Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Wetland Type/Site | Carbon Sequestration (g-C m−2 year−1) | Methane Emissions (g-C m−2 year−1) | Location in the Map (Figure 2) | Study Period | References |
---|---|---|---|---|---|
Mangrove Palm FW | 38 45 920 | D | * | Moreno-Casasola et al. [27] | |
Mangroves | <1 | D | 1 year | Hernández and Junca-Gómez [33] | |
Tidal wetlands with forest and marsh species mixed. | 36.5 | A | * | Burke and hinojosa [73] | |
FW | 13.9 | E | 1 year | Rojas-Oropeza et al. [74] | |
FW | 920 | 195.5 | D | 2 years | Marín-Muñiz et al. [7,8] |
Mangroves | 11.95 | H | 2 years | Chuang et al. [75] |
Key Points about the Role of Forested Wetlands for Climate Change Mitigation
- Considering the carbon sinks detected in the review, wetland soils as carbon pool are an innovative solution for climate change mitigation and adaptation at an international level.
- To guarantee the climate change mitigation by Forest-W, it is necessary to secure undrained wetland soils, rewet and restore drained wetlands and make a sustainable use.
- Promoting environmental education programs regarding ecosystem services of wetlands is a strategy to ensure the wetland conservation and its carbon sink function.
- It is necessary to extrapolate the role of wetlands in other climates that are likely to experience changes.
- Irrespective of uncertainties and the unique nature of implementing projects regarding carbon pool in wetlands to mitigate climate change, Forest-W are prime ecosystems for reforestation and restoration.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J. Wetlands; John Wiley and Sons Inc.: New York, NY, USA, 2015; Volume 5, p. 456. [Google Scholar]
- Marín-Muñiz, J.L. Humedales, Riñones del Planeta y Hábitat de Múltiples Especies; Editora de Gobierno del Estado de Veracruz: Xalapa, VER, Mexico, 2018; Available online: https://www.sev.gob.mx/servicios/publicaciones/serie_fueraseries/Humedales_Impresion.pdf (accessed on 5 November 2019). (In Spanish)
- Mitsch, W.J.; Hernández, M.E. Landscape and climate change threats to wetlands of North and Central America. Aquat. Sci. 2013, 75, 133–149. [Google Scholar] [CrossRef]
- Moreno-Cáliz, E.; Guerrero-Peña, A.; Gutiérrez-Castorena, M.C.; Ortiz-Solorio, C.A.; Palma-López, D.J. Los manglares de Tabasco, una reserva natural de carbono. Madera y Bosques 2002, 8, 115–128. (In Spanish) [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, A.; Mustaf, A.; Hedmark, A. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.; Mitra, S.; Kozinski, J. The progressive for carbon capture and sequestration. Energy Sci. Eng. 2016, 4, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Marín-Muñiz, J.L.; Hernández, M.E.; Moreno-Casasola, P. Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: Effect of plant community and seasonal dynamics. Atmos. Environ. 2015, 107, 107–117. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E.; Moreno-Casasola, P. Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, Mexico. Plant Soil 2014, 378, 189–203. [Google Scholar] [CrossRef]
- Moreno-Casasola, P. Servicios Ecosistémicos de las Selvas y Bosques Costeros de Veracruz; Inecol ITTO Conafor INECC: Xalapa, VER, Mexico, 2016; pp. 204–276. Available online: https://www.itto.int/files/itto_project_db_input/3000/Technical/Servicios_Ecosostemicos_de_las_selvas_y_bosques_costeros.pdf (accessed on 10 November 2019). (In Spanish)
- Hernández, M.E.; Moreno-Casasola, P. Almacenes y flujos de carbono en humedales de agua dulce en México. Madera y Bosques 2018, 24, e2401881. (In Spanish) [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). What Is Blue Carbon? National Ocean Service Website. 2019. Available online: https://oceanservice.noaa.gov/facts/bluecarbon.html (accessed on 10 November 2019).
- Hansen, L. The viability of creating wetlands for the sale of carbon offsets. J. Agric. Resour. Econ. 2009, 34, 350–365. Available online: https://www.jstor.org/stable/41548418 (accessed on 16 October 2019).
- Gardner, R.C.; Finlayson, M. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People 2018; Secretariat of the Ramsar Convention: Gland, Switzerland, 2018; Available online: https://static1.squarespace.com/static/5b256c78e17ba335ea89fe1f/t/5b9ffd2e0e2e7277f629eb8f/1537211739585/RAMSAR+GWO_ENGLISH_WEB.pdf (accessed on 16 October 2019).
- Whigham, D.F.; Dykyjová, D.; Hejný, S. Wetlands of the World I: Inventory, Ecology and Management. In Handbook of Vegetation Science; Kluwer Academic Publishers: Dordrcht, The Netherlands, 2013; pp. 637–678. [Google Scholar]
- Landgrave, R.; Moreno-Casasola, P. Evaluación cuantitativa de la pérdida de humedales en México. Investig. Ambient. 2012, 4, 19–35. (In Spanish). Available online: https://proyectopuente.com.mx/wp-content/uploads/2019/05/121-707-1-pb.pdf (accessed on 6 October 2019).
- Whiting, J.G.; Chanton, J.P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus 2001, 53, 521–528. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C. The carbon balance of North American wetlands. Wetlands 2006, 26, 889–916. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Vlek, P.L. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 2005, 88, 25–35. Available online: https://www.jstor.org/stable/24110090 (accessed on 19 October 2019).
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mande, U.; Zhang, L.; Anderson, C.; Jørgensen, S.; Brix, H. Wetlands, carbon and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Adhikari, A.; Bajracharaya, R.; Sitaula, B. A review of carbon dynamics and sequestration in wetlands. J. Wetl. Ecol. 2009, 2, 42–46. [Google Scholar] [CrossRef]
- Moreno-May, G.; Cerón, J.; Cerón, R.; Guerra, J.; Amador, L.; Endañú, E. Evaluation of carbon storage potential in mangrove soils of Isla del Carmen. Unacar Tecociencia 2010, 4, 23–39. Available online: https://www.academia.edu/2568197/Estimaci%C3%B3n_del_potencial_de_captura_de_carbono_en_suelos_de_manglar_de_isla_del_Carmen (accessed on 1 November 2019).
- Cerón-Bretón, J.G.; Cerón-Bretón, R.M.; Rangel-Marrón, M.; Estrella-Cahuich, A. Evaluation of carbon sequestration potential in undisturbed mangrove forest in Términos Lagoon Campeche. Dev. Energy Environ. Econ. 2010, 295–300. Available online: https://www.researchgate.net/publication/279903142_Evaluation_of_carbon_sequestration_potential_in_undisturbed_mangrove_forest_in_Terminos_Lagoon_Campeche (accessed on 25 November 2019).
- Adame, M.; Kauffman, J.; Medina, I.; Gamboa, J.; Torres, O.; Caamal, J.; Reza, M.; Herrera-Silveira, J. Carbon stock of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [Green Version]
- Adame, M.; Santini, N.S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.; Guevara, M. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 2015, 12, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, J.; Hernandez, H.; Jesus, M.; Heider, C.; Contreras, W. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetl. Ecol. Manag. 2015, 24, 203–216. [Google Scholar] [CrossRef]
- Hernández, M.E.; Campos, A.; Marín-Muñiz, J.L.; Moreno-Casasola, P. Almacenes de carbono en selvas inundables, manglares, humedales herbáceos y potreros inundables. In Servicios ecosistémicos de las selvas y bosques costeros de Veracruz; Moreno Casasola, P., Ed.; Inecol ITTO Conafor INECC: Xalapa, VER, Mexico, 2016; pp. 121–129. Available online: https://www.itto.int/files/itto_project_db_input/3000/Technical/Servicios_Ecosostemicos_de_las_selvas_y_bosques_costeros.pdf (accessed on 3 November 2019). (In Spanish)
- Moreno-Casasola, P.; Hernández, M.E.; Campos, A. Hydrology, soil carbon sequestration and water retention along a coastal wetland gradient in Alvarado Lagoon system, Veracruz Mexico. J. Coast. Res. 2017, 77, 104–115. [Google Scholar] [CrossRef]
- Santiago, L. Estimación del potencial de captura de carbono (c) del bosque de manglar de Tumilco de Tuxpan, Veracruz, México. Tesis Maestría en manejo de ecosistemas marinos y costeros, Universidad Veracruzana, Xalapa, VER, México. Available online: https://www.uv.mx/pozarica/mmemc/files/2020/02/LuisAlbertoSantiagoMolina.pdf (accessed on 3 November 2019).
- Herrera-Silveira, J.; Camacho, R.; Pech, J.; Ramírez, R.; Teutli, H. Dinámica del carbono (almacenes y flujos) en manglares de México. Terra Latinoam. 2017, 34, 61–72. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000100061 (accessed on 10 November 2019). (In Spanish).
- Bautista-Olivas, A.; Mendoza-Cariño, M.; Cesar-Rodríguez, J.; Colado-Amador, C.; Robles-Zazueta, A.; Meling-López, A. Above-ground biomass and carbon sequestration in mangrove in the arid area of the northwest of Mexico: Bahía del Tobarí and Estero El Sargento, Sonora. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2018, 24, 387–403. [Google Scholar] [CrossRef]
- Valdés, V.E.; Valdés, J.I.; Ordaz, V.M.; Gallardo, J.F.; Pérez, J.; Ayala, C. Evaluación del carbono orgánico en los suelos de manglares de Nayarit. Revista Mexicana de Ciencias Forestales 2011, 2, 807–815. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322011000600005 (accessed on 9 November 2019).
- Ochoa-Gómez, J.G.; Lluch-Cota, S.E.; Rivera-Monroy, V.H.; Lluch-Cota, D.B.; Troyo-Diégueza, E.; Oechel, W.; Serviere-Zaragoza, E. Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico). Forest Ecol. Manag. 2019, 442, 135–147. [Google Scholar] [CrossRef]
- Hernández, M.E.; Junca-Gómez, D. Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Sci. Total Environ. 2020, 741, 140276. [Google Scholar] [CrossRef]
- Arias, X. Carbono, nitrógeno y azufre en manglares de Paraíso Tabasco. Tesis Ingeniero en Restauración Forestal, Universidad Autónoma Chapingo, Chapingo, México, 2018. Available online: http://dicifo.chapingo.mx/pdf/tesislic/2018/Arias_Vel%C3%A1zquez_Xochitl_Rosario.pdf (accessed on 9 November 2019).
- Gutiérrez-Mendoza, J.; Herrera-Silveira, J. Almacenes de Carbono en manglares de tipo Chaparro en un escenario cárstico. In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2014; Paz, F., Wong, J., Eds.; Programa Mexicano del Carbono; Centro de investigación y estudios avanzados del instituto politécnico nacional, unidad Mérida y Centro de investigación y asistencia en tecnología y diseño del estado de Jalisco: Jalisco, Mexico, 2014; pp. 405–414. Available online: http://pmcarbono.org/pmc/publicaciones/Libro_Merida_2014_PMC_ISBN-web.pdf (accessed on 9 November 2019). (In Spanish)
- Herrera-Silveira, J.; Teutli-Hernández, C.; Caamal-Sosa, J.; Pech-Cardenas, M.; Pech-Poot, E.; Carrillo-Baeza, L.; Zenteno, K.; Erosa, J.; Pérez, O.; Gamboa, S. Almacenes y flujos de carbono en diferentes tipos ecológicos de manglares en Celestun, Yucatán. In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2018; Paz, F., Torres, R., Velázquez, Eds.; Programa Mexicano del Carbono; Centro de investigación científica y de educación superior de Ensenada; Universidad Autónoma de Baja California: Baja, Mexico, 2018; pp. 219–225. [Google Scholar]
- Valdés, E.; Valdez, J.; Ordaz, V.; Gallardo, J.; Pérez, J.; Ayala, C. Organic carbon assessment in mangrove soils of Nayarit. Rev. Mex. Cienc. For. 2011, 2, 47–58. Available online: http://www.scielo.org.mx/scielo.php?pid=S2007-11322011000600005&script=sci_arttext (accessed on 9 November 2019).
- Ezcurra, P.; Ezcurra, E.; Garcillán, P.; Costa, M.; Aburto-Oropeza, O. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. México. Proc. Natl. Acad. Sci. USA 2016, 113, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Barreras-Apodaca, A.; Sánchez-Mejía, Z.; Bejarano, M.; Méndez-Barroso, L.; Borquez-Olguín, R. Carbono almacenado en la capa superficial de suelo de dos manglares geográficamente contrastantes. In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a; Paz, F., Velázquez, A., Rojo, M., Eds.; Programa Mexicano del Carbono; Instituto Tecnológico de Sonora: Álamos, Mexico, 2017; pp. 258–264. (In Spanish) [Google Scholar]
- Castillo-Cruz, I.; De la Rosa-Meza, K. Cuantificación de carbono en manglares en El Rabón, dentro de la RB Marismas Nacionales, Nayarit. In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a; Paz, F., Velázquez, A., Rojo, M., Eds.; Programa Mexicano del Carbono; Instituto Tecnológico de Sonora: Álamos, Mexico, 2017; pp. 252–257. (In Spanish) [Google Scholar]
- Pech-Poot, E.; Herrera-Silveira, J.; Caamal-Sosa, J.; Cortes-Balan, O.; Carrillo-Baeza, L.; Teutli-Hernández, C. Carbono en sedimentos de manglares de ambientes cársticos: La Península de Yucatán. In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2016; Paz, F., Torres, M., Eds.; Programa Mexicano del Carbono; Universidad Autónoma del Estado de Hidalgo: Campo de Tiro, Mexico, 2016; pp. 336–343. (In Spanish) [Google Scholar]
- Velázquez-Pérez, C.; Tovilla-Hernández, C.; Romero-Berny, E.; Navarrete, A. Mangrove structure and its influence on the carbon storage in La Encrucijada Reserve, Chiapas, Mexico. Madera y Bosques 2019, 25, e2531885. [Google Scholar] [CrossRef]
- Campos, A.; Hernández, M.E.; Moreno-Casasola, P.; Cejudo, E.; Robledo, A.; Infante, D. Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. 2011, 8, 1388–1406. [Google Scholar] [CrossRef] [Green Version]
- Marín-Muñiz, J.L.; Hernández, M.E.; Moreno-Casasola, P. Soil carbon sequestration in coastal freshwater wetlands of Veracruz. Tropical and Subtropical Agroecosystems 2011, 13, 365–372. Available online: http://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1336 (accessed on 15 November 2019).
- Alamilla, S. Gradientes de carbono por tipo de suelo y vegetación en Quintana Roo. Tesis Licenciatura en Manejo de Recursos Naturales, Chetumal, QRO, México, 2018. Available online: http://risisbi.uqroo.mx/bitstream/handle/20.500.12249/1973/S590.2018-1973.pdf?sequence=1&isAllowed=y (accessed on 15 November 2019). (In Spanish).
- Sánchez, E. Caracterización de tres propiedades del suelo en humedales transformados a potreros, en el municipio de Jamapa, Veracruz y su entorno. Tesis especialista en diagnóstico y gestión ambiental, Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa, VER, México, 2015. Available online: https://cdigital.uv.mx/bitstream/handle/123456789/42319/SanchezGarciaEdgar.pdf?sequence=2&isAllowed=y (accessed on 15 November 2019).
- Harishma, K.M.; Sandeep, S.; Sreekumar, V.B. Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecol. Process. 2020, 9, 31. [Google Scholar] [CrossRef]
- Sitoe, A.; Comissário, L.; Guedes, B. Biomass and carbon stocks of Sofala bay mangrove forests. Forest 2014, 8, 1967–1981. [Google Scholar] [CrossRef]
- Bhomia, R.K.; Kauffman, J.B.; Mc Fadden, T.N. Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetl. Ecol. Manag. 2016, 24, 187–201. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Caamal-Sosa, J.P.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: A systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Casaola, P. Mangroves, an area of conflict between cattle ranchers and fishermen. In Mangrove Management and Conservation; Martha Vannucci. United Nations University: Macau, 2004; pp. 181–191. [Google Scholar]
- Moreno-Casasola, P.; López, H.; Rodríguez-Medina, K. From tropical wetlands to pastures on the coast of the Gulf of Mexico. Pastos 2012, 42, 185–217. Available online: http://polired.upm.es/index.php/pastos/article/view/2249/2330 (accessed on 15 November 2019).
- Mazurczyk, T.; Brooks, R. Carbon storage dynamics of temperate freshwater wetlands in Pennsylvania. Wetl. Ecol. Manag. 2018, 26, 893–914. [Google Scholar] [CrossRef]
- Carnell, P.; Windecker, S.; Brenker, M.; Baldock, J.; Masque, P.; Brunt, K.; Macreadie, P. Carbon stocks, sequestration, and emissions of wetlands in south eastern Australia. Glob. Chang. Biol. 2018, 24, 4176–4184. [Google Scholar] [CrossRef]
- Byun, C.; Lee, S.; Kang, H. Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea. J. Ecol. Environ. 2019, 43, 8. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E. Carbon balance in coastal freshwater wetlands in Veracruz Mexico. Limnetica 2020, 39, 653–665. [Google Scholar] [CrossRef]
- González-Marín, R.; Moreno-Casasola, P.; Orellana, R.; Castillo, A. Traditional wetland palm uses in construction and cooking in Veracruz Gulf Mexico. Indian J. Tradit. Knowl. 2012, 11, 408–413. Available online: https://pdfs.semanticscholar.org/872f/080869f528271548e1dee452a889160f26fc.pdf (accessed on 5 November 2019).
- González-Marín, R.; Moreno-Casasola, P.; Orellana, R.; Castillo, A. Palm use and social values in rural communities on the coastal plains of Veracruz, Mexico. Environ. Dev. Sustain. 2012, 14, 541–555. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 2008, 34, 311–323. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W. Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry 2013, 115, 77–93. [Google Scholar] [CrossRef]
- Vega-López, E. Valor económico potencial de las Áreas Naturales Protegidas federales de México como sumideros de carbono. The Nature Conservancy-México. Economía Informa 2008, 360, 114–120. Available online: http://www.economia.unam.mx/publicaciones/econinforma/pdfs/360/09eduardovega.pdf (accessed on 5 November 2019). (In Spanish).
- Hatton, R.; DeLaune, R.; Patrick, J. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnol. Oceanogr. 1983, 28, 494–502. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Chang. Biol. 2012, 18, 1636–1647. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. Carbon sequestration in two created riverine wetlands in the midwestern United States. J. Environ. Qual. 2013, 42, 1236–1244. [Google Scholar] [CrossRef]
- Villa, J.; Bernal, B. Carbon sequestration in wetlands, from science to practice: An overview of the biogechemical process, measurement methods, and policy framework. Ecol. Eng. 2018, 114, 115–128. [Google Scholar] [CrossRef]
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Turunen, J.; Tomppo, E.; Tolonen, K.; Reinkainen, E. Estimating carbon accumulation rates of undrained mires in Finland: Application to boreal and subarctic regions. Holocene 2002, 12, 79–90. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Honeycutt, C.W.; Arshad, M.A.; Schomberg, H.H.; Hons, F.M. Climatic influences on active fractions of soil organic matter. Soil Biol. Biochem. 2001, 33, 1103–1111. [Google Scholar] [CrossRef]
- Nag, S.; Liu, R.; Lal, R. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Environ. Monit. Assess. 2017, 189, 580. [Google Scholar] [CrossRef] [PubMed]
- Nahlik, A.; Mitsch, W. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob. Chang. Biol. 2011, 17, 1321–1334. [Google Scholar] [CrossRef]
- Bienida, A.; Daté, V.; Anderse, R.; Nwaishi, F.; Price, J.; Mahmood, S.; Strack, M. Methane emissions from fens in Alberta’s boreal region: Reference data for functional evaluation of restoration aoutcomes. Wetl. Ecol. Manag. 2020, 28, 559–575. [Google Scholar] [CrossRef]
- Rask, H.; Schoenau, J.; Anderson, D. Factors influencing methane flux from a boreal forest wetland in Saskatchewan Canada. Soil Biol. Biochem. 2002, 34, 435–443. [Google Scholar] [CrossRef]
- Burke, E.; Hinojoa, A. Assessment of blue carbon storage by Baja California (Mexico) tidal wetlands and evidence for wetland stability in the face of anthropogenic and climatic impacts. Sensors 2018, 18, 32. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Oropeza, M.; Ponce-Mendoza, A.; Cabirol, N. Emisión de gases de efecto invernadero y uso de suelo en lagunas de Chastoc (Emiliano Zapata, Tabasco). In Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2011; Paz, F., Torres, R., Eds.; Programa Mexicano del Carbono, Universidad Autónoma del Estado de Hidalgo e Instituto Nacional de Ecología Texcoco, México: Pachuca, HGO, Mexico, 2016; pp. 267–279. Available online: http://pmcarbono.org/pmc/descargas/vii/Memoria_Resumenes_Cortos_VII_Simposio_2016.pdf (accessed on 5 November 2019). (In Spanish)
- Chuang, P.C.; Young, M.B.; Dale, A.W.; Miller, L.G.; Herrera-Silveira, J.A.; Paytan, A. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. J. Geophys. Res. Biogeosci. 2017, 122, 1156–1174. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.; Borgnis, E.; Turner, E.; Milan, C. Carbon sequestration and sediment accretion in San Francisco bay tidal wetlands. Estuaries Coast 2012, 35, 1163–1181. [Google Scholar] [CrossRef]
- De la Peña, A.; Rojas, C.; De la Peña, M. Economic valuation of mangrove for carbon storage in the Ciénaga Grande de Santa Marta. Clío América 2010, 4, 133–150. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5114793 (accessed on 6 November 2019).
- Yáñez-Arancibia, A.; Day, J.W.; Twilley, R.R.; Day, R.H. Manglares; ecosistema centinela frente al cambio climático, Golfo de México. Madera y Bosques 2014, 20, 39–75. (In Spanish). Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712014000500003 (accessed on 15 November 2019).
Forested Wetland Type | Site (Municipality or Area, State) | Carbon Stock (kg C m−2) | Location in the Map (Figure 2) | Reference |
---|---|---|---|---|
Mangrove | Huimanguillo and Cárdenas, Tabasco | 64.7 | E | Moreno et al. [4] |
Mangrove | Laguna de Términos, Campeche | 25.2 | G | Moreno-May et al. [21] |
Mangrove | Carmen city, Campeche | 11.7 | G | Ceron-breton et al. [22] |
Mangrove | Isla Pitaya, Quintana Roo. | 15.7 | I | Adame et al. [23] |
Mangrove | La Encrucida, Biosphere Reserve, Chiapas | 21.5 | F | Adame et al. [24] |
Mangrove | Pantanos de Centla, Tabasco and Campeche | 45.8 | E, G | Kauffman et al. [25] |
Mangrove | Vega de Alatorre, Veracruz | 22 | D | Hernández et al. [26] |
Mangroves | Alvarado, Veracruz | 16 | D | Moreno-Casasola et al. [27] |
Mangrove | Tuxpan, Veracruz | 14.7 | D | Santiago [28] |
Mangrove | Agua Brava Lagooon, Nayarit | 4.2 | C | Herrera-Silveira et al. [29] |
Mangrove | Bahía Tóbari, Sonora | 7.9 | B | Bautista-Olivas et al. [30] |
Mangrove | Cuyutlán, Colima | 10.2 | J | Herrera-Silveira et al. [29] |
Mangrove | Nayarit | 12 | C | Valdés et al. [31] |
Mangrove | La Paz Baja California | 17.5 | A | Ochoa-Gómez et al. [32] |
Mangrove | Central coastal plain of Veracruz | 37.5 | D | Hernández and Junca-Gómez [33] |
Mangrove | Paraíso Tabasco | 20 | E | Arias [34] |
Mangrove | Península Yucatán | 28.7 | H | Gutiérrez-Mendoza and Herrera-Silveira [35] |
Mangrove | Celestun, Yucatán | 61.6 | H | Herrera-Silveira et al. [36] |
Mangrove | Nayarit | 10 | C | Valdés et al. [37] |
Mangrove | Magdalena and Malandra bay. Baja California | 22.5 | A | Ezcurra et al. [38] |
Mangrove | Sian Ka’an, Quintana Roo | 45 | I | Herrera-Silveira et al. [29] |
Mangrove | Puerto Morelos, Yucatán | 36 | H | Herrera-Silveira et al. [29] |
Mangrove | Aguiabampo, Sonora | 3.5 | B | Barreras-Apodaca et al. [39] |
Mangrove | El Rabón, Nayarit | 30 | C | Castillo-Cruz and Rosa-Meza [40] |
Mangrove | La Encrucijada, Chiapas | 17.9 | F | Barreras-Apodaca et al. [39] |
Mangrove | Isla Arena, Campeche | 30.5 | G | Pech-Poot et al. [41] |
Mangrove | Celestún, Yucatán | 22.4 | H | Pech-Poot et al. [41] |
Mangrove | Cancún, Quintana Roo | 26.4 | I | Pech-Poot et al. [41] |
Mangrove | La Encrucijada, Chiapas | 6.3 | F | Velázquez-Pérez et al. [42] |
Freshwater | La Encrucida, Biosphere Reserve, Chiapas | 9.5 | F | Adame et al. [24] |
Freshwater | Jamapa, Veracruz | 39 | D | Hernández et al. [26] |
Freshwater | Alvarado, Veracruz | 60 | D | Moreno-Casasola et al. [27] |
Freshwater | Tecolutla, Actopan, and Alto Lucero, Veracruz | 45 | D | Marín-Muñiz et al. [7] |
Freshwater | Alto Lucero and Tecolutla, Veracruz | 52 | D | Campos et al. [43] |
Freshwater | Tecolutla and Vega de Alatorre, Veracruz | 35 | D | Marín-Muñiz et al. [44] |
Flooded Palm | Sian Ka’an, Quintana Roo | 6.5 | I | Alamilla, [45] |
Flooded Palm | Alvarado, Veracruz | 16 | D | Moreno-Casasola et al. [27] |
Flooded Palm | Jamapa, Veracruz | 1.5 | D | Sánchez [46] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora, S.; Sandoval-Herazo, L.C.; Ballut-Dajud, G.; Del Ángel-Coronel, O.A.; Betanzo-Torres, E.A.; Marín-Muñiz, J.L. Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation. Int. J. Environ. Res. Public Health 2020, 17, 7372. https://doi.org/10.3390/ijerph17207372
Zamora S, Sandoval-Herazo LC, Ballut-Dajud G, Del Ángel-Coronel OA, Betanzo-Torres EA, Marín-Muñiz JL. Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation. International Journal of Environmental Research and Public Health. 2020; 17(20):7372. https://doi.org/10.3390/ijerph17207372
Chicago/Turabian StyleZamora, Sergio, Luis Carlos Sandoval-Herazo, Gastón Ballut-Dajud, Oscar Andrés Del Ángel-Coronel, Erick Arturo Betanzo-Torres, and José Luis Marín-Muñiz. 2020. "Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation" International Journal of Environmental Research and Public Health 17, no. 20: 7372. https://doi.org/10.3390/ijerph17207372
APA StyleZamora, S., Sandoval-Herazo, L. C., Ballut-Dajud, G., Del Ángel-Coronel, O. A., Betanzo-Torres, E. A., & Marín-Muñiz, J. L. (2020). Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation. International Journal of Environmental Research and Public Health, 17(20), 7372. https://doi.org/10.3390/ijerph17207372