, A.J.; Patston, L.L.; Tippett, L.J. The virtual brain: 30 years of video-game play and cognitive abilities. Front. Psychol. 2013, 4, 629. [Google Scholar] [CrossRef] [Green Version]
- Mentiplay, B.F.; FitzGerald, T.L.; Clark, R.A.; Bower, K.J.; Denehy, L.; Spittle, A.J. Do video game interventions improve motor outcomes in children with developmental coordination disorder? A systematic review using the ICF framework. BMC Pediatr. 2019, 19, 22. [Google Scholar] [CrossRef]
- Pallavicini, F.; Ferrari, A.; Mantovani, F. Video games for well-being: A systematic review on the application of computer games for cognitive and emotional training in the adult population. Front. Psychol. 2018, 9, 2127. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, S.; Mayas, J.; Prieto, A.; Ruiz-Marquez, E.; Toril, P.; Reales, J.M. Effects of video game training on measures of selective attention and working memory in older adults: Results from a randomized controlled trial. Front. Aging Neurosci. 2017, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Baysak, E.; Yertutanol, F.D.K.; Dalgar, I.; Candansayar, S. How game addiction rates and related psychosocial risk factors change within 2-years: A follow-up study. Psychiatry Investig. 2018, 15, 984–990. [Google Scholar] [CrossRef]
- El-Salhy, M.; Miyazaki, T.; Noda, Y.; Nakajima, S.; Nakayama, H.; Mihara, S.; Kitayuguchi, T.; Higuchi, S.; Muramatsu, T.; Mimura, M. Relationships between internet addiction and clinicodemographic and behavioral factors. Neuropsychiatr. Dis. Treat. 2019, 15, 739–752. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Chun, J.W.; Park, C.H.; Cho, H.; Choi, J.; Yang, S.; Ahn, K.J.; Kim, D.J. The correlation between the frontostriatal network and impulsivity in internet gaming disorder. Sci. Rep. 2019, 9, 1191. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Lyoo, I.K.; Renshaw, P.F. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J. Psychiatr. Res. 2012, 46, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Shen, H.; Ren, J.; Li, X.; Xu, X.; Yang, R.; Lai, L.; Chen, L.; Hu, J.; Liu, W.; et al. Altered resting-state connectivity in college students with nonclinical depressive symptoms. PLoS ONE 2014, 9, e114603. [Google Scholar] [CrossRef]
- Lu, H.; Zuo, Y.; Gu, H.; Waltz, J.A.; Zhan, W.; Scholl, C.A.; Rea, W.; Yang, Y.; Stein, E.A. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl. Acad. Sci. USA 2007, 104, 18265–18269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Q.H.; Zhu, C.Z.; Yang, Y.; Zuo, X.N.; Long, X.Y.; Cao, Q.J.; Wang, Y.F.; Zang, Y.F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 2008, 172, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhuo, C.; Qin, W.; Zhu, J.; Yu, C. Altered spontaneous brain activity in schizophrenia: A meta-analysis and a large-sample study. Biomed. Res. Int. 2015, 204628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itahashi, T.; Yamada, T.; Watanabe, H.; Nakamura, M.; Ohta, H.; Kanai, C.; Iwanami, A.; Kato, N.; Hashimoto, R. Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Mol. Autism 2015, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Ji, X.; Zhang, J.; Feng, J. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front. Syst. Neurosci. 2012, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Kang, Y.H.; Lee, J.M.; Cha, J.; Park, Y.H.; Kweon, K.J.; Kim, B.N. Resting-state functional magnetic resonance imaging investigation of the neural correlates of cognitive-behavioral therapy for externalizing behavior problems in adolescent bullies. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 86, 193–202. [Google Scholar] [CrossRef]
- Achenbach, T.M. Manual for the Child Behavior Checklist/4–18 and 1991 Profile; Burlington: Burlington, NJ, USA, 1991. [Google Scholar]
- Lee, S.; Park, J.; Lim, E.; Junh, H. Screening Oppositional Defiant Disorder with the Korean Child Behavior Checklist: The Role of the Subscales of Aggressive and Delinquent Behavior. J. Korean Acad. Child Adolesc. Psychiatry 2011, 22, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lee, H.K.; Gyeong, H.; Yu, B.; Song, Y.M.; Kim, D. Reliability and validity of the Korean version of the internet addiction test among college students. J. Korean Med. Sci. 2013, 28, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, M. The Children’s Depression, Inventory (CDI). Psychopharmacol. Bull. 1985, 21, 995–998. [Google Scholar] [PubMed]
- Cho, S.C.; Lee, Y.S. Development of the Korean form of the Kovacs’ Children’s Depression Inventory. J. Korean Neuropsychiatr. Assoc. 1990, 29, 943–956. [Google Scholar]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1998, 56, 893. [Google Scholar] [CrossRef]
- Kwon, S.M. The assessment of psychopathology in patient with anxiety disorder. Korean J. Psychopathol. 1997, 6, 37–51. [Google Scholar]
- DuPaul, G.J. Parent and teacher ratings of ADHD symptoms: Psychometric properties in a community-based sample. J. Clin. Child Adolesc. Psychol. 1991, 20, 245–253. [Google Scholar] [CrossRef]
- So, Y.K.; Noh, J.S.; Kim, Y.S.; Ko, S.G.; Koh, Y.J. The reliability and validity of Korean parent and teacher ADHD rating scale. J. Korean Neuropsychiatr. Assoc. 2002, 41, 283–289. [Google Scholar]
- Achenbach, T.M.; Ruffle, T.M. The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr. Rev. 2000, 21, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Park, J.I.; Shim, S.H.; Lee, M.; Jung, Y.E.; Park, T.W.; Park, S.H.; Im, Y.J.; Yang, J.C.; Chung, Y.C.; Chung, S.K. The validities and efficiencies of Korean ADHD rating scale and Korean child behavior checklist for screening children with ADHD in the community. Psychiatry Investig. 2014, 11, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Kweon, K.; Lee, H.J.; Park, K.J.; Joo, Y.; Kim, H.W. Child behavior checklist profiles in adolescents with bipolar and depressive disorders. Compr. Psychiatry 2016, 70, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Greitemeyer, T.; Mugge, D.O. Video games do affect social outcomes: A meta-analytic review of the effects of violent and prosocial video game play. Pers. Soc. Psychol. Bull. 2014, 40, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Wang, Y. The relation of violent video games to adolescent aggression: An examination of moderated mediation effect. Front. Psychol. 2019, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, A.K.; Weinstein, N. Violent video game engagement is not associated with adolescents’ aggressive behaviour: Evidence from a registered report. R. Soc. Open Sci. 2019, 6, 171474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, C. Drug addiction and drug abuse. In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11th ed.; Brunton, L.B., Lazo, J.S., Parker, K.L., Eds.; McGraw-Hill: New York, NY, USA, 2005; pp. 607–629. [Google Scholar]
- Ptak, R. The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. Neuroscientist 2012, 18, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Bavelier, D.; Achtman, R.L.; Mani, M.; Focker, J. Neural bases of selective attention in action video game players. Vis. Res. 2012, 61, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, M.W.; Green, C.S.; Bavelier, D. The development of attention skills in action video game players. Neuropsychologia 2009, 47, 1780–1789. [Google Scholar] [CrossRef] [Green Version]
- Evren, C.; Evren, B.; Dalbudak, E.; Topcu, M.; Kutlu, N. Relationships of Internet addiction and Internet gaming disorder symptom severities with probable attention deficit/hyperactivity disorder, aggression and negative affect among university students. Atten. Defic. Hyperact. Disord. 2019, 11, 413–421. [Google Scholar] [CrossRef]
- Han, D.H.; Lee, Y.S.; Na, C.; Ahn, J.Y.; Chung, U.S.; Daniels, M.A.; Haws, C.A.; Renshaw, P.F. The effect of methylphenidate on Internet video game play in children with attention-deficit/hyperactivity disorder. Compr. Psychiatry 2009, 50, 251–256. [Google Scholar] [CrossRef]
- Moccia, L.; Pettorruso, M.; De Crescenzo, F.; De Risio, L.; di Nuzzo, L.; Martinotti, G.; Bifone, A.; Janiri, L.; Di Nicola, M. Neural correlates of cognitive control in gambling disorder: A systematic review of fMRI studies. Neurosci. Biobehav. Rev. 2017, 78, 104–116. [Google Scholar] [CrossRef]
- Park, B.; Han, D.H.; Roh, S. Neurobiological findings related to Internet use disorders. Psychiatry Clin. Neurosci. 2017, 71, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Winstanley, C.A. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. Ann. N. Y. Acad. Sci. 2007, 1121, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Moorman, D.E. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, N.; Sadovsky, A.; Spinrad, T.L.; Fabes, R.A.; Losoya, S.H.; Valiente, C.; Reiser, M.; Cumberland, A.; Shepard, S.A. The relations of problem behavior status to children’s negative emotionality, effortful control, and impulsivity: Concurrent relations and prediction of change. Dev. Psychol. 2005, 41, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Mavrogiorgou, P.; Enzi, B.; Klimm, A.K.; Kohler, E.; Roser, P.; Norra, C.; Juckel, G. Serotonergic modulation of orbitofrontal activity and its relevance for decision making and impulsivity. Hum. Brain Mapp. 2017, 38, 1507–1517. [Google Scholar] [CrossRef]
- Deserno, L.; Wilbertz, T.; Reiter, A.; Horstmann, A.; Neumann, J.; Villringer, A.; Heinze, H.J.; Schlagenhauf, F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl. Psychiatry 2015, 5, e659. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zhu, Z.; Zhang, W.; Chen, Y.; Zhen, S. Trait impulsivity components correlate differently with proactive and reactive control. PLoS ONE 2017, 12, e0176102. [Google Scholar] [CrossRef]
Student Pro-Gamers | IGD Adolescents | Statistics | ||
---|---|---|---|---|
Age (years) | 17.1 ± 0.3 | 16.5 ± 1.2 | z = 1.07, p = 0.28 | |
Education (years) | 11.1 ± 0.3 | 9.7 ± 2.7 | z = 1.63, p = 0.10 | |
IQ | 86.8 ± 6.3 | 90.4 ± 10.3 | z = −1.29, p = 0.19 | |
YIAS | B | 56.3 ± 7.5 | 65.3 ± 7.5 | z = −2.24, p = 0.02 * |
F | 55.8 ± 13.0 | 61.4 ± 11.0 | z = −1.46, p = 0.14 | |
Game time (hours/day) | B | 6.7 ± 1.4 | 7.0 ± 1.7 | z = −0.24, p = 0.81 |
F | 7.2 ± 1.2 | 6.7 ± 2.0 | z = 1.19, p = 0.23 | |
CDI | B | 7.8 ± 4.7 | 11.4 ± 5.6 | z = −1.73, p = 0.08 |
F | 5.4 ± 3.9 | 12.2 ± 6.0 | z = −3.10, p < 0.01 * | |
BAI | B | 6.4 ± 2.9 | 7.9 ± 3.7 | z = −1.07, p = 0.28 |
F | 6.2 ± 2.0 | 7.8 ± 3.3 | z = −1.21, p = 0.81 | |
K-ARS | B | 12.5 ± 5.5 | 12.9 ± 5.8 | z = −0.29, p = 0.22 |
F | 13.1 ± 3.8 | 12.7 ± 6.5 | z = 0.22, p = 0.83 | |
CBCL-T | B | 47.1 ± 6.8 | 54.4 ± 13.9 | z = −1.43, p = 0.15 |
F | 33.4 ± 8.9 | 52.5 ± 10.9 | z = −3.53, p < 0.01 * | |
CBCL-E | B | 47.4 ± 3.9 | 52.7 ± 11.3 | z = −1.82, p = 0.07 |
F | 30.5 ± 7.8 | 51.6 ± 12.2 | z = −3.81, p < 0.01 * | |
CBCL-I | B | 43.6 ± 8.6 | 54.1 ± 14.4 | z = −2.37, p = 0.02 * |
F | 31.2 ± 7.6 | 52.4 ± 12.9 | z = −3.93, p < 0.01 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, K.H.; Hwang, H.C.; Kim, S.M.; Han, D.H. Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers. Int. J. Environ. Res. Public Health 2020, 17, 441. https://doi.org/10.3390/ijerph17020441
Kwak KH, Hwang HC, Kim SM, Han DH. Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers. International Journal of Environmental Research and Public Health. 2020; 17(2):441. https://doi.org/10.3390/ijerph17020441
Chicago/Turabian StyleKwak, Ki Hyeon, Hyun Chan Hwang, Sun Mi Kim, and Doug Hyun Han. 2020. "Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers" International Journal of Environmental Research and Public Health 17, no. 2: 441. https://doi.org/10.3390/ijerph17020441
APA StyleKwak, K. H., Hwang, H. C., Kim, S. M., & Han, D. H. (2020). Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers. International Journal of Environmental Research and Public Health, 17(2), 441. https://doi.org/10.3390/ijerph17020441