Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Outcome Variables
2.3. Exposure Variables
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical standards
References and Note
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability. 2014. Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 11 January 2020).
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Capstick, S.; et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 2019, 394, 1836–1878. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC) Working Group. Climate Change 2013: The Physical Science Basis; Intergovernmental Panel on Climate Change (IPCC) Working Group: Stockholm, Sweden, 2013. [Google Scholar]
- Franchini, M.; Mannucci, P.M. Impact on human health of climate changes. Eur. J. Intern. Med. 2015, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pop-Jordanova, N.; Grigorova, E. Influence of Climate Changes on Health (Review). Prilozi 2015, 36, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, K.; Woster, A.P.; Goldstein, R.S.; Carlton, E.J. Untangling the Impacts of Climate Change on Waterborne Diseases: A Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. Environ. Sci. Technol. 2016, 50, 4905–4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, T.J.; Lin, C.J.; Jagai, J.S.; Hilborn, E.D. Flooding and Emergency Room Visits for Gastrointestinal Illness in Massachusetts: A Case-Crossover Study. PLoS ONE 2014, 9, e110474. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation, and Vulnerability; Intergovernmental Panel on Climate Change (IPCC): Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Satyamurty, P.; Da Costa, C.P.W.; Manzi, A.O.; Candido, L.A. A quick look at the 2012 record flood in the Amazon Basin. Geophys. Res. Lett. 2013, 40, 1396–1401. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Frappart, F.; Lavado, W.; Santini, W.; Guyot, J.L.; Lavado-Casimiro, W. The Major Floods in the Amazonas River and Tributaries (Western Amazon Basin) during the 1970–2012 Period: A Focus on the 2012 Flood. J. Hydrometeorol. 2013, 14, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Barichivich, J.; Gloor, E.; Peylin, P.; Brienen, R.J.W.; Schöngart, J.; Espinoza, J.C.; Pattnayak, K.C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 2018, 4, eaat8785. [Google Scholar] [CrossRef] [Green Version]
- Levy, K.; Hubbard, A.E.; Eisenberg, J.N.S. Seasonality of rotavirus disease in the tropics: A systematic review and meta-analysis. Int. J. Epidemiol. 2009, 38, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Hellberg, R.S.; Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 2016, 42, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Hales, S.; French, N.; Baker, M.G. Seasonality in Human Zoonotic Enteric Diseases: A Systematic Review. PLoS ONE 2012, 7, e31883. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, F.R.; Ibrahim, Q.S.U.; Bari, S.; Alam, M.M.J.; Dunachie, S.J.; Rodriguez-Morales, A.J.; Patwary, I. The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS ONE 2018, 13, e0199579. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.M.; Chowdhury, F.; Begum, Y.A.; Khan, A.I.; Faruque, A.S.G.; Svennerholm, A.-M.; Harris, J.B.; Ryan, E.T.; Cravioto, A.; Calderwood, S.B.; et al. Shifting prevalence of major diarrheal pathogens in patients seeking hospital care during floods in 1998, 2004, and 2007 in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2008, 79, 708–714. [Google Scholar] [CrossRef]
- Sterk, A.; Schijven, J.; De Nijs, T.; Husman, A.M.D.R. Direct and Indirect Effects of Climate Change on the Risk of Infection by Water-Transmitted Pathogens. Environ. Sci. Technol. 2013, 47, 12648–12660. [Google Scholar] [CrossRef]
- Rieckmann, A.; Tamason, C.C.; Gurley, E.S.; Rod, N.H.; Jensen, P.K.M. Exploring Droughts and Floods and Their Association with Cholera Outbreaks in Sub-Saharan Africa: A Register-Based Ecological Study from 1990 to 2010. Am. J. Trop. Med. Hyg. 2018, 98, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Saulnier, D.D.; Ribacke, K.B.; Von Schreeb, J. No Calm After the Storm: A Systematic Review of Human Health Following Flood and Storm Disasters. Prehospital Disaster Med. 2017, 32, 568–579. [Google Scholar] [CrossRef]
- Schwartz, B.S.; Harris, J.B.; Khan, A.I.; Larocque, R.C.; Sack, D.A.; Malek, M.A.; Faruque, A.S.G.; Qadri, F.; Calderwood, S.B.; Luby, S.P.; et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. Am. J. Trop. Med. Hyg. 2006, 74, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, Z.; Zhang, Y.; Jiang, B. Quantitative analysis of burden of bacillary dysentery associated with floods in Hunan, China. Sci. Total. Environ. 2016, 547, 190–196. [Google Scholar] [CrossRef]
- Zhang, N.; Song, D.; Zhang, J.; Liao, W.; Miao, K.; Zhong, S.; Lin, S.; Hajat, S.; Yang, L.; Huang, C. The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: An interrupted time-series study. Environ. Int. 2019, 127, 801–809. [Google Scholar] [CrossRef]
- Ding, G.; Zhang, Y.; Gao, L.; Ma, W.; Li, X.; Liu, J.; Liu, Q.; Jiang, B. Quantitative Analysis of Burden of Infectious Diarrhea Associated with Floods in Northwest of Anhui Province, China: A Mixed Method Evaluation. PLoS ONE 2013, 8, e65112. [Google Scholar] [CrossRef] [Green Version]
- Kotloff, K.L. The Burden and Etiology of Diarrheal Illness in Developing Countries. Pediatr. Clin. N. Am. 2017, 64, 799–814. [Google Scholar] [CrossRef]
- A Platts-Mills, J.; Liu, J.; Rogawski, E.T.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: A reanalysis of the MAL-ED cohort study. Lancet Glob. Heal. 2018, 6, e1309–e1318. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.A.M.; Oliveira, D.B.; Quetz, J.S.; Havt, A.; Prata, M.M.G.; Lima, I.F.N.; Soares, A.M.; Filho, J.Q.; Lima, N.L.; Medeiros, P.H.Q.S.; et al. Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study. PLoS Negl. Trop. Dis. 2019, 13, e0007154. [Google Scholar] [CrossRef]
- MAL-ED Network Investigators, The MAL-ED Network Investigators, MAL-ED Network Investigators. The MAL-ED study: A multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of. Clin. Infect. Dis. 2014, 59, S193–S206. [Google Scholar] [CrossRef] [Green Version]
- Yori, P.P.; Lee, G.; Olórtegui, M.P.; Chávez, C.B.; Flores, J.T.; Vasquez, A.O.; Burga, R.; Pinedo, S.R.; Asayag, C.R.; Black, R.E.; et al. Santa Clara de Nanay: The MAL-ED Cohort in Peru. Clin. Infect. Dis. 2014, 59, S310–S316. [Google Scholar] [CrossRef] [Green Version]
- Andina. Senamhi Declara Alerta Roja Hidrológica Por Incremento de Caudal de Ríos Amazónicos. Agencia peru. Not. 2012. Available online: https://web.archive.org/web/20120406171822/http://www.andina.com.pe/Espanol/noticia-senamhi-declara-alerta-roja-hidrologica-incremento-rios-amazonicos-403809 (accessed on 4 November 2019).
- Rosa Cárdenas. Decretan Estado de Emergencia en Parte de Loreto Por Inundaciones. La República. 2012. Available online: https://larepublica.pe/archivo/620955-decretan-estado-de-emergencia-en-parte-de-loreto-por-inundaciones (accessed on 4 November 2019).
- National Oceanic and Atmospheric Administration. NNDC Climate Data Online. NOAA Satallite Inf. Serv. 2016. Available online: https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&countryabbv=&georegionabbv (accessed on 1 January 2017).
- Sede de Loreto. Nivel del Rio Nanay 1969–2015. Iquitos, (Restricted Circulation). 2015.
- OFDA/CRED. International Disaster Database; Université Catholique de Louvain: Brussels, Belgium, 2013; Available online: http://www.emdat.be (accessed on 5 February 2013).
- Liu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Boisen, N.; Nataro, J.; Doris, M.; et al. Optimization of Quantitative PCR Methods for Enteropathogen Detection. Chan KH, editor. PLoS One 2016, 11, e0158199. [Google Scholar]
- Houpt, E.; Gratz, J.; Kosek, M.; Zaidi, A.K.M.; Qureshi, S.; Kang, G.; Babji, S.; Mason, C.; Bodhidatta, L.; Samie, A.; et al. Microbiologic methods utilized in the MAL-ED cohort study. Clin. Infect. Dis. 2014, 59, S225–S232. [Google Scholar] [CrossRef] [Green Version]
- Linden, A.; Adams, J.L. Applying a propensity score-based weighting model to interrupted time series data: Improving causal inference in programme evaluation. J. Eval. Clin. Pract. 2011, 17, 1231–1238. [Google Scholar] [CrossRef]
- Biglan, A.; Ary, D.; Wagenaar, A.C. The value of interrupted time-series experiments for community intervention research. Prev. Sci. 2000, 1, 31–49. [Google Scholar] [CrossRef]
- Colston, J.M.; Ahmed, A.M.S.; Soofi, S.B.; Svensen, E.; Haque, R.; Shrestha, J.; Nshama, R.; Bhutta, Z.; Lima, I.F.N.; Samie, A.; et al. Seasonality and within-subject clustering of rotavirus infections in an eight-site birth cohort study. Epidemiol. Infect. 2018, 146, 688–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, J.M.; Zaitchik, B.; Kang, G.; Yori, P.P.; Ahmed, T.; Lima, A.; Turab, A.; Mduma, E.; Shrestha, P.S.; Bessong, P.; et al. Use of earth observation-derived hydrometeorological variables to model and predict rotavirus infection (MAL-ED): A multisite cohort study. Lancet Planet. Heal. 2019, 3, e248–e258. [Google Scholar] [CrossRef] [Green Version]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 15; StataCorp: College Station, TX, USA, 2017. [Google Scholar]
- Bennett, A.; Epstein, L.D.; Gilman, R.H.; Cama, V.; Bern, C.; Cabrera, L.; Lescano, A.G.; Patz, J.; Carcamo, C.; Sterling, C.R.; et al. Effects of the 1997–1998 El Niño Episode on Community Rates of Diarrhea. Am. J. Public Heal. 2012, 102, e63–e69. [Google Scholar] [CrossRef]
- Demissie, S. The Impact of El Niño on Diarrheal Disease Incidence: A Systematic Review. Sci. J. Public Heal. 2017, 5, 446. [Google Scholar] [CrossRef]
- Fisman, D.N.; Tuite, A.R.; Brown, K.A. Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States. Proc. Natl. Acad. Sci. USA 2016, 113, 14589–14594. [Google Scholar] [CrossRef] [Green Version]
- Perry, S.J.; McGregor, S.; Gupta, A.S.; England, M.H. Future Changes to El Niño-Southern Oscillation Temperature and Precipitation Teleconnections. Geophys. Res. Lett. 2017, 44, 10608–10616. [Google Scholar] [CrossRef]
- Latif, M.; Keenlyside, N.S. El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA 2009, 106, 20578–20583. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; A Platts-Mills, J.; Juma, J.; Kabir, F.; Nkeze, J.; Okoi, C.; Operario, D.J.; Uddin, J.; Ahmed, S.; Alonso, P.L.; et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet 2016, 388, 1291–1301. [Google Scholar] [CrossRef]
- Qadri, F.; Khan, A.I.; Faruque, A.S.G.; Begum, Y.A.; Chowdhury, F.; Nair, G.B.; Salam, M.A.; Sack, D.A.; Svennerholm, A.M. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004. Emerg. Infect. Dis. 2005, 11, 1104. [Google Scholar] [CrossRef]
- Gonzales-Siles, L.; Sjöling, Å. The different ecological niches of enterotoxigenic E scherichia coli. Environ. Microbiol. 2016, 18, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.-L.; Kuo, P.-C. Isolation of Campylobacter sp in surface waters of Taiwan. J. Microbiol. Immunol. Infect. 2011, 44, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, E.; White, R.; Mexía, R.; Bruun, T.; Kapperud, G.; Lange, H.; Nygard, K.; Vold, L. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010–2011: A National Prospective Case-Control Study. PLoS ONE 2015, 10, e0139636. [Google Scholar] [CrossRef] [Green Version]
- Soneja, S.; Jiang, C.; Upperman, C.R.; Murtugudde, R.; Mitchell, C.S.; Blythe, D.; Sapkota, A.R.; Sapkota, A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, USA. Environ. Res. 2016, 149, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Kraay, A.N.M.; Brouwer, A.F.; Lin, N.; Collender, P.A.; Remais, J.V.; Eisenberg, J.N.S. Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proc. Natl. Acad. Sci. USA 2018, 115, E2782–E2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, F.K.; Ko, A.I.; Becha, C.; Joshua, C.; Musto, J.; Thomas, S.; Ronsse, A.; Kirkwood, C.D.; Sio, A.; Aumua, A.; et al. Increased Rotavirus Prevalence in Diarrheal Outbreak Precipitated by Localized Flooding, Solomon Islands, 2014. Emerg. Infect. Dis. 2016, 22, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.A.; Mouw, C.; Jutla, A.; Akanda, A.S. Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satellite-Based Observations in Detecting Outbreaks. GeoHealth 2018, 2, 70–86. [Google Scholar] [CrossRef]
- Sarkar, R.; Kang, G.; Naumova, E.N. Rotavirus Seasonality and Age Effects in a Birth Cohort Study of Southern India. PLoS ONE 2013, 8, e71616. [Google Scholar] [CrossRef] [Green Version]
- Martinez, P.P.; Mahmud, A.S.; Yunus, M.; Faruque, A.S.G.; Ahmed, T.; Pascual, M.; O Buckee, C. Tube Well Use as Protection against Rotavirus Infection during the Monsoons in an Urban Setting. J. Infect. Dis. 2019, 221, 238–242. [Google Scholar] [CrossRef]
- Ruiz-Palacios, G.M.; Perez-Schael, I.; Velázquez, F.R.; Abate, H.; Breuer, T.; Clemens, S.C.; Cheuvart, B.; Espinoza, F.; Gillard, P.; Innis, B.L.; et al. Safety and Efficacy of an Attenuated Vaccine against Severe Rotavirus Gastroenteritis. N. Engl. J. Med. 2006, 354, 11–22. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Zeller, M.; Heylen, E.; De Coster, S.; Vercauteren, J.; Braeckman, T.; Van Herck, K.; Meyer, N.; Pircon, J.-Y.; Soriano-Gabarro, M.; et al. Higher proportion of G2P[4] rotaviruses in vaccinated hospitalized cases compared with unvaccinated hospitalized cases, despite high vaccine effectiveness against heterotypic G2P[4] rotaviruses. Clin. Microbiol. Infect. 2014, 20, O702–O710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizzi, E.; Piñeros, O.A.; Oropeza, M.D.; Naranjo, L.; Suárez, J.A.; Fernández, R.; Zambrano, J.L.; Celis, A.; Liprandi, F. Human rotavirus strains circulating in Venezuela after vaccine introduction: Predominance of G2P[4] and reemergence of G1P[8]. Virol. J. 2017, 14, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanh, H.D.; Tran, V.T.; Lim, I.; Kim, W. Emergence of Human G2P[4] Rotaviruses in the Post-vaccination Era in South Korea: Footprints of Multiple Interspecies Re-assortment Events. Sci. Rep. 2018, 8, 6011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, V.R.; Karthikeyan, R.; Babji, S.; McGrath, M.; Shrestha, S.; Shrestha, J.; Mdumah, E.; Amour, C.; Samie, A.; Nyathi, E.; et al. Rotavirus Infection and Disease in a Multisite Birth Cohort: Results From the MAL-ED Study. J. Infect. Dis. 2017, 216, 305–316. [Google Scholar] [CrossRef]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef]
- Hall, A.J.; Lopman, B.A.; Vinjé, J. Sapovirus. In Foodborne Infections and Intoxications; Elsevier BV: Amsterdam, The Nederland, 2013; pp. 313–319. [Google Scholar]
- Fu, L.L.; Li, J.R. Microbial Source Tracking: A Tool for Identifying Sources of Microbial Contamination in the Food Chain. Crit. Rev. Food Sci. Nutr. 2014, 54, 699–707. [Google Scholar] [CrossRef]
- Malomo, G.A.; Madugu, A.S.; Bolu, S.A. Sustainable Animal Manure Management Strategies and Practices. Agric. Waste Residues 2018, 119, 121–137. [Google Scholar]
- Cumming, O.; Arnold, B.F.; Ban, R.; Clasen, T.; Mills, J.E.; Freeman, M.C.; Gordon, B.; Guiteras, R.; Howard, G.; Hunter, P.R.; et al. The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: A consensus statement. BMC Med. 2019, 17, 173. [Google Scholar] [CrossRef]
Pathogen | Early Flood | Late Flood | Pre-/Post-Flood | Control Group |
---|---|---|---|---|
Adenovirus 40/41 | 77 (9.0) | 129 (15.4) | 1171 (18.3) | 4545 (10.9) |
Astrovirus | 114 (13.5) | 121 (14.5) | 859 (13.4) | 3800 (9.1) |
Norovirus | 96 (13.6) | 135 (18.5) | 1189 (21.6) | 6002 (15.8) |
Rotavirus | 25 (2.9) | 85 (10.2) | 173 (2.6) | 2027 (4.8) |
Sapovirus | 119 (20.5) | 122 (20.3) | 689 (15.4) | 4693 (13.3) |
Campylobacter spp. | 202 (24.4) | 194 (23.7) | 1,386 (22.3) | 10,248 (25.6) |
EAEC | 359 (47.1) | 379 (48.8) | 2,585 (43.3) | 17,414 (42.6) |
Atypical EPEC | 176 (21.3) | 162 (20.0) | 1,212 (19.2) | 8,593 (20.5) |
Typical EPEC | 70 (8.4) | 97 (11.9) | 622 (9.7) | 4344 (10.4) |
LT-ETEC | 113 (13.5) | 132 (16.2) | 918 (14.4) | 4766 (11.4) |
ST-ETEC | 88 (10.6) | 80 (9.7) | 584 (9.1) | 5,397 (12.9) |
Salmonella spp. | 7 (0.8) | 10 (1.1) | 50 (0.7) | 264 (0.6) |
Shigella spp./EIEC | 86 (9.5) | 125 (14.4) | 606 (9.0) | 4126 (9.8) |
Cryptosporidium spp. | 78 (9.4) | 44 (5.3) | 507 (8.1) | 2183 (5.3) |
Giardia spp. | 125 (17.4) | 156 (22.4) | 1117 (20.8) | 5998 (16.7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colston, J.; Paredes Olortegui, M.; Zaitchik, B.; Peñataro Yori, P.; Kang, G.; Ahmed, T.; Bessong, P.; Mduma, E.; Bhutta, Z.; Sunder Shrestha, P.; et al. Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis. Int. J. Environ. Res. Public Health 2020, 17, 487. https://doi.org/10.3390/ijerph17020487
Colston J, Paredes Olortegui M, Zaitchik B, Peñataro Yori P, Kang G, Ahmed T, Bessong P, Mduma E, Bhutta Z, Sunder Shrestha P, et al. Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health. 2020; 17(2):487. https://doi.org/10.3390/ijerph17020487
Chicago/Turabian StyleColston, Josh, Maribel Paredes Olortegui, Benjamin Zaitchik, Pablo Peñataro Yori, Gagandeep Kang, Tahmeed Ahmed, Pascal Bessong, Esto Mduma, Zulfiqar Bhutta, Prakash Sunder Shrestha, and et al. 2020. "Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis" International Journal of Environmental Research and Public Health 17, no. 2: 487. https://doi.org/10.3390/ijerph17020487
APA StyleColston, J., Paredes Olortegui, M., Zaitchik, B., Peñataro Yori, P., Kang, G., Ahmed, T., Bessong, P., Mduma, E., Bhutta, Z., Sunder Shrestha, P., Lima, A., & Kosek, M. (2020). Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health, 17(2), 487. https://doi.org/10.3390/ijerph17020487