Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Study Protocol
2.3.2. Familiarization Session
2.3.3. Abdominal Hollowing Maneuver and Prone Plank Protocols
2.3.4. Experimental Session
2.3.5. Maximal Voluntary Isometric Contraction and EMG Data Collection
2.3.6. Perceived Exertion Data Collection
2.4. Statistical Analyses
3. Results
3.1. Differences Across Core Musculature
3.2. Differences Across Experimental Conditions
3.3. Total Intensity and Rated Perceived Exertion
4. Discussion
4.1. Comparison of EMG Activity Across Core Muscles
4.2. Comparison of EMG Activity Across Experimental Conditions
4.3. Neuromuscular Recruitment Foundations and Hypotheses
4.4. Methodological Limitations and Future Research
4.5. Practical Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulton, J.E.; Garg, M.; Galuska, D.A.; Rattay, K.T.; Caspersen, C.J. Public Health and Clinical Recommendations for Physical Activity and Physical Fitness. Sports Med. 2004, 34, 581–599. [Google Scholar] [CrossRef]
- Batista, A.; Flores, G.; Carvalho, S.; Sampaio, M.; Patrício, C. Association between functional physical fitness and health status of the elderly. Eur. J. Public Health 2020, 30, ckaa040–ckaa049. [Google Scholar] [CrossRef]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core Stability Exercise Principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef]
- Huxel Bliven, K.C.; Anderson, B.E. Core Stability Training for Injury Prevention. Sports Health A Multidiscip. Approach 2013, 5, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Willardson, J.M. Core stability training: Applications to sports conditioning programs. J. Strength Cond. Res. 2007, 21, 979–985. [Google Scholar] [CrossRef] [PubMed]
- La Scala Teixeira, C.V.; Evangelista, A.L.; Silva, M.S.; Bocalini, D.S.; Da Silva-Grigoletto, M.E.; Behm, D.G. Ten Important Facts about Core Training. ACSM’s Health Fit. J. 2019, 23, 16–21. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Muyor, J.M. Core muscle activity during physical fitness exercises: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4306. [Google Scholar] [CrossRef]
- Coulombe, B.J.; Games, K.E.; Neil, E.R.; Eberman, L.E. Core Stability Exercise Versus General Exercise for Chronic Low Back Pain. J. Athl. Train. 2017, 52, 71–72. [Google Scholar] [CrossRef]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A.P.M. The Importance of Sensory-Motor Control in Providing Core Stability. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef]
- McGill, S.M.; Karpowicz, A. Exercises for Spine Stabilization: Motion/Motor Patterns, Stability Progressions, and Clinical Technique. Arch. Phys. Med. Rehabil. 2009, 90, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Faciszewski, T. Biomechanics of Spine Stabilization. Spine J. 2001, 1, 304–305. [Google Scholar] [CrossRef]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; McGill, S. The effect of core training on distal limb performance during ballistic strike manoeuvres. J. Sports Sci. 2017, 35, 1768–1780. [Google Scholar] [CrossRef]
- Press, J.M. The Importance of Core Muscles in Athletic Performance and Injury Prevention. Phys. Med. Rehabil. 2011, 33, 10–15. [Google Scholar]
- Zazulak, B.; Cholewicki, J.; Reeves, N.P. Neuromuscular control of trunk stability: Clinical implications for sports injury prevention. J. Am. Acad. Orthop. Surg. 2008, 16, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-D.; Lin, H.-Y.; Lai, P.-T. Core strength training for patients with chronic low back pain. J. Phys. Ther. Sci. 2015, 27, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Myrtos, C.D. Low Back Disorders. Evidence-Based Prevention and Rehabilitation. J. Can. Chiropr. Assoc. 2012, 56, 76. [Google Scholar]
- McGill, S. Core Training: Evidence Translating to Better Performance and Injury Prevention. Strength Cond. J. 2010, 32, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The use of instability to train the core musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef]
- Vera-García, F.J.; Barbado, D.; Moreno-Pérez, V.; Hernández-Sánchez, S.; Juan-Recio, C.; Elvira, J.L.L. Core stability. Concepto y aportaciones al entrenamiento y la prevención de lesiones. Rev. Andal. Med. Deport. 2015, 8, 79–85. [Google Scholar] [CrossRef]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Med. 2017, 47, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, B.J.; Kiesel, K. 74—Core Stabilization Training A2—Giangarra, Charles E, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 978-0-323-39370-6. [Google Scholar]
- McGill, S.M.; Grenier, S.; Kavcic, N.; Cholewicki, J. Coordination of muscle activity to assure stability of the lumbar spine. J. Electromyogr. Kinesiol. 2003, 13, 353–359. [Google Scholar] [CrossRef]
- Akuthota, V.; Nadler, S.F. Core strengthening. Arch. Phys. Med. Rehabil. 2004, 85, S86–S92. [Google Scholar] [CrossRef]
- Bergmark, A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop. Scand. Suppl. 1989, 230, 1–54. [Google Scholar] [CrossRef]
- Panjabi, M.M. The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement. J. Spinal Disord. 1992, 5, 383–389. [Google Scholar] [CrossRef]
- McGill, S.M. Low Back Stability: From Formal Description to Issues for Performance and Rehabilitation. Exerc. Sport Sci. Rev. 2001, 29, 26–31. [Google Scholar] [CrossRef]
- Kavcic, N.; Grenier, S.; McGill, S.M. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine 2004, 29, 1254–1265. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Cholewicki, J.; Radebold, A. Trunk Muscle Recruitment Patterns in Patients With Low Back Pain Enhance the Stability of the Lumbar Spine. Spine 2003, 28, 834–841. [Google Scholar] [CrossRef]
- Lee, B.C.Y.; McGill, S.M. Effect of long-term isometric training on core/torso stiffness. J. Strength Cond. Res. 2015, 29, 1515–1526. [Google Scholar] [CrossRef]
- Byrne, J.M.; Bishop, N.S.; Caines, A.M.; Crane, K.A.; Feaver, A.M.; Pearcey, G.E.P. Effect of Using a Suspension Training System on Muscle Activation During the Performance of a Front Plank Exercise. J. Strength Cond. Res. 2014, 28, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Lewis, C.; Pecson, A.; Imamura, R.; Andrews, J.R. Muscle Activation Among Supine, Prone, and Side Position Exercises With and Without a Swiss Ball. Sports Health 2016, 8, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraki, H. Trunk Muscle Activity During Lumbar Stabilization Exercises on Both a Stable and Unstable Surface. J. Orthop. Sports Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanthapetch, P.; Kanlayanaphotporn, R.; Gaogasigam, C.; Chiradejnant, A. Abdominal muscle activity during abdominal hollowing in four starting positions. Man. Ther. 2009, 14, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Maeo, S.; Takahashi, T.; Takai, Y.; Kanehisa, H. Trunk muscle activities during abdominal bracing: Comparison among muscles and exercises. J. Sports Sci. Med. 2013, 12, 467–474. [Google Scholar] [PubMed]
- Oshikawa, T.; Adachi, G.; Akuzawa, H.; Okubo, Y.; Kaneoka, K. Electromyographic analysis of abdominal muscles during abdominal bracing and hollowing among six different positions. J. Phys. Fit. Sports Med. 2020, 9, 157–163. [Google Scholar] [CrossRef]
- Grenier, S.G.; McGill, S.M. Quantification of Lumbar Stability by Using 2 Different Abdominal Activation Strategies. Arch. Phys. Med. Rehabil. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Okubo, Y.; Kaneoka, K.; Imai, A.; Shiina, I.; Tatsumura, M.; Izumi, S.; Miyakawa, S. Electromyographic Analysis of Transversus Abdominis and Lumbar Multifidus Using Wire Electrodes During Lumbar Stabilization Exercises. J. Orthop. Sports Phys. Ther. 2010, 40, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Koh, H.-W.; Cho, S.-H.; Kim, C.-Y. Comparison of the Effects of Hollowing and Bracing Exercises on Cross-sectional Areas of Abdominal Muscles in Middle-aged Women. J. Phys. Ther. Sci. 2014, 26, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.; Kawchuk, G. The Effect of Abdominal Stabilization Contractions on Posteroanterior Spinal Stiffness. Spine 2008, 33, 694–701. [Google Scholar] [CrossRef]
- Arundale, A.J.H.; Bizzini, M.; Giordano, A.; Hewett, T.E.; Logerstedt, D.S.; Mandelbaum, B.; Scalzitti, D.A.; Silvers-Granelli, H.; Snyder-Mackler, L. Exercise-Based Knee and Anterior Cruciate Ligament Injury Prevention. J. Orthop. Sports Phys. Ther. 2018, 48, A1–A42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera-García, F.J.; Barbado, D.; Moreno-Pérez, V.; Hernández-Sánchez, S.; Juan-Recio, C.; Elvira, J.L.L. Core stability: Evaluación y criterios para su entrenamiento. Rev. Andal. Med. Deport. 2015, 8, 130–137. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.; Wrigley, A.; Spears, I. Optimizing performance by improving core stability and core strength. Sports Med. 2008, 38, 995–1008. [Google Scholar] [CrossRef]
- Neumann, P.; Gill, V. Pelvic floor and abdominal muscle interaction: EMG activity and intra-abdominal pressure. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2002, 13, 125–132. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry, Ed.; Open Polytechnic of New Zealand’s Institutional Digital Repository for Research: Wellington, New Zealand, 2012; ISBN 9780620362078. [Google Scholar]
- Beith, I.D.; Synnott, R.E.; Newman, S.A. Abdominal muscle activity during the abdominal hollowing manoeuvre in the four point kneeling and prone positions. Man. Ther. 2001, 6, 82–87. [Google Scholar] [CrossRef]
- Vera-Garcia, F.J.; Elvira, J.L.L.; Brown, S.H.M.; McGill, S.M. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J. Electromyogr. Kinesiol. 2007, 17, 556–567. [Google Scholar] [CrossRef]
- Ha, S.; Kwon, O.; Kim, S.; Choung, S. The Importance of a Normal Breathing Pattern for an Effective Abdominal-Hollowing Maneuver in Healthy People: An Experimental Study. J. Sport Rehabil. 2014, 23, 12–17. [Google Scholar] [CrossRef]
- Cortell-Tormo, J.M.; García-Jaén, M.; Chulvi-Medrano, I.; Hernández-Sánchez, S.; Lucas-Cuevas, Á.G.; Tortosa-Martínez, J. Influence of scapular position on the core musculature activation in the prone plank exercise. J. Strength Cond. Res. 2017, 31, 2255–2262. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Tiryaki-Sonmez, G.; Willardson, J.M.; Fontana, F. An electromyographic comparison of a modified version of the plank with a long lever and posterior tilt versus the traditional plank exercise. Sports Biomech. 2014, 13, 296–306. [Google Scholar] [CrossRef]
- von Garnier, K.; Köveker, K.; Rackwitz, B.; Kober, U.; Wilke, S.; Ewert, T.; Stucki, G. Reliability of a test measuring transversus abdominis muscle recruitment with a pressure biofeedback unit. Physiotherapy 2009, 95, 8–14. [Google Scholar] [CrossRef] [PubMed]
- de Paula Lima, P.O.; de Oliveira, R.R.; Costa, L.O.P.; Laurentino, G.E.C. Measurement properties of the pressure biofeedback unit in the evaluation of transversus abdominis muscle activity: A systematic review. Physiotherapy 2011, 97, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Timmer, J.; Dube, J.; Frazee, K.; Goss, F.L.; Dixon, C.; Rutowski, J.; Andreacci, J.; Lenz, B. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2005, 35, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Ng, J.K.; Kippers, V.; Richardson, C.A. Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr. Clin. Neurophysiol. 1998, 38, 51–58. [Google Scholar]
- Perotto, A.O.; Delagi, E.F. Anatomical Guide for the Electromyographer: The Limbs and Trunk, 4th ed.; Thomas Charles C Publisher: Springfield, IL, USA, 2011. [Google Scholar]
- Vera-Garcia, F.J.; Moreside, J.M.; McGill, S.M. MVC techniques to normalize trunk muscle EMG in healthy women. J. Electromyogr. Kinesiol. 2010, 20, 10–16. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Durlak, J.A. How to Select, Calculate, and Interpret Effect Sizes. J. Pediatr. Psychol. 2009, 34, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Escamilla, R.F.; Lewis, C.; Bell, D.; Bramblet, G.; Daffron, J.; Lambert, S.; Pecson, A.; Imamura, R.; Paulos, L.; Andrews, J.R. Core Muscle Activation During Swiss Ball and Traditional Abdominal Exercises. J. Orthop. Sports Phys. Ther. 2010, 40, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic Analysis of Core Trunk, Hip, and Thigh Muscles During 9 Rehabilitation Exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, D.M.; Hodges, P.W.; Allen, T.J.; Story, I.H. Abdominal muscle recruitment during a range of voluntary exercises. Man. Ther. 2005, 10, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, C.L.; Earl, J.E.; Hertel, J. Surface Electromyographic Activity of the Abdominal Muscles during Pelvic-Tilt and Abdominal-Hollowing Exercises. J. Athl. Train. 2004, 39, 32–36. [Google Scholar] [PubMed]
- Vaičienė, G.; Berškienė, K.; Slapsinskaite, A.; Mauricienė, V.; Razon, S. Not only static: Stabilization manoeuvres in dynamic exercises—A pilot study. PLoS ONE 2018, 13, e0201017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyhen, D.S.; Bluemle, L.N.; Dolbeer, J.A.; Baker, S.E.; Molloy, J.M.; Whittaker, J.; Childs, J.D. Changes in Lateral Abdominal Muscle Thickness During the Abdominal Drawing-in Maneuver in Those With Lumbopelvic Pain. J. Orthop. Sports Phys. Ther. 2009, 39, 791–798. [Google Scholar] [CrossRef]
- Mew, R. Comparison of changes in abdominal muscle thickness between standing and crook lying during active abdominal hollowing using ultrasound imaging. Man. Ther. 2009, 14, 690–695. [Google Scholar] [CrossRef]
- Tayashiki, K.; Takai, Y.; Maeo, S.; Kanehisa, H. Intra-abdominal Pressure and Trunk Muscular Activities during Abdominal Bracing and Hollowing. Int. J. Sports Med. 2015, 37, 134–143. [Google Scholar] [CrossRef]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef]
- Willard, F.H.; Vleeming, A.; Schuenke, M.D.; Danneels, L.; Schleip, R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012, 221, 507–536. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Fede, C.; Gaudreault, N.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. Anatomical and functional relationships between external abdominal oblique muscle and posterior layer of thoracolumbar fascia. Clin. Anat. 2018, 31, 1092–1098. [Google Scholar] [CrossRef]
- Brumitt, J.; Matheson, J.W.; Meira, E.P. Core Stabilization Exercise Prescription, Part I. Sports Health A Multidiscip. Approach 2013, 5, 504–509. [Google Scholar] [CrossRef] [Green Version]
Exercise | Task Protocol |
---|---|
Traditional Prone Plank Exercise | Lie face-down with fists on the floor, feet shoulder width apart, and spine, scapulae, pelvis, and head in neutral positions. The elbows spacing shoulder width apart directly below the glenohumeral joint. Lift the body up on the forearms and toes |
Abdominal Hollowing Maneuver | Draw the navel in and up while not allowing any movement at the spine, rib, or pelvis and then holding the abdominal contraction for 10 s while breathing normally |
Prone Plank Conditions | |||||||
---|---|---|---|---|---|---|---|
STANDARD | HOLLOWING | ||||||
Muscles | Mean ± SD | 95% CI | ICC | Mean ± SD | 95% CI | ICC | |
Rectus Abdominis | 33.20 ± 26.23 | 20.93– 45.47 | 0.986 | 43.84 ± 41.25 | 24.54–63.15 | 0.977 | |
Lumbar Erector Spinae | 4.28 ± 1.49 * | 3.58–4.98 | 0.968 | 5.87 ± 3.00 * | 4.47–7.28 | 0.963 | |
Left External Oblique | 29.84 ± 12.44 | 23.21–36.47 | 0.975 | 53.67 ± 37.57 | 36.08–71.25 | 0.995 | |
Right External Oblique | 27.39 ± 12.04 | 21.75–33.02 | 0.946 | 62.68 ± 32.46 | 47.49–77.87 | 0.991 | |
Left Internal Oblique | 28.64 ± 14.86 | 21.69–35.60 | 0.982 | 115.89 ± 58.29 † | 88.61–143.17 | 0.985 | |
Right Internal Oblique | 31.46 ± 19.32 | 22.42–40.50 | 0.992 | 114.04 ± 47.26 † | 91.92–136.16 | 0.970 |
Total Intensity | RPE | ||||||
---|---|---|---|---|---|---|---|
Prone Plank Conditions | Mean ± SD | 95% CI | Mean ± SD | 95% CI | ICC | ||
Low | High | Low | High | ||||
STANDARD | 23.77 ± 10.24 | 18.98 | 28.56 | 3.22 ± 1.28 | 2.62 | 3.82 | 0.966 |
HOLLOWING | 64.30 ± 16.89 * | 56.39 | 72.21 | 6.53 ± 1.37 † | 5.90 | 7.18 | 0.972 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Jaén, M.; Cortell-Tormo, J.M.; Hernández-Sánchez, S.; Tortosa-Martínez, J. Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise. Int. J. Environ. Res. Public Health 2020, 17, 7410. https://doi.org/10.3390/ijerph17207410
García-Jaén M, Cortell-Tormo JM, Hernández-Sánchez S, Tortosa-Martínez J. Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise. International Journal of Environmental Research and Public Health. 2020; 17(20):7410. https://doi.org/10.3390/ijerph17207410
Chicago/Turabian StyleGarcía-Jaén, Miguel, Juan Manuel Cortell-Tormo, Sergio Hernández-Sánchez, and Juan Tortosa-Martínez. 2020. "Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise" International Journal of Environmental Research and Public Health 17, no. 20: 7410. https://doi.org/10.3390/ijerph17207410
APA StyleGarcía-Jaén, M., Cortell-Tormo, J. M., Hernández-Sánchez, S., & Tortosa-Martínez, J. (2020). Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise. International Journal of Environmental Research and Public Health, 17(20), 7410. https://doi.org/10.3390/ijerph17207410