Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network
Abstract
:1. Introduction
2. Related Work
2.1. Statistical Approaches in Crash Injury Severity Prediction
2.2. Machine Learning Approaches in Crash Injury Severity Prediction
3. Data Description
4. Methods
5. Results and Discussions
5.1. Model Performance Evaluation
(y_4*-3.6051) + (y_5*-4.46448) + (y_6*-2.74106))
5.2. Sensitivity Analysis for Variable Importance
5.2.1. Sensitivity Analysis for Type of Highway
5.2.2. Sensitivity Analysis for Weather Characteristics
5.2.3. Sensitivity Analysis for Vehicle Characteristics
5.2.4. Sensitivity Analysis for Crash Characteristics
5.2.5. Sensitivity Analysis for On-Site Damage Conditions
5.2.6. Sensitivity Analysis for Traffic Characteristics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- y_1 = Logistic (-0.995587 + (scaled_expressway*-0.354336) + (scaled_divided_highway*-0.29182) + (scaled_single_highway*0.43358) + (scaled_shiny*-1.08956) + (scaled_rainy*-0.511944) + (scaled_fog*1.1712) + (scaled_dusty*0.894094) + (scaled_car*-0.418529) + (scaled_bus*-0.286795) + (scaled_smalltruck*-0.312071) + (scaled_bigtruck*0.687496) + (scaled_AverageAnnulaDailyTraffic_ADDT_*-0.782044) + (scaled_Avg.Speed*0.556496) + (scaled_NumberofLanes*0.395474) + (scaled_crash*1.18782) + (scaled_roll_over*-0.554596) + (scaled_Run_off_road*-2.23453) + (scaled_burning*0.222759) + (scaled_animal*1.35505) + (scaled_skidding*0.148185) + (scaled_pedestrian*0.359489) + (scaled_no_of_vehicles_involved*0.217981) + (scaled_no_damage*-0.0865889) + (scaled_fence*0.222342) + (scaled_barrier*-0.511662) + (scaled_lighting_pole*-0.0275431) + (scaled_signboard*-0.758213));
- y_2 = Logistic (1.76863+ (scaled_expressway*2.37842) + (scaled_divided_highway*-1.83973) + (scaled_single_highway*0.14903) + (scaled_shiny*1.62146) + (scaled_rainy*0.576438) + (scaled_fog*1.33062) + (scaled_dusty*-2.01074) + (scaled_car*0.0929988) + (scaled_bus*-3.53022) + (scaled_smalltruck*0.398554) + (scaled_bigtruck*3.05684) + (scaled_AverageAnnulaDailyTraffic_ADDT_*-1.88497) + (scaled_Avg.Speed*3.50026) + (scaled_NumberofLanes*2.12327) + (scaled_crash*-0.586664) + (scaled_roll_over*-0.467537) + (scaled_Run_off_road*2.40548) + (scaled_burning*1.1775) + (scaled_animal*-1.07728) + (scaled_skidding*-1.07976) + (scaled_pedestrian*-0.50781) + (scaled_no_of_vehicles_involved*0.549078) + (scaled_no_damage*0.732242) + (scaled_fence*-2.44596) + (scaled_barrier*1.87162) + (scaled_lighting_pole*-2.40242) + (scaled_signboard*2.01491));
- y_3 = Logistic (-0.150089 + (scaled_expressway*-0.779422) + (scaled_divided_highway*0.961344) + (scaled_single_highway*-0.396142) + (scaled_shiny*-0.803468) + (scaled_rainy*0.811967) + (scaled_fog*0.0198535) + (scaled_dusty*1.61784) + (scaled_car*-5.79697) + (scaled_bus*0.207224) + (scaled_smalltruck*4.38719) + (scaled_bigtruck*4.0538) + (scaled_AverageAnnulaDailyTraffic_ADDT_*1.1388) + (scaled_Avg.Speed*2.86474) + (scaled_NumberofLanes*3.69685) + (scaled_crash*2.13024) + (scaled_roll_over*-1.62119) + (scaled_Run_off_road*-1.87732) + (scaled_burning*-1.57074) + (scaled_animal*2.69996) + (scaled_skidding*0.659162) + (scaled_pedestrian*1.14106) + (scaled_no_of_vehicles_involved*0.678435) + (scaled_no_damage*2.04318) + (scaled_fence*2.63091) + (scaled_barrier*-4.31338) + (scaled_lighting_pole*0.515242) + (scaled_signboard*-1.34195));
- y_4 = Logistic (1.09247 + (scaled_expressway*-0.987669) + (scaled_divided_highway*1.32038) + (scaled_single_highway*1.36756) + (scaled_shiny*-0.342812) + (scaled_rainy*1.35944) + (scaled_fog*1.7014) + (scaled_dusty*2.42403) + (scaled_car*3.65992) + (scaled_bus*-1.98591) + (scaled_smalltruck*-3.07896) + (scaled_bigtruck*-0.44773) + (scaled_AverageAnnulaDailyTraffic_ADDT_*5.01135) + (scaled_Avg.Speed*-0.581382) + (scaled_NumberofLanes*-5.97399) + (scaled_crash*0.469865) + (scaled_roll_over*2.85539) + (scaled_Run_off_road*-3.96823) + (scaled_burning*-0.851219) + (scaled_animal*-0.0944983) + (scaled_skidding*-0.150613) + (scaled_pedestrian*-0.655078) + (scaled_no_of_vehicles_involved*-0.534065) + (scaled_no_damage*-0.874981) + (scaled_fence*2.07124) + (scaled_barrier*-1.10295) + (scaled_lighting_pole*2.01337) + (scaled_signboard*4.01189));
- y_5 = Logistic (1.31223 + (scaled_expressway*-0.460841) + (scaled_divided_highway*1.1601) + (scaled_single_highway*0.368057) + (scaled_shiny*1.20106) + (scaled_rainy*-0.342102) + (scaled_fog*-0.368233) + (scaled_dusty*0.648587) + (scaled_car*-0.168535) + (scaled_bus*0.903567) + (scaled_smalltruck*-0.972495) + (scaled_bigtruck*0.743239) + (scaled_AverageAnnulaDailyTraffic_ADDT_*-0.602835) + (scaled_Avg.Speed*-0.433562) + (scaled_NumberofLanes*0.184835) + (scaled_crash*0.163512) + (scaled_roll_over*-1.55079) + (scaled_Run_off_road*1.83793) + (scaled_burning*0.811734) + (scaled_animal*0.33973) + (scaled_skidding*0.640188) + (scaled_pedestrian*-0.217664) + (scaled_no_of_vehicles_involved*0.0232666) + (scaled_no_damage*0.129678) + (scaled_fence*0.923295) + (scaled_barrier*0.235469) + (scaled_lighting_pole*1.06563) + (scaled_signboard*-0.993238));
- y_6 = Logistic (-1.73732 + (scaled_expressway*1.20981) + (scaled_divided_highway*-2.89906) + (scaled_single_highway*1.50868) + (scaled_shiny*-1.07576) + (scaled_rainy*-2.4256) + (scaled_fog*1.32154) + (scaled_dusty*0.900551) + (scaled_car*-5.39265) + (scaled_bus*2.01437) + (scaled_smalltruck*2.85767) + (scaled_bigtruck*2.69811) + (scaled_AverageAnnulaDailyTraffic_ADDT_*1.04841) + (scaled_Avg.Speed*-5.20317) + (scaled_NumberofLanes*3.78315) + (scaled_crash*0.463222) + (scaled_roll_over*-1.87714) + (scaled_Run_off_road*-0.591788) + (scaled_burning*0.80389) + (scaled_animal*3.39016) + (scaled_skidding*2.39256) + (scaled_pedestrian*-0.466654) + (scaled_no_of_vehicles_involved*-3.11739) + (scaled_no_damage*-0.414976) + (scaled_fence*0.38915) + (scaled_barrier*-0.164475) + (scaled_lighting_pole*-1.18927) + (scaled_signboard*-1.48262)).
References
- World Health Organisation. Global Status Report on Road Safety 2018; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Mohamed, H.A. Estimation of socio-economic cost of road accidents in Saudi Arabia: Willingness-to-pay approach (WTP). Adv. Manag. Appl. Econ. 2015, 5, 43. [Google Scholar]
- Peden, M. Global collaboration on road traffic injury prevention. Int. J. Inj. Control Saf. Promot. 2005, 12, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Ker, K.; Roberts, I.; Collier, T.; Beyer, F.; Bunn, F.; Frost, C. Post-licence driver education for the prevention of road traffic crashes: A systematic review of randomised controlled trials. Accid. Anal. Prev. 2005, 37, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Bunn, F. Traffic calming for the prevention of road traffic injuries: Systematic review and meta-analysis. Inj. Prev. 2003, 9, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peden, M.; Scurfield, R.; Sleet, D.; Hyder, A.A.; Mathers, C.; Jarawan, E.; Hyder, A.A.; Mohan, D.; Jarawan, E. World Report on Road Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Ernstberger, A.; Joeris, A.; Daigl, M.; Kiss, M.; Angerpointner, K.; Nerlich, M.; Schmucker, U. Decrease of morbidity in road traffic accidents in a high income country—An analysis of 24,405 accidents in a 21 year period. Injury 2015, 46, 135–143. [Google Scholar] [CrossRef]
- Ullah, I.; Jamal, A.; Subhan, F. Public perception of autonomous car: A case study for Pakistan. Adv. Transp. Stud. 2019, 49, 145–154. [Google Scholar]
- Zahid, M.; Chen, Y.; Jamal, A.; Memon, Q.M. Short term traffic state prediction via hyperparameter optimization based classifiers. Sensors 2020, 20, 685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, A.; Rahman, M.T.; Al-Ahmadi, H.M.; Ullah, I.M.; Zahid, M. Intelligent intersection control for delay optimization: Using meta-heuristic search algorithms. Sustainability 2020, 12, 1896. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.A.; Elsegaey, I.; Khraif, R.; Al-Mutairi, A. Population distribution and household conditions in Saudi Arabia: Reflections from the 2010 Census. SpringerPlus 2014, 3, 530. [Google Scholar] [CrossRef] [Green Version]
- Al-Turki, M.; Jamal, A.; Al-Ahmadi, H.M.; Al-Sughaiyer, M.A.; Zahid, M. On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia. Sustainability 2020, 12, 7394. [Google Scholar] [CrossRef]
- Al Turki, Y.A. How can Saudi Arabia use the decade of action for road safety to catalyse road traffic injury prevention policy and interventions? Int. J. Inj. Control Saf. Promot. 2014, 21, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, F.A.; Al-Zalabani, A.H.; Zalat, M.M.; Qabshawi, R.I. Road safety and road traffic accidents in Saudi Arabia: A systematic review of existing evidence. Saudi Med. J. 2015, 36, 418. [Google Scholar] [CrossRef]
- Jamal, A.; Rahman, M.T.; Ahmadi, H.M.; Mansoor, U. The Dilemma of road safety in the eastern provice of Saudi Arabia: Consequences and prevention strategies. Int. J. Environ. Res. Public Health 2020, 17, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bener, A.; Jadaan, K.S. A perspective on road fatalities in Jeddah, Saudi Arabia. Accid. Anal. Prev. 1992, 24, 143–148. [Google Scholar] [CrossRef]
- Mohamed, M.; Bromfield, N.F. Attitudes, driving behavior, and accident involvement among young male drivers in Saudi Arabia. Transp. Res. Part F Traffic Psychol. Behav. 2017, 47, 59–71. [Google Scholar] [CrossRef]
- Rahman, M.T.; Jamal, A.; Al-Ahmadi, H.M. Examining hotspots of traffic collisions and their spatial relationships with land use: A GIS-based geographicallyweighted regression Approach for dammam, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2020, 9, 540. [Google Scholar] [CrossRef]
- Ageli, M.; Zaidan, A. Road traffic accidents in saudi arabia: An ardl approach and multivariate granger causality. J. Econ. Financ. 2013, 5. [Google Scholar] [CrossRef]
- Alghnam, S.; Alrowaily, M.; Alkelya, M.; Alsaif, A.; Almoaiqel, F.; Aldegheishem, A. The prevalence of seatbelt and mobile phone use among drivers in Riyadh, Saudi Arabia: An observational study. J. Saf. Res. 2018, 66, 33–37. [Google Scholar] [CrossRef]
- Bendak, S. Seat belt utilization in Saudi Arabia and its impact on road accident injuries. Accid. Anal. Prev. 2005, 37, 367–371. [Google Scholar] [CrossRef]
- Hu, S.-R.; Li, C.-S.; Lee, C.-K. Investigation of key factors for accident severity at railroad grade crossings by using a logit model. Saf. Sci. 2010, 48, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Zahabi, S.A.H.; Strauss, J.; Manaugh, K.; Miranda-Moreno, L.F. Estimating potential effect of speed limits, built environment, and other factors on severity of pedestrian and cyclist injuries in crashes. Transp. Res. Rec. 2011, 2247, 81–90. [Google Scholar] [CrossRef]
- Zahid, M.; Chen, Y.; Jamal, A.; Al-Ahmadi, H.M.; Al-Ofi, A.K. Adopting machine learning and spatial analysis techniques for driver risk assessment: Insights from a case study. Int. J. Environ. Res. Public Health 2020, 17, 5193. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Chen, Y.; Jamal, A.; Mamadou, C.Z. Freeway short-term travel speed prediction based on data collection time-horizons: A fast forest quantile regression approach. Sustainability 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Azimi, G.; Rahimi, A.; Asgari, H.; Jin, X. Severity analysis for large truck rollover crashes using a random parameter ordered logit model. Accid. Anal. Prev. 2020, 135, 105355. [Google Scholar] [CrossRef] [PubMed]
- Rifaat, S.M.; Chin, H.C. Accident severity analysis using ordered probit model. J. Adv. Transp. 2007, 41, 91–114. [Google Scholar] [CrossRef]
- Shankar, V.; Mannering, F. An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity. J. Saf. Res. 1996, 27, 183–194. [Google Scholar] [CrossRef]
- Yu, R.; Abdel-Aty, M. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data. Accid. Anal. Prev. 2014, 62, 161–167. [Google Scholar] [CrossRef]
- Khattak, A.J.; Kantor, P.; Council, F.M. Role of adverse weather in key crash types on limited-access: Roadways implications for advanced weather systems. Transp. Res. Rec. 1998, 1621, 10–19. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Huang, H.; Wang, J.; Tarefder, R.A. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model. Accid. Anal. Prev. 2016, 96, 79–87. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Connor, D.H. Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice. Accid. Anal. Prev. 1996, 28, 739–753. [Google Scholar] [CrossRef]
- Lee, C.; Abdel-Aty, M. Presence of passengers: Does it increase or reduce driver’s crash potential? Accid. Anal. Prev. 2008, 40, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Aguero-Valverde, J.; Jovanis, P.P. Bayesian multivariate Poisson lognormal models for crash severity modeling and site ranking. Transp. Res. Rec. 2009, 2136, 82–91. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.T.; Schneider IV, W.H.; Anastasopoulos, P.C. Comparison of factors affecting injury severity in angle collisions by fault status using a random parameters bivariate ordered probit model. Anal. Methods Accid. Res. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Zeng, Q.; Wen, H.; Huang, H.; Pei, X.; Wong, S.C. A multivariate random-parameters Tobit model for analyzing highway crash rates by injury severity. Accid. Anal. Prev. 2017, 99, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milton, J.C.; Shankar, V.N.; Mannering, F.L. Highway accident severities and the mixed logit model: An exploratory empirical analysis. Accid. Anal. Prev. 2008, 40, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, H.; Xu, P.; Xie, S.; Wong, S.C. Random parameter probit models to analyze pedestrian red-light violations and injury severity in pedestrian–motor vehicle crashes at signalized crossings. J. Transp. Saf. Secur. 2020, 12, 818–837. [Google Scholar] [CrossRef]
- Shankar, V.; Mannering, F.; Barfield, W. Statistical analysis of accident severity on rural freeways. Accid. Anal. Prev. 1996, 28, 391–401. [Google Scholar] [CrossRef]
- Osman, M.; Paleti, R.; Mishra, S.; Golias, M.M. Analysis of injury severity of large truck crashes in work zones. Accid. Anal. Prev. 2016, 97, 261–273. [Google Scholar] [CrossRef]
- Huang, H.; Chin, H.C.; Haque, M.M. Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accid. Anal. Prev. 2008, 40, 45–54. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Ci, Y.; Zhang, G.; Wu, Q.; Liu, C.; Qian, Z.S. Examining driver injury severity in intersection-related crashes using cluster analysis and hierarchical Bayesian models. Accid. Anal. Prev. 2018, 120, 139–151. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Xing, Y.; Lu, J. Identifying the factors contributing to the severity of truck-involved crashes in Shanghai River-Crossing Tunnel. Int. J. Environ. Res. Public Health 2020, 17, 3155. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.D.; Gong, L.; Washing, E.M.; Yu, M.; Haile, E. Identifying and quantifying factors affecting vehicle crash severity at highway-rail grade crossings: Models and their comparison. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models. J. Saf. Res. 2003, 34, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Tulu, G.S.; Washington, S.; Haque, M.M.; King, M.J. Injury severity of pedestrians involved in road traffic crashes in Addis Ababa, Ethiopia. J. Transp. Saf. Secur. 2017, 9, 47–66. [Google Scholar] [CrossRef]
- Rusli, R.; Haque, M.M.; Saifuzzaman, M.; King, M. Crash severity along rural mountainous highways in Malaysia: An application of a combined decision tree and logistic regression model. Traffic Inj. Prev. 2018, 19, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Xu, P.; Zhou, H.; Chan, A.H.S.; Huang, H. Investigating injury severities of motorcycle riders: A two-step method integrating latent class cluster analysis and random parameters logit model. Accid. Anal. Prev. 2019, 131, 316–326. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.N.; Mannering, F.L. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accid. Anal. Prev. 2010, 42, 1751–1758. [Google Scholar] [CrossRef]
- Meng, F.; Xu, P.; Song, C.; Gao, K.; Zhou, Z.; Yang, L. Influential Factors Associated with Consecutive Crash Severity: A Two-Level Logistic Modeling Approach. Int. J. Environ. Res. Public Health 2020, 17, 5623. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Wang, W.; Xu, C. Using support vector machine models for crash injury severity analysis. Accid. Anal. Prev. 2012, 45, 478–486. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Abdelwahab, H.T. Predicting injury severity levels in traffic crashes: A modeling comparison. J. Transp. Eng. 2004, 130, 204–210. [Google Scholar] [CrossRef]
- Tang, J.; Liang, J.; Han, C.; Li, Z.; Huang, H. Crash injury severity analysis using a two-layer Stacking framework. Accid. Anal. Prev. 2019, 122, 226–238. [Google Scholar] [CrossRef]
- Iranitalab, A.; Khattak, A. Comparison of four statistical and machine learning methods for crash severity prediction. Accid. Anal. Prev. 2017, 108, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Sameen, M.I.; Pradhan, B. Severity prediction of traffic accidents with recurrent neural networks. Appl. Sci. 2017, 7, 476. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Sameen, M.I. Predicting injury severity of road traffic accidents using a hybrid extreme gradient boosting and deep neural network approach. In Laser Scanning Systems in Highway and Safety Assessment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 119–127. [Google Scholar]
- Sarkar, S.; Pramanik, A.; Maiti, J.; Reniers, G. Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data. Saf. Sci. 2020, 125, 104616. [Google Scholar] [CrossRef]
- Abdelwahab, H.T.; Abdel-Aty, M.A. Development of Artificial Neural Network Models to Predict Driver Injury Severity in Traffic Accidents at Signalized Intersections. Transp. Res. Rec. 2001, 1746, 6–13. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, H. A stable and optimized neural network model for crash injury severity prediction. Accid. Anal. Prev. 2014, 73, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.M.; Sadri, A.; Nadimi, N.; Shams, M. A comparison between artificial neural network and hybrid intelligent genetic algorithm in predicting the severity of fixed object crashes among elderly drivers. Accid. Anal. Prev. 2020, 138, 105468. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Pu, Z.; Xu, C. Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access 2018, 6, 60079–60087. [Google Scholar] [CrossRef]
- Mondal, A.R.; Bhuiyan, M.A.E.; Yang, F. Advancement of weather-related crash prediction model using nonparametric machine learning algorithms. SN Appl. Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Dong, N.; Huang, H.; Zheng, L. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects. Accid. Anal. Prev. 2015, 82, 192–198. [Google Scholar] [CrossRef]
- Mokhtarimousavi, S.; Anderson, J.C.; Azizinamini, A.; Hadi, M. Improved support vector machine models for work zone crash injury severity prediction and analysis. Transp. Res. Rec. 2019, 2673, 680–692. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Yang, J.; Milton, J.C. An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier. Accid. Anal. Prev. 2016, 90, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Arhin, S.A.; Gatiba, A. Predicting crash injury severity at unsignalized intersections using support vector machines and naïve Bayes classifiers. Transp. Saf. Environ. 2020, 2, 120–132. [Google Scholar] [CrossRef]
- Budiawan, W.; Saptadi, S.; Tjioe, C.; Phommachak, T. Traffic Accident Severity Prediction Using Naive Bayes Algorithm-A Case Study of Semarang Toll Road. In Proceedings of the Annual Conference on Industrial and System Engineering (ACISE), Semarang, Central Java, Indonesia, 23–24 April 2019; Volume 598, p. 012089. [Google Scholar]
- Anderson, T.K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Mauro, R.; De Luca, M.; Dell’Acqua, G. Using a k-means clustering algorithm to examine patterns of vehicle crashes in before-after analysis. Mod. Appl. Sci. 2013, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, N.; Losa, M. Handling Imbalanced data in road crash severity prediction by machine learning algorithms. Infrastructures 2020, 5, 61. [Google Scholar] [CrossRef]
- Abellán, J.; López, G.; de Oña, J. Analysis of traffic accident severity using decision rules via decision trees. Expert Syst. Appl. 2013, 40, 6047–6054. [Google Scholar] [CrossRef] [Green Version]
- de Oña, J.; López, G.; Abellán, J. Extracting decision rules from police accident reports through decision trees. Accid. Anal. Prev. 2013, 50, 1151–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Zheng, Z.; Ren, Y.; Zhou, X.; Keramati, A.; Tolliver, D.; Huang, Y. A gradient boosting crash prediction approach for highway-rail grade crossing crash analysis. J. Adv. Transp. 2020, 2020. [Google Scholar] [CrossRef]
- Delen, D.; Sharda, R.; Bessonov, M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid. Anal. Prev. 2006, 38, 434–444. [Google Scholar] [CrossRef]
- Alkheder, S.; Taamneh, M.; Taamneh, S. Severity prediction of traffic accident using an artificial neural network: Traffic accident severity prediction using artificial neural network. J. Forecast. 2017, 36, 100–108. [Google Scholar] [CrossRef]
- Taamneh, S.; Taamneh, M. Evaluation of the performance of random forests technique in predicting the severity of road traffic accidents. In Advances in Human Aspects of Transportation; Neville Stanton, Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 840–847. [Google Scholar]
- Wang, W.; Liu, C.; Chen, D. Predicting driver injury severity in freeway rear-end crashes by support vector machine. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), ChangChun, China, 16–18 December 2011; pp. 1800–1803. [Google Scholar]
- AlMamlook, R.E.; Kwayu, K.M.; Alkasisbeh, M.R.; Frefer, A.A. Comparison of machine learning algorithms for predicting traffic accident severity. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 272–276. [Google Scholar]
- Bernard, J.M. An Application of decision tree models to examine motor vehicle crash severity outcomes. J. Transp. Res. Forum 2017, 56, 73–91. [Google Scholar] [CrossRef]
- Delen, D.; Tomak, L.; Topuz, K.; Eryarsoy, E. Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods. J. Transp. Health 2017, 4, 118–131. [Google Scholar] [CrossRef]
- Rojas, R. Neural Networks: A Systematic Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Theofilatos, A.; Yannis, G. A review of the effect of traffic and weather characteristics on road safety. Accid. Anal. Prev. 2014, 72, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Kanellaidis, G.; Vardaki, S. Highway geometric design from the perspective of recent safety developments. J. Transp. Eng. 2011, 137, 841–844. [Google Scholar] [CrossRef]
- Khattak, A.J. Injury severity in multivehicle rear-end crashes. Transp. Res. Rec. 2001, 1746, 59–68. [Google Scholar] [CrossRef]
- Islam, S.; Jones, S.L.; Dye, D. Comprehensive analysis of single-and multi-vehicle large truck at-fault crashes on rural and urban roadways in Alabama. Accid. Anal. Prev. 2014, 67, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Li, X. Predicting driver injury severity in single-vehicle and two-vehicle crashes with boosted regression trees. Transp. Res. Rec. 2015, 2514, 138–148. [Google Scholar] [CrossRef]
- Liu, P.; Fan, W. Exploring injury severity in head-on crashes using latent class clustering analysis and mixed logit model: A case study of North Carolina. Accid. Anal. Prev. 2020, 135, 105388. [Google Scholar] [CrossRef]
- Hermans, E.; Brijs, T.; Stiers, T.; Offermans, C. The impact of weather conditions on road safety investigated on an hourly basis. In Proceedings of the 85th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 22–26 January 2006. [Google Scholar]
- Qiu, L.; Nixon, W.A. Effects of adverse weather on traffic crashes: Systematic review and meta-analysis. Transp. Res. Rec. 2008, 2055, 139–146. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Noyce, D.A. Injury severity of multivehicle crash in rainy weather. J. Transp. Eng. 2012, 138, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhao, W.; Steven, I.; Chien, J.; Dong, C. Exploring factors contributing to crash injury severity on rural two-lane highways. J. Saf. Res. 2015, 55, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Ahmed, M.M. Exploring factors contributing to injury severity at work zones considering adverse weather conditions. IATSS Res. 2019, 43, 131–138. [Google Scholar] [CrossRef]
- Razi-Ardakani, H.; Mahmoudzadeh, A.; Kermanshah, M. What factors results in having a severe crash? A closer look on distraction-related factors. Cogent Eng. 2019, 6, 1708652. [Google Scholar] [CrossRef]
- Zahid, M.; Chen, Y.; Khan, S.; Jamal, A.; Ijaz, M.; Ahmed, T. Predicting risky and aggressive driving behavior among taxi drivers: Do spatio-temporal attributes matter? Int. J. Environ. Res. Public Health 2020, 17, 3937. [Google Scholar] [CrossRef] [PubMed]
- Martensen, H.; Dupont, E. Comparing single vehicle and multivehicle fatal road crashes: A joint analysis of road conditions, time variables and driver characteristics. Accid. Anal. Prev. 2013, 60, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-Y.; Mannering, F. Analysis of injury severity and vehicle occupancy in truck-and non-truck-involved accidents. Accid. Anal. Prev. 1999, 31, 579–592. [Google Scholar] [CrossRef]
- Donnell, E.T.; Mason, J.M., Jr. Predicting the severity of median-related crashes in Pennsylvania by using logistic regression. Transp. Res. Rec. 2004, 1897, 55–63. [Google Scholar] [CrossRef]
- Hong, J.; Tamakloe, R.; Park, D. A comprehensive analysis of multi-vehicle crashes on expressways: A double hurdle approach. Sustainability 2019, 11, 2782. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, M. Freeway single and multi-vehicle crash safety analysis: Influencing factors and hotspots. Accid. Anal. Prev. 2019, 132, 105268. [Google Scholar] [CrossRef]
- Viklund, Å.; Björnstig, J.; Larsson, M.; Björnstig, U. Car crash fatalities associated with fire in Sweden. Traffic Inj. Prev. 2013, 14, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Bae, M.-K. Exploring the determinants of the severity of pedestrian injuries by pedestrian age: A case study of Daegu Metropolitan City, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2358. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.; Ahmed, F. Pedestrian injury severity analysis in motor vehicle crashes in Ohio. Safety 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Angel, A.; Hickman, M. Analysis of the factors affecting the severity of two-vehicle crashes. Ingeniería y Desarrollo 2008, 176–194. [Google Scholar]
- Høye, A. Speeding and impaired driving in fatal crashes—Results from in-depth investigations. Traffic Inj. Prev. 2020, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ackaah, W.; Adonteng, D.O. Analysis of fatal road traffic crashes in Ghana. Int. J. Inj. Control Saf. Promot. 2011, 18, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, L.; Wu, K.-F.; Menendez, M. Exploring the application of latent class cluster analysis for investigating pedestrian crash injury severities in Switzerland. Accid. Anal. Prev. 2015, 85, 219–228. [Google Scholar] [CrossRef]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved heterogeneity and the statistical analysis of highway accident data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
Variable Description | Variable Type | Categories | Frequency | Percent (%) |
---|---|---|---|---|
Dependent Variable | ||||
Crash Injury Severity | Nominal | Fatal Injury | 881 | 7 |
Nominal | Non-Fatal Injury | 11,685 | 93 | |
Explanatory Variables | ||||
Temporal Features | ||||
Time of crash | Nominal | Peak | 7087 | 56.40 |
Nominal | Off-peak | 5479 | 43.60 | |
Day | Nominal | Weekday | 9011 | 71.71 |
Nominal | Weekend | 3555 | 28.29 | |
Season | Nominal | Winter | 2754 | 21.92 |
Nominal | Spring | 1982 | 15.77 | |
Nominal | Summer | 5313 | 42.28 | |
Nominal | Autumn | 2517 | 20.03 | |
Environmental Features | ||||
Lighting Condition | Nominal | Day | 7601 | 60.49 |
Nominal | Night | 4965 | 39.51 | |
Weather | Nominal | Clear | 11,003 | 87.56 |
Nominal | Rain | 519 | 4.13 | |
Nominal | Cloudy | 234 | 1.86 | |
Nominal | Sand storm | 364 | 2.90 | |
Nominal | others | 446 | 3.55 | |
Roadway Features | ||||
Highway Type | Nominal | Divided Highway | 2815 | 22.40 |
Nominal | Expressway | 9500 | 75.60 | |
Nominal | Single Highway | 251 | 2.0 | |
Alignment Type | Nominal | Tangent | 8082 | 64.32 |
Nominal | Horizontal curve | 503 | 4.0 | |
Nominal | Vertical curve | 205 | 1.63 | |
Nominal | Near intersection | 132 | 1.05 | |
Nominal | others | 3644 | 29.0 | |
Surface Conditions | Nominal | Good | 7107 | 56.56 |
Nominal | Cracks | 1257 | 10.0 | |
Nominal | Debris | 454 | 3.61 | |
Nominal | wet | 266 | 2.12 | |
Nominal | others | 3481 | 27.70 | |
Damage at Site | Nominal | Fence damaged | 2615 | 20.81 |
Nominal | Barrier damaged | 1272 | 10.12 | |
Nominal | Pole damaged | 498 | 3.96 | |
Nominal | Signpost damaged | 307 | 2.44 | |
Nominal | others | 7875 | 62.67 | |
Shoulder width (m) | Numeric | Between 2.5–3.0 | 5312 | 42.27 |
Numeric | Between 3.0–3.5 | 3402 | 27.07 | |
Numeric | Between 3.5–4.0 | 3853 | 30.66 | |
Carriageway width (m) | Numeric | <7.5 | 1974 | 15.71 |
Numeric | between 7.5–11 | 5319 | 42.33 | |
Numeric | >11 | 5274 | 41.97 | |
Median width (m) | Numeric | <5 | 1177 | 9.37 |
Numeric | Between 5–10 | 1061 | 8.44 | |
Numeric | Between10–15 | 1759 | 14.0 | |
Numeric | >15 | 8569 | 68.19 | |
Road Markings | Nominal | Present | 12,264 | 97.60 |
Nominal | Absent | 302 | 2.40 | |
Road Cat eyes | Nominal | Present | 12,398 | 98.66 |
Nominal | Absent | 168 | 1.34 | |
Traffic Characteristics | ||||
AADT | Numeric | <2000 (1) | 476 | 3.79 |
Numeric | Between 2000–5000 (2) | 1282 | 10.20 | |
Numeric | Between 5000–10000 (3) | 2983 | 23.74 | |
Numeric | Between 10000–20000 (4) | 7136 | 56.79 | |
Numeric | >20000 (5) | 687 | 5.47 | |
Trucks % in ADDT | Numeric | <2% | 607 | 4.83 |
Numeric | between 2–5% | 993 | 7.90 | |
Numeric | between 5–10% | 1073 | 8.54 | |
Numeric | between 10–20% | 6559 | 52.20 | |
Numeric | between 20–30% | 3335 | 26.54 | |
Average Speed (kmph) | Numeric | <90 (1) | 529 | 4.21 |
Numeric | between 90–100 (2) | 2971 | 23.64 | |
Numeric | between 100–110 (3) | 7467 | 59.42 | |
Numeric | between 110–120 (4) | 1125 | 8.95 | |
Numeric | >120 (5) | 474 | 3.78 | |
Vehicle Features | ||||
Type of Vehicle at Fault | Nominal | Car | 7516 | 59.81 |
Nominal | Bus | 940 | 7.49 | |
Nominal | Small truck | 1250 | 9.95 | |
Nominal | Big truck | 2104 | 16.74 | |
Nominal | others | 756 | 6.02 | |
No. of vehicles involved | Numeric | 1 | 6612 | 52.62 |
Numeric | 2 | 5518 | 43.91 | |
Numeric | >2 | 436 | 3.47 | |
Crash Characteristics | ||||
Collision Type | Nominal | Automobile Collision | 6512 | 51.82 |
Nominal | Hit Animal | 174 | 1.39 | |
Nominal | Hit Pedestrian/ | 58 | 0.46 | |
Nominal | Rollover | 3158 | 25.13 | |
Nominal | Run-off the road | 1400 | 11.14 | |
Nominal | Skidding | 98 | 0.78 | |
Nominal | Vehicle Burnt | 296 | 2.36 | |
Nominal | others | 870 | 6.92 | |
Contributing Circumstance | Nominal | Driver (distractions, fatigue driving, disregard to traffic rules, and TCD) | 9245 | 73.57 |
Nominal | Animal | 202 | 1.61 | |
Nominal | Faulty vehicle component | 2120 | 16.87 | |
Nominal | Poor roadway | 162 | 1.29 | |
Nominal | others | 837 | 6.66 |
Year | Crash Injury Severity | Frequency | Percent (%) |
---|---|---|---|
2017 | Fatal Injury | 256 | 6.63% |
Non-Fatal Injury | 3603 | 93.37% | |
Total | 3859 | 100% | |
2018 | Fatal Injury | 336 | 6.81% |
Non-Fatal Injury | 4597 | 93.19% | |
Total | 4933 | 100% | |
2019 | Fatal Injury | 289 | 7.66% |
Non-Fatal Injury | 3485 | 92.34% | |
Total | 3774 | 100% |
Actual Severity Class | Predicted Severity Class | Accuracy | Sensitivity | Specificity | |
---|---|---|---|---|---|
Fatal | Non-fatal | ||||
Fatal | 43 (4.3%) | 33 (3.3%) | 77.5% | 56.6% | 79.2% |
Non-Fatal | 192 (19.2%) | 731 (73.2%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, A.; Umer, W. Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network. Int. J. Environ. Res. Public Health 2020, 17, 7466. https://doi.org/10.3390/ijerph17207466
Jamal A, Umer W. Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network. International Journal of Environmental Research and Public Health. 2020; 17(20):7466. https://doi.org/10.3390/ijerph17207466
Chicago/Turabian StyleJamal, Arshad, and Waleed Umer. 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network" International Journal of Environmental Research and Public Health 17, no. 20: 7466. https://doi.org/10.3390/ijerph17207466
APA StyleJamal, A., & Umer, W. (2020). Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network. International Journal of Environmental Research and Public Health, 17(20), 7466. https://doi.org/10.3390/ijerph17207466