Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Indices of Multi-Attribute Decision-Making (MADM)
2.3. Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE)
2.4. Weight of Attributes
2.5. Evaluate Procedure
3. Case Study
4. Results and Discussion
4.1. Results
4.2. Compare with the Air Quality Indexes
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Li, M.; Bravo, M.A.; Jin, L.; Nori-Sarma, A.; Xu, Y.; Guan, D.; Wang, C.; Chen, M.; Wang, X.; et al. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies. Water Air Soil Pollut. 2014, 225, 2187. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filonchyk, M.; Yan, H.; Hurynovich, V. Temporal-spatial variations of air pollutants in Lanzhou, Gansu Province, China, during the spring–summer periods, 2014–2016: Particulate matter from local sources and transported from deserts create air quality challenges. Environ. Qual. Manag. 2017, 26, 65–74. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Anaya-Boig, E.; Avila-Palencia, I.; Brand, C.; de Nazelle, A.; Gaupp-Berghausen, M.; Götschi, T.; Nieuwenhuijsen, M.; Orjuela, J.P.; et al. Concern over health effects of air pollution is associated to NO2 in seven European cities. Air Qual. Atmos. Health 2018, 11, 591–599. [Google Scholar] [CrossRef]
- Zheng, S.; Yi, H.; Li, H. The impacts of provincial energy and environmental policies on air pollution control in China. Renew. Sustain. Energy Rev. 2015, 49, 386–394. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, Z.; Liu, X.; Xia, X.; Huang, X.; Dong, Z. Improving air pollution control policy in China—A perspective based on cost–benefit analysis. Sci. Total Environ. 2016, 543, 307–314. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Hu, Y.; Liu, D.; Zhang, J.; Chen, C.; Yuan, Z.; Lu, Y. Government employees’ perception of urban air pollution and willingness to pay for improved quality: A cross-sectional survey study in Nanchang, China. Environ. Sci. Pollut. Res. 2016, 23, 22183–22189. [Google Scholar] [CrossRef]
- Shao, M.; Wang, S.; Russell, A.G. Air pollution complex: Understanding the sources, formation processes and health effects. Front. Environ. Sci. Eng. 2016, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Oltra, C.; Sala, R.; Boso, À.; Asensio, S.L. Public engagement on urban air pollution: An exploratory study of two interventions. Environ. Monit. Assess. 2017, 189, 296. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Yu, D.; Hao, R. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China. Environ. Manag. 2018, 61, 1048–1061. [Google Scholar] [CrossRef]
- Monforte, P.; Ragusa, M.A. Evaluation of the air pollution in a Mediterranean region by the air quality index. Environ. Monit. Assess. 2018, 190, 625. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhao, G.; Zhu, B.Z.; Chevallier, J. Examining the Factors Affecting Air Pollution Emission Growth in China. Environ. Model. Assess. 2018, 23, 389–400. [Google Scholar] [CrossRef]
- Gu, H.; Cao, Y.; Elahi, E.; Jha, S.K. Human health damages related to air pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 13115–13125. [Google Scholar] [CrossRef] [PubMed]
- Kozáková, J.; Pokorná, P.; Vodička, P.; Ondráčková, L.; Ondráček, J.; Křůmal, K.; Mikuška, P.; Hovorka, J.; Moravec, P.; Schwarz, J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. Res. 2019, 26, 1675–1692. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Huang, X.; Han, X.; Li, S.; Yang, H.; Huang, C.; Huang, T. Spatial and Temporal Variations and Relationships of Major Air Pollutants in Chinese Cities. Res. Environ. Sci. 2017, 30, 1001–1011. [Google Scholar]
- Jiang, H.Y.; Li, H.R.; Yang, L.S.; Li, Y.H.; Wang, W.Y.; Yan, Y.C. Spatial and seasonal variations of the air pollution index and a driving factors analysis in china. J. Environ. Qual. 2014, 43, 1853–1863. [Google Scholar] [CrossRef]
- Sheng, J.; Webber, M. Incentive-compatible payments for watershed services along the Eastern Route of China’s South-North Water Transfer Project. Ecosyst. Serv. 2017, 25, 213–226. [Google Scholar] [CrossRef]
- Li, Q.; Wang, E.; Zhang, T.; Hu, H. Spatial and Temporal Patterns of Air Pollution in Chinese Cities. Water Air Soil Pollut. 2017, 228, 92. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Zhang, S. Will joint regional air pollution control be more cost-effective? Anempirical study of China’s Beijing–Tianjin–Hebei region. J. Environ. Manag. 2015, 149, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ji, Z.; Kang, S.; Zhang, Q.; Chen, X.; Lee, S.-Y. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environ. Pollut. 2019, 254, 112952. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Litao, W.; Pu, Z.; Shaobo, T.; Xiujuan, Z.; Dandan, C.; Wei, W.; Jie, S.; Xuemei, P. Assessment of urban air quality in China using air pollution indices (APIs). J. Air Waste Manag. Assoc. 2013, 63, 170–178. [Google Scholar]
- Gorai, A.K.; Upadhyay, A.; Goyal, P. Design of fuzzy synthetic evaluation model for air quality assessment. Environ. Syst. Decis. 2014, 34, 456–469. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Zhang, M. Study on the gravity center evolution of air pollution in Yangtze River Delta of China. Nat. Hazards 2018, 90, 1447–1459. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, D.; Li, Y.; Xie, X.; Chen, Z.; Meng, F.; Gao, B.; He, B. Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in Beijing. Sci. Rep. 2017, 7, 8220. [Google Scholar] [CrossRef] [Green Version]
- Rabee, A.M. Estimating the health risks associated with air pollution in Baghdad City, Iraq. Environ. Monit. Assess. 2014, 187, 4203. [Google Scholar] [CrossRef]
- Jassim, M.S.; Coskuner, G. Assessment of spatial variations of particulate matter (PM10 and PM2.5) in Bahrain identified by air quality index (AQI). Arab. J. Geosci. 2017, 10, 19. [Google Scholar] [CrossRef]
- Gupta, A.; Dhir, A. Air quality assessment of Mandi Gobindgarh city of Punjab, India. Environ. Dev. Sustain. 2019, 21, 879–893. [Google Scholar] [CrossRef]
- Mbululo, Y.; Qin, J.; Yuan, Z.; Nyihirani, F.; Zheng, X. Boundary layer perspective assessment of air pollution status in Wuhan city from 2013 to 2017. Environ. Monit. Assess. 2019, 191, 69. [Google Scholar] [CrossRef]
- Ye, F.-F.; Yang, L.-H.; Wang, Y.-M. An interval efficiency evaluation model for air pollution management based on indicators integration and different perspectives. J. Clean. Prod. 2019, 245, 118945. [Google Scholar] [CrossRef]
- Dyer, J.S. Multiattribute Utility Theory (MAUT). In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 285–314. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X. Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355. [Google Scholar] [CrossRef]
- Wei, C.; Ren, Z.; Rodríguez, R.M. A Hesitant Fuzzy Linguistic TODIM Method Based on a Score Function. Int. J. Comput. Intell. Syst. 2015, 8, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.C.; Yang, L.Y.; Xu, Z.S. Two new approaches based on ELECTRE II to solve the multiple criteria decision making problems with hesitant fuzzy linguistic term sets. Appl. Soft Comput. 2018, 63, 223–234. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Zhang, B.; Wang, S.; Xu, C.; Zhou, J. A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: A case in China. Ocean Coast. Manag. 2019, 105016. [Google Scholar] [CrossRef]
- Beynon, M.J.; Wells, P. The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis. Omega 2008, 36, 384–394. [Google Scholar] [CrossRef]
- Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, I.P.; Milošević, I.M.; Milijić, N.N.; Mihajlović, I.N. Cleaner production and technical effectiveness: Multi-criteria analysis of copper smelting facilities. J. Clean. Prod. 2019, 215, 423–432. [Google Scholar] [CrossRef]
- Abu-Taleb, M.F.; Mareschal, B. Water resources planning in the Middle East: Application of the PROMETHEE V multicriteria method. Eur. J. Oper. Res. 1995, 81, 500–511. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W. BIM-aided variable fuzzy multi-criteria decision making of low-carbon building measures selection. Sustain. Cities Soc. 2016, 27, 222–232. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Ou, C.Q.; Zhou, Y.X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 2014, 190, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Jaffe, D.; Tang, Y.; Bresnahan, M.; Song, J. Evaluation of air quality in Chengdu, Sichuan Basin, China: Are China’s air quality standards sufficient yet? Environ. Monit. Assess. 2015, 187, 250. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Wang, S.; Ai, J.; Gui, K.; Duan, B.; Zhao, Q.; Zhang, X.; Jiang, W.; Sun, Y. Heavy pollution episodes, transport pathways and potential sources of PM 2.5 during the winter of 2013 in Chengdu (China). Sci. Total Environ. 2017, 584–585, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Jia, W.; Zhou, T.; Han, J.; Xiang, W. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Li, X.; Yang, J.; Li, X. Spatiotemporal Patterns of Ground Monitored PM2.5Concentrations in China in Recent Years. Int. J. Environ. Res. Public Health 2018, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Yingming, W. Using the Method of Maximizing Deviation to Make Decision for Multiindices. J. Syst. Eng. Electron. 1997, 8, 21–26. [Google Scholar]
- Lai, H.-K.; Hedley, A.J.; Thach, T.Q.; Wong, C.-M. A method to derive the relationship between the annual and short-term air quality limits—Analysis using the WHO Air Quality Guidelines for health protection. Environ. Int. 2013, 59, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Li, W.X.; Li, B.Y. An extension of the Promethee II method based on generalized fuzzy numbers. Expert Syst. Appl. 2010, 37, 5314–5319. [Google Scholar] [CrossRef]
- Das, S.; Dutta, B.; Guha, D. Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Comput. 2016, 20, 3421–3442. [Google Scholar] [CrossRef]
- Mao, X.-B.; Wu, M.; Dong, J.-Y.; Wan, S.-P.; Jin, Z. A new method for probabilistic linguistic multi-attribute group decision making: Application to the selection of financial technologies. Appl. Soft Comput. 2019, 77, 155–175. [Google Scholar] [CrossRef]
- Shih, D.-H.; Wu, T.-W.; Liu, W.-X.; Shih, P.-Y. An Azure ACES Early Warning System for Air Quality Index Deteriorating. Int. J. Environ. Res. Public Health 2019, 16, 4679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pollutant | Unit | Annual Average Concentration | |||
---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | ||
SO2 | μg/m3 | 18 | 17 | 15 | 12 |
NO2 | μg/m3 | 45 | 46 | 43 | 44 |
PM10 | μg/m3 | 71 | 69 | 59 | 55 |
PM2.5 | μg/m3 | 52 | 53 | 45 | 39 |
8h O3 | μg/m3 | 149 | 160.94 | 164 | 181 |
Air Pollutants | Mean Concentration | AQG |
---|---|---|
SO2 | Annual | 20 μg/m3 |
10 min | 500 μg/m3 | |
NO2 | Annual | 40 μg/m3 |
One hour | 200 μg/m3 | |
PM10 | Annual | 20 μg/m3 |
24 h | 50 μg/m3 | |
PM2.5 | Annual | 10 μg/m3 |
24 h | 25 μg/m3 | |
O3 | 8 h | 100 μg/m3 |
City | SO2 μg/m3 | Evaluation Value | Converted Value | O3 μg/m3 | Evaluation Value | Converted Value |
---|---|---|---|---|---|---|
Shanghai | 18 | 0 | 1 | 149 | 49 | 0.3099 |
Nanjing | 25 | 5 | 0.6875 | 57 | 0 | 1 |
Changzhou | 36 | 16 | 0 | 171 | 71 | 0 |
Wuxi | 34 | 14 | 0.125 | 100 | 0 | 1 |
Suzhou | 24 | 4 | 0.75 | 95 | 0 | 1 |
Zhenjiang | 24 | 4 | 0.75 | 132.5 | 32.5 | 0.5423 |
Hangzhou | 21 | 1 | 0.9375 | 170 | 70 | 0.0141 |
Ningbo | 17 | 0 | 1 | 143.4 | 43.4 | 0.3887 |
Wenzhou | 17 | 0 | 1 | 134 | 34 | 0.5211 |
Shaoxing | 29 | 9 | 0.4375 | 93 | 0 | 1 |
City | 2014 | 2015 | ||||||||
SO2 | NO2 | PM10 | PM2.5 | O3 | SO2 | NO2 | PM10 | PM2.5 | O3 | |
Shanghai | 1.000 | 0.643 | 1.000 | 0.784 | 0.310 | 1.000 | 0.571 | 1.000 | 0.471 | 0.142 |
Nanjing | 0.688 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 0.286 | 0.182 | 0.235 | 0.000 |
Changzhou | 0.000 | 1.000 | 0.365 | 0.245 | 0.000 | 0.000 | 0.643 | 0.000 | 0.118 | 0.085 |
Wuxi | 0.125 | 0.643 | 0.423 | 0.209 | 1.000 | 0.400 | 0.929 | 0.273 | 0.000 | 1.000 |
Suzhou | 0.750 | 0.071 | 0.712 | 0.281 | 1.000 | 0.900 | 0.000 | 0.667 | 0.176 | 1.000 |
Zhenjiang | 0.750 | 0.571 | 0.308 | 0.209 | 0.542 | 0.500 | 0.857 | 0.606 | 0.118 | 0.915 |
Hangzhou | 0.938 | 0.286 | 0.481 | 0.331 | 0.014 | 1.000 | 0.357 | 0.515 | 0.235 | 0.056 |
Ningbo | 1.000 | 0.929 | 0.962 | 1.000 | 0.389 | 1.000 | 0.786 | 1.000 | 0.941 | 0.507 |
Wenzhou | 1.000 | 0.286 | 0.923 | 1.000 | 0.521 | 1.000 | 0.643 | 0.909 | 1.000 | 0.324 |
Shaoxing | 0.438 | 1.000 | 0.577 | 0.388 | 1.000 | 0.900 | 1.000 | 0.697 | 0.471 | 1.000 |
2015 | 2016 | |||||||||
SO2 | NO2 | PM10 | PM2.5 | O3 | SO2 | NO2 | PM10 | PM2.5 | O3 | |
Shanghai | 1.000 | 0.727 | 1.000 | 0.533 | 0.238 | 1.000 | 0.500 | 1.000 | 0.895 | 0.036 |
Nanjing | 1.000 | 0.609 | 0.000 | 0.340 | 0.000 | 1.000 | 0.125 | 0.400 | 0.842 | 0.060 |
Changzhou | 1.000 | 1.000 | 0.160 | 0.267 | 0.297 | 1.000 | 0.875 | 0.486 | 0.474 | 0.167 |
Wuxi | 1.000 | 0.364 | 0.122 | 0.000 | 0.976 | 1.000 | 0.250 | 0.314 | 0.579 | 0.000 |
Suzhou | 1.000 | 0.000 | 0.504 | 0.467 | 0.202 | 1.000 | 0.000 | 0.686 | 0.684 | 0.131 |
Zhenjiang | 0.000 | 1.000 | 0.198 | 0.200 | 1.000 | 1.000 | 0.625 | 0.000 | 0.000 | 0.905 |
Hangzhou | 1.000 | 0.545 | 0.237 | 0.280 | 0.155 | 1.000 | 0.375 | 0.514 | 0.579 | 0.131 |
Ningbo | 1.000 | 1.000 | 0.885 | 0.933 | 0.512 | 1.000 | 1.000 | 1.000 | 1.000 | 0.536 |
Wenzhou | 1.000 | 0.909 | 0.618 | 1.000 | 0.512 | 1.000 | 0.875 | 0.714 | 0.947 | 0.464 |
Shaoxing | 1.000 | 1.000 | 0.656 | 0.533 | 1.000 | 1.000 | 1.000 | 0.771 | 0.789 | 1.000 |
City | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|
C1 | 0.1967 | 0.2076 | 0.2462 | 0.0000 |
C2 | 0.1899 | 0.2448 | 0.1939 | 0.2017 |
C3 | 0.2422 | 0.2049 | 0.1845 | 0.2780 |
C4 | 0.2084 | 0.2069 | 0.2198 | 0.3131 |
C5 | 0.1628 | 0.1359 | 0.1556 | 0.2073 |
A1 | A2 | A3 | A4 | ||||
H(A1,A2) | 0.1953 | H(A2,A1) | 0.0345 | H(A3,A1) | 0.0117 | H(A4,A1) | 0.0345 |
H(A1,A3) | 0.1574 | H(A2,A3) | 0.1054 | H(A3,A2) | 0.0965 | H(A4,A2) | 0.0607 |
H(A1,A4) | 0.1315 | H(A2,A4) | 0.0288 | H(A3,A4) | 0.0119 | H(A4,A3) | 0.0660 |
H(A1,A5) | 0.0693 | H(A2,A5) | 0.0000 | H(A3,A5) | 0.0665 | H(A4,A5) | 0.0286 |
H(A1,A6) | 0.0900 | H(A2,A6) | 0.0162 | H(A3,A6) | 0.0172 | H(A4,A6) | 0.0183 |
H(A1,A7) | 0.0700 | H(A2,A7) | 0.0627 | H(A3,A7) | 0.0428 | H(A4,A7) | 0.0744 |
H(A1,A8) | 0.0002 | H(A2,A8) | 0.0277 | H(A3,A8) | 0.0005 | H(A4,A8) | 0.0277 |
H(A1,A9) | 0.0125 | H(A2,A9) | 0.0176 | H(A3,A9) | 0.0428 | H(A4,A9) | 0.0294 |
H(A1,A10) | 0.0652 | H(A2,A10) | 0.0061 | H(A3,A10) | 0.0000 | H(A4,A10) | 0.0000 |
A5 | A6 | A7 | A8 | ||||
H(A5,A1) | 0.0345 | H(A6,A1) | 0.0043 | H(A7,A1) | 0.0000 | H(A8,A1) | 0.0129 |
H(A5,A2) | 0.0631 | H(A6,A2) | 0.0447 | H(A7,A2) | 0.0512 | H(A8,A2) | 0.2475 |
H(A5,A3) | 0.1265 | H(A6,A3) | 0.0705 | H(A7,A3) | 0.0724 | H(A8,A3) | 0.1804 |
H(A5,A4) | 0.0453 | H(A6,A4) | 0.0349 | H(A7,A4) | 0.0573 | H(A8,A4) | 0.1589 |
H(A5,A6) | 0.0357 | H(A6,A5) | 0.0223 | H(A7,A5) | 0.0080 | H(A8,A5) | 0.1194 |
H(A5,A7) | 0.0690 | H(A6,A6) | 0.0288 | H(A7,A6) | 0.0086 | H(A8,A6) | 0.1204 |
H(A5,A8) | 0.0277 | H(A6,A8) | 0.0019 | H(A7,A8) | 0.0000 | H(A8,A7) | 0.1151 |
H(A5,A9) | 0.0176 | H(A6,A9) | 0.0076 | H(A7,A9) | 0.0000 | H(A8,A9) | 0.0356 |
H(A5,A10) | 0.0116 | H(A6,A10) | 0.0094 | H(A7,A10) | 0.0231 | H(A8,A10) | 0.0816 |
A9 | A10 | ||||||
H(A9,A1) | 0.0084 | H(A10,A1) | 0.0462 | ||||
H(A9,A2) | 0.1830 | H(A10,A2) | 0.1270 | ||||
H(A9,A3) | 0.1847 | H(A10,A3) | 0.0895 | ||||
H(A9,A4) | 0.1470 | H(A10,A4) | 0.0273 | ||||
H(A9,A5) | 0.0632 | H(A10,A5) | 0.0677 | ||||
H(A9,A6) | 0.1039 | H(A10,A6) | 0.0448 | ||||
H(A9,A7) | 0.0844 | H(A10,A7) | 0.1069 | ||||
H(A9,A8) | 0.0014 | H(A10,A8) | 0.0282 | ||||
H(A9,A10) | 0.0784 | H(A10,A9) | 0.0604 |
Area | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|
Shanghai | 0.6043 | 0.2353 | 0.3556 | 0.2580 |
Nanjing | −0.7700 | −0.6263 | −0.4744 | −0.4290 |
Changzhou | −0.7629 | −1.2823 | −0.1018 | −0.1068 |
Wuxi | −0.3033 | −0.1555 | −0.2793 | −0.6038 |
Suzhou | −0.0141 | −0.2096 | −0.5179 | −0.4044 |
Zhenjiang | −0.2306 | 0.0952 | −0.7304 | −0.7966 |
Hangzhou | −0.4334 | −0.3318 | −0.3339 | −0.3186 |
Ningbo | 0.9564 | 0.8795 | 0.7972 | 0.9109 |
Wenzhou | 0.6309 | 0.7127 | 0.6533 | 0.5207 |
Shaoxing | 0.3228 | 0.6828 | 0.6316 | 0.9695 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Li, C.; Chen, H.; Ji, Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2020, 17, 587. https://doi.org/10.3390/ijerph17020587
Yu X, Li C, Chen H, Ji Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. International Journal of Environmental Research and Public Health. 2020; 17(2):587. https://doi.org/10.3390/ijerph17020587
Chicago/Turabian StyleYu, Xiaobing, Chenliang Li, Hong Chen, and Zhonghui Ji. 2020. "Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China" International Journal of Environmental Research and Public Health 17, no. 2: 587. https://doi.org/10.3390/ijerph17020587
APA StyleYu, X., Li, C., Chen, H., & Ji, Z. (2020). Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. International Journal of Environmental Research and Public Health, 17(2), 587. https://doi.org/10.3390/ijerph17020587