Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background Information
2.2. Hair Sampling and Total Hair-Hg Determination
2.3. Nutritional Evaluation: Anthropometry and Hemoglobin Measures
2.4. Intestinal Parasites
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Oliveira, R.C.; Dórea, J.G.; Bernardi, J.V.; Bastos, W.R.; Almeida, R.; Manzatto, Â.G. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): Impact on hair mercury. Ann. Hum. Biol. 2010, 37, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Cowin, I.; Emond, A.; Emmett, P.; The ALSPAC Study Team. Association between composition of the diet and haemoglobin and ferritin levels in 18-month-old children. Eur. J. Clin. Nutr. 2001, 55, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, V.C.; Mendes, B.D.; Gozzi, A.; Sandrini, F.; Santana, R.G.; Matioli, G. Iron deficiency and prevalence of anemia and associated factors in children attending public daycare centers in western Paraná, Brazil. Rev. Nutr. 2011, 24, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.D.; Allen, J.R.; Peat, J.K.; Beal, P.; Webster, B.H.; Gaskin, K.J. Iron status of young Vietnamese children in Australia. J. Paediatr. Child Health 2004, 40, 424–429. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Thanh, N.M.; Samuelson, G. A longitudinal study of iron status in healthy Danish infants: Effects of early iron status, growth velocity and dietary factors. Acta. Paediatr. 1995, 84, 1035–1044. [Google Scholar] [CrossRef]
- Gunnarsson, B.S.; Thorsdottir, I.; Palsson, G. Associations of iron status with dietary and other factors in 6-year-old children. Eur. J. Clin. Nutr. 2007, 61, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Torres, C.; Leets, I.; Layrisse, M. Iron absorption by humans from fish. Arch. Latinoam. Nutr. 1975, 25, 199–210. [Google Scholar]
- Layrisse, M.; Martinez-Torres, C.; Mendez-Castellano, H.; Taylor, P.; Fossi, M.; Lopez de Blanco, M.; Landaeta-Jiménez, M.; Jaffe, W.; Leets, I.; Tropper, E.; et al. Relationship between iron bioavailability from diets and the prevalence of iron deficiency. Food Nutr. Bull. 1990, 12, 301–309. [Google Scholar]
- Gibson, R.S.; Hotz, C. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 2001, 85, S159–S166. [Google Scholar] [CrossRef] [Green Version]
- Batu, A.T.; Than, T.; Toe, T. Iron absorption from Southeast Asian rice-based meals. Am. J. Clin. Nutr. 1976, 29, 219–225. [Google Scholar] [CrossRef]
- Navas-Carretero, S.; Pérez-Granados, A.M.; Sarriá, B.; Carbajal, A.; Pedrosa, M.M.; Roe, M.A.; Fairweather-Tait, S.J.; Vaquero, M.P. Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women. J. Am. Coll. Nutr. 2008, 27, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Nassar, N.M.A.; Barbosa, I.S.; Haridassan, M.; Ortiz, R.; Gomes, P.T.C. Cassava (Manihot esculenta Crantz) genetic resources: A case of high iron and zinc. Genet. Resour. Crop Evol. 2010, 57, 287–291. [Google Scholar] [CrossRef]
- Dórea, J.G.; Barbosa, A.C.; Ferrari, I.; De Souza, J.R. Fish consumption (hair mercury) and nutritional status of Amazonian Amer-Indian children. Am. J. Hum. Biol. 2005, 17, 507–514. [Google Scholar] [CrossRef]
- Marques, R.C.; Dórea, J.G.; Bernardi, J.V.E.; Bastos, W.R.; Malm, O. Maternal fish consumption in the nutrition transition of the Amazon Basin: Growth of exclusively breastfed infants during the first 5 years. Ann. Hum. Biol. 2008, 35, 363–377. [Google Scholar] [CrossRef]
- Marques, R.C.; Dórea, J.G.; McManus, C.; Leão, R.S.; Brandão, K.G.; Marques, R.C.; Vieira, I.H.I.; Guimarães, J.-R.D.; Malm, O. Hydroelectric reservoir inundation (Rio Madeira Basin, Amazon) and changes in traditional lifestyle: Impact on growth and neurodevelopment of pre-school children. Public Health Nutr. 2011, 14, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.C.; Dórea, J.G.; Leão, R.S.; Dos Santos, V.G.; Bueno, L.; Marques, R.C.; Brandão, K.G.; Palermo, E.F.A.; Guimarães, J.R.D. Role of methylmercury exposure (from fish consumption) on growth and neurodevelopment of children under 5 years of age living in a transitioning (tin-mining) area of the western Amazon, Brazil. Arch. Environ. Contam. Toxicol. 2012, 62, 341–350. [Google Scholar] [CrossRef]
- Cunha, M.P.L.; Marques, R.C.; Dórea, J.G. Influence of maternal fish intake on the anthropometric indices of children in the Western Amazon. Nutrients 2018, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Dórea, J.G.; Barbosa, A.C.; Ferrari, I.; de Souza, J.R. Mercury in hair and in fish consumed by Riparian women of the Rio Negro, Amazon, Brazil. Int. J. Environ. Health. Res. 2003, 13, 239–248. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Oriá, R.B.; Moore, S.R.; Oriá, M.O.B.; Lima, A.A.M. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev. 2008, 66, 487–505. [Google Scholar] [CrossRef] [Green Version]
- Feachem, R.; Bradley, D.; Garelick, H.; Mara, D. Sanitation and Disease Health Aspects of Excreta and Wastewater Management; The World Bank: Washington, WA, USA, 1983; p. 501. [Google Scholar]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. 2011. Available online: http://www.who.int/vmnis/indicators/haemoglobin/en/ (accessed on 17 April 2012).
- WHO. WHO Child Growth Standards: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; p. 312. [Google Scholar]
- Gleason, G.; Scrimshaw, N. An overview of the functional significance of iron deficiency. In Nutritional Anemia; Kraemer, K., Zimmermann, M.B., Eds.; Sight Life Press: Seattle, WA, USA, 2007; pp. 45–57. [Google Scholar]
- WHO. Procedimentos Laboratoriais em Parasitologia Médica; Livraria Editora Santos: São Paulo, Brazil, 1999. [Google Scholar]
- Carvalho, G.L.; Moreira, L.E.; Pena, J.L.; Marinho, C.C.; Bahia, M.T.; Machado-Coelho, G.L. A comparative study of the TF-Test®, Kato-Katz, Hoffman-Pons-Janer, Willis and Baermann-Moraes Coprologic methods for the detection of human parasitosis. Mem. Inst. Oswaldo Cruz 2012, 107, 80–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.P.; Polizzotto, M.L. Pit latrines and their impacts on groundwater quality: A systematic review. Environ. Health Perspect. 2013, 121, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, M.M.; Fausto, M.A.; Vieira, E.L.; Benetton, M.L.; Carneiro, M. Intestinal parasitic infection and associated risk factors, among children presenting at outpatient clinics in Manaus, Amazonas state, Brazil. Ann. Trop. Med. Parasitol. 2009, 103, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Quihui-Cota, L.; Morales-Figueroa, G.G.; Esparza-Romero, J.; Valencia, M.E.; Astiazarán-García, H.; Méndez, R.O.; Pacheco-Moreno, B.I.; Crompton, D.W.; Diaz-Camacho, S.P. Trichuriasis and low-iron status in schoolchildren from Northwest Mexico. Eur. J. Clin. Nutr. 2010, 64, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Quizhpe, E.; San Sebastián, M.; Hurtig, A.K.; Llamas, A. Prevalence of anaemia in schoolchildren in the Amazon area of Ecuador. Panam. J. Public Health 2003, 13, 355–361. [Google Scholar]
- Boeke, C.E.; Mora-Plazas, M.; Forero, Y.; Villamor, E. Intestinal protozoan infections in relation to nutritional status and gastrointestinal morbidity in Colombian school children. J. Trop. Pediatr. 2010, 56, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Botero-Garcés, J.H.; García-Montoya, G.M.; Grisales-Patiño, D.; Aguirre-Acevedo, D.C.; Álvarez-Uribe, M.C. Giardia intestinalis and nutritional status in children participating in the complementary nutrition program, Antioquia, Colombia, May to October 2006. Rev. Inst. Med. Trop. São Paulo 2009, 51, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Fraser, D.; Bilenko, N.; Deckelbaum, R.J.; Dagan, R.; El-On, J.; Naggan, L. Giardia lamblia carriage in Israeli Bedouin infants: Risk factors and consequences. Clin. Infect. Dis. 2000, 30, 419–424. [Google Scholar] [CrossRef]
- Nematian, J.; Gholamrezanezhad, A.; Nematian, E. Giardiasis and other intestinal parasitic infections in relation to anthropometric indicators of malnutrition: A large, population-based survey of schoolchildren in Tehran. Ann. Trop. Med. Parasitol. 2008, 102, 209–214. [Google Scholar] [CrossRef]
- Sackey, M.-E.; Weigel, M.M.; Armijos, R.X. Predictors and nutritional consequences of intestinal parasitic infections in rural Ecuadorian children. J. Trop. Pediatr. 2003, 49, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Z.; Zeyrek, F.Y.; Kurcer, M.A. Effect of Giardia infection on growth and psychomotor development of children aged 0–5 years. J. Trop. Pediatr. 2004, 50, 90–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quihui-Cota, L.; Valencia, M.E.; Crompton, D.W.T.; Phillips, S.; Hagan, P.; Diaz-Camacho, S.P.; Triana Tejas, A. Prevalence and intensity of intestinal parasitic infections in relation to nutritional status in Mexican schoolchildren. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Warkany, J.; Hubbard, D.M. Acrodynia and mercury. J. Pediatr. 1953, 42, 365–386. [Google Scholar] [CrossRef]
- Shun-Shin, M. Balantidial dysentery in rodriguez and its treatment with mercury biniodide. Br. Med. J. 1947, 2, 417–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendre, P.; Bailenger, J.; De Fougières, B. Microscopic analysis of the effect of mercuric salts on the parasite concentration in feces. Ann. Parasitol. Hum. Comp. 1987, 62, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.W.; Mullen, G.P.; McManus, J.R.; Heatherly, J.M.; Duke, A.; Rand, J.B. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis. Model. Mech. 2010, 3, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.A.; Forbes, M.R.; Hebert, C.E. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes. Sci. Total Environ. 2010, 408, 5439–5444. [Google Scholar] [CrossRef]
- Bergey, L.; Weis, J.S.; Weis, P. Mercury uptake by the estuarine species Palaemonetes pugio and Fundulus heteroclitus compared with their parasites, Probopyrus pandalicola and Eustrongylides sp. Mar. Pollut. Bull. 2002, 44, 1046–1050. [Google Scholar] [CrossRef]
- King, M.D.; Lindsay, D.S.; Holladay, S.; Ehrich, M. Neurotoxicity and immunotoxicity assessment in CBA/J mice with chronic toxoplasma gondii infection and single-dose exposure to methylmercury. Int. J. Toxicol. 2003, 22, 53–61. [Google Scholar] [CrossRef]
Communities | Itapuã Mean (SD) | Bom Futuro Mean (SD) | p-Level |
---|---|---|---|
Family | |||
Fish meal (week) | 2.9 (2.3) | 2.3 (1.4) | 0.0000 |
Family members | 5.8 (2.2) | 5.11 (1.87) | 0.0005 |
Family income (US dollar) | 240.5 (211.2) | 214.8 (134.2) | 0.8225 |
Breastfeeding (months) | 11.9 (8.9) | 8.2 (7.7) | 0.0000 |
Maternal education (years) | 6.5 (3.5) | 5.8 (2.7) | 0.0714 |
Children (n) | 249 | 688 | |
Birth | |||
Weight (kg) | 3.24 (0.43) | 3.25 (0.43) | 0.2518 |
Length (cm) | 50.5 (2.4) | 50.9 (2.4) | 0.0409 |
Age at visit (months) | 26.1 (15.7) | 19.8 (14.5) | 0.0000 |
Weight (kg) | 11.9 (3.6) | 10.5 (3.3) | 0.0000 |
Height (cm) | 84.4 (14.6) | 80.2 (14.3) | 0.0000 |
W/H Z-scores | 0.21 (1.3) | −0.04 (1.1) | 0.0011 |
H/A Z-scores | −0.49 (1.4) | 0.34 (0.73) | 0.0000 |
W/A Z-scores | −0.12 (1.0) | 0.02 (0.74) | 0.3592 |
Intestinal parasites 1 | 2.81 (1.29) | 2.90 (1.37) | 0.4703 |
Hb (g/100 mL) 2 | 11.24 (0.8) | 11.56 (0.8) | 0.0000 |
Infant’s hair Hg (µg/g) | 4.3 (1.7) | 2.3 (1.2) | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, R.C.; Bernardi, J.V.E.; Dorea, C.C.; Dórea, J.G. Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon. Int. J. Environ. Res. Public Health 2020, 17, 577. https://doi.org/10.3390/ijerph17020577
Marques RC, Bernardi JVE, Dorea CC, Dórea JG. Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon. International Journal of Environmental Research and Public Health. 2020; 17(2):577. https://doi.org/10.3390/ijerph17020577
Chicago/Turabian StyleMarques, Rejane C., José V. E. Bernardi, Caetano C. Dorea, and José G. Dórea. 2020. "Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon" International Journal of Environmental Research and Public Health 17, no. 2: 577. https://doi.org/10.3390/ijerph17020577
APA StyleMarques, R. C., Bernardi, J. V. E., Dorea, C. C., & Dórea, J. G. (2020). Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon. International Journal of Environmental Research and Public Health, 17(2), 577. https://doi.org/10.3390/ijerph17020577