Occupational Exposure to Fine Particulate Matter (PM4 and PM2.5) during Hand-Made Cookware Operation: Personal, Indoor and Outdoor Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Population
2.2. Exposure Assessment
2.3. Personal Air Monitoring
2.4. Indoor Air Monitoring
2.5. Outdoor Air Monitoring
2.6. Gravimetric Analysis
2.7. PM2.5 Chemical Characterization
2.8. Quality Assurance and Control
3. Statistical Analysis
4. Results
4.1. Demographic and Site Characteristics
4.2. Real Time Personal, Indoor and Outdoor PM Measurements
4.3. Indoor and Outdoor PM2.5 Concentration Measurements
4.4. Meteorological Data
4.5. Personal, Indoor and Outdoor Relationships (3-h Measurements)
4.6. Indoor and Outdoor Relationships (8-h Measurements)
4.7. Time Series Record of 15-min Average Indoor and Outdoor PM2.5 Real Time Measurements
4.8. PM2.5 Elemental Components
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korten, I.C.S.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Paediatr. Respir. Rev. 2017, 21, 38–46. [Google Scholar] [CrossRef]
- Jafta, N.; Jeena, P.M.; Barregard, L.; Naidoo, R.N. Childhood tuberculosis and exposure to indoor air pollution: A systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2015, 19, 596–602. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Mulenga, D. Maternal exposure to household air pollution and associated adverse birth outcomes in Ndola and Masaiti, Zambia. Ec. Pulmonol. Respir. Med. 2018, 7, 82–97. [Google Scholar]
- Jedrychowski, W.A.; Majewska, R.; Spengler, J.D.; Camann, D.; Roen, E.L.; Perera, F.P. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: A two-pollutant approach. Int. Arch. Occup. Environ. Heal. 2017, 90, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Nurs, C.Z.B.; Islam, M.M.; Islam, A.Z.; Rahman, M. Household air pollution from cooking and risk of adverse health and birth outcomes in Bangladesh: A nationwide population-based study. Environ. Heal. 2017, 16, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, S.; London, L.; Burdorf, A.; Naidoo, R.; Kromhout, H. Spontaneous miscarriages and infant deaths among female farmers in rural South Africa. Occup. Environ. Med. 2011, 68, A51. [Google Scholar] [CrossRef] [Green Version]
- WHO. Ambient (Outdoor) Air Quality and Health 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 7 September 2020).
- WHO. Health Aspects of Air Pollution: Results from the WHO Project “Systematic Review of Health Aspects of Air Pollution in Europe”; WHO: Copenhagen, Denmark, 2004. [Google Scholar]
- USEPA. Particulate Matter (PM) Pollution 2012. Available online: https://www.epa.gov/pm-pollution. (accessed on 7 September 2020).
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Naidoo, S.; London, L.; Burdorf, A.; Naidoo, R.N.; Kromhout, H. Agricultural Activities, Pesticide Use and Occupational Hazards among Women Working in Small Scale Farming in Northern KwaZulu-Natal, South Africa. Int. J. Occup. Environ. Heal. 2008, 14, 218–224. [Google Scholar] [CrossRef]
- Kile, M.L.; Fang, S.C.; Baccarelli, A.A.; Tarantini, L.; Cavallari, J.M.; Christiani, D.C. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ. Heal. 2013, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.N. Mining: South Africa’s legacy and burden in the context of occupational respiratory diseases. Glob. Heal. Action 2013, 6, 20512. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.N.; Robins, T.G.; Seixas, N.; Lalloo, U.G.; Becklake, M. Respirable Coal Dust Exposure and Respiratory Symptoms in South-African Coal Miners: A Comparison of Current and Ex-Miners. J. Occup. Environ. Med. 2006, 48, 581–590. [Google Scholar] [CrossRef]
- Van Staden, J.; Foos, R.; Volckens, J.; Ramachandran, G. Variability of aerosol mass and number concentrations during taconite mining operations. J. Occup. Environ. Hyg. 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Huynh, T.B.; Ramachandran, G.; Quick, H.; Hwang, J.; Raynor, P.C.; Alexander, B.H.; Mandel, J.H. Ambient Fine Aerosol Concentrations in Multiple Metrics in Taconite Mining Operations. Ann. Work. Expo. Heal. 2018, 63, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Teare, J.; Kootbodien, T.; Naicker, N.; Mathee, A. The Extent, Nature and Environmental Health Implications of Cottage Industries in Johannesburg, South Africa. Int. J. Environ. Res. Public Heal. 2015, 12, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.T.; Vaa, M. Reconsidering Informality: Perspectives from Urban Africa; Nordic Africa Institute: Uppsala, Sweden, 2004. [Google Scholar]
- Clausen, J.; Rastogi, S. Heavy metal pollution among autoworkers. I. Lead. Occup. Environ. Med. 1977, 34, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Clausen, J.; Rastogi, S.C. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel. Occup. Environ. Med. 1977, 34, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Pesch, B.; Lotz, A.; Pelzer, J.; Kendzia, B.; Gawrych, K.; Heinze, E.; Van Gelder, R.; Punkenburg, E.; Weiss, T.; et al. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume. Ann. Occup. Hyg. 2012, 56, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Foulke, E. Guidance for the Identification and Control of Safety and Health Hazards in Metal Scrap Recycling; Occupational Safety and Health Administration, US Department of Labour OSHA: Washington, WA, USA, 2008; 3348-05. [Google Scholar]
- Osborn, E.L. Casting aluminium cooking pots: Labour, migration and artisan production in West Africa’s informal sector, 1945–2005. Afr. Identit. 2009, 7, 373–386. [Google Scholar] [CrossRef]
- Guma, T.N.; Uche, L.O. Sand Mould Design for Casting an Aluminium Pot-A Basic Procedure of Supplementing Artisanal Practices. Eur. J. Eng. Res. Sci. 2019, 4, 24–30. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Kobunski, P.A.; Kuepouo, G.; Corbin, R.W.; Gottesfeld, P. Lead exposure from aluminum cookware in Cameroon. Sci. Total. Environ. 2014, 496, 339–347. [Google Scholar] [CrossRef]
- Street, R.A.; Mathee, A.; Tanda, S.; Hauzenberger, C.; Naidoo, S.; Goessler, W. Recycling of scrap metal into artisanal cookware in the informal sector: A public health threat from multi metal exposure in South Africa. Sci. Total. Environ. 2020, 699, 134324. [Google Scholar] [CrossRef]
- Colbeck, I.; Nasir, Z.A.; Nasir, Z.A. Indoor Air Pollution; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; pp. 41–72. [Google Scholar]
- Guma, T.; Uche, O.L. A typification of foundry practices for correct artisanal sand casting of aluminum pots. Int. J. Eng. Appl. Sci. Technol. 2019, 4, 169–178. [Google Scholar] [CrossRef]
- ILO. Informal Sector: ILO.; 2020. Available online: https://www.ilo.org/global/topics/dw4sd/themes/informal-economy/lang--en/index.htm (accessed on 7 September 2020).
- Amfo-Otu, R.; Agyemang, J.K. Occupational health hazards and safety practices among the informal sector auto mechanics. Appl. Res. J. 2017, 2, 59–69. [Google Scholar]
- Milligan, B.D.; Vaughan, N.P.; Ogden, T.L. Filter weighing reproducibility and the gravimetric detection limit. Ann. Occup. Hyg. 1989, 33, 331–337. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Lee, B.-K.; Smith, T.J.; Garshick, E.; Natkin, J.; Reaser, P.; Lane, K.; Lee, H.K. Exposure of trucking company workers to particulate matter during the winter. Chemosphere 2005, 61, 1677–1690. [Google Scholar] [CrossRef] [Green Version]
- Di Gilio, A.; Farella, G.; Marzocca, A.; Giua, R.; Assennato, G.; Tutino, M.; De Gennaro, G. Indoor/Outdoor Air Quality Assessment at School near the Steel Plant in Taranto (Italy). Adv. Meteorol. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kousa, A.; Oglesby, L.; Koistinen, K.; Kunzli, N.; Jantunen, M.J. Exposure chain of urban air PM2.5—Associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environ. 2002, 36, 3031–3039. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- Fisk, W.J.; A Eliseeva, E.; Mendell, M.J. Association of residential dampness and mold with respiratory tract infections and bronchitis:A meta-analysis. Environ. Heal. 2010, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Lavigne, E.; Evans, G.J.; Pollitt, K.J.G.; Burnett, R.T. Fine Particulate Matter and Emergency Room Visits for Respiratory Illness. Effect Modification by Oxidative Potential. Am. J. Respir. Crit. Care Med. 2016, 194, 577–586. [Google Scholar] [CrossRef]
- Weichenthal, S.; Villeneuve, P.J.; Burnett, R.T.; Van Donkelaar, A.; Martin, R.V.; Jones, R.R.; Dellavalle, C.T.; Sandler, D.P.; Ward, M.H.; Hoppin, J.A. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort. Environ. Heal. Perspect. 2014, 122, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Luo, X.; Zhao, C.; Zhang, B.; Tao, J.; Yang, Z.; Ma, W.; Liu, T. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ. Pollut. 2016, 211, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Luo, X.; Zhao, C.; Ng, R.W.C.; Lim, C.E.D.; Zhang, B.; Liu, T. The association between fine particulate matter exposure during pregnancy and preterm birth: A meta-analysis. BMC Pregnancy Childbirth 2015, 15, 300. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Air Quality Guidelines Global Update 2005. In Proceedings of the Working Group Meeting, Bonn, Germany, 18–20 October 2005; WHO Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Wichmann, J.; Lind, T.; Nilsson, M.-M.; Bellander, T. PM2.5, soot and NO2 indoor–outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Van Drooge, B.L.; Rivas, I.; Querol, X.; Sunyer, J.; Grimalt, J.O. Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona. Int. J. Environ. Res. Public Heal. 2020, 17, 3685. [Google Scholar] [CrossRef]
- Chen, X.-C.; Chuang, H.-C.; Ward, T.J.; Tian, L.; Cao, J.-J.; Ho, S.S.-H.; Lau, N.-C.; Hsiao, T.-C.; Yim, S.H.; Ho, K.-F. Indoor, outdoor, and personal exposure to PM2.5 and their bioreactivity among healthy residents of Hong Kong. Environ. Res. 2020, 188, 109780. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Heal. Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef]
- E Nel, A.; Diaz-Sanchez, D.; Li, N. The role of particulate pollutants in pulmonary inflammation and asthma: Evidence for the involvement of organic chemicals and oxidative stress. Curr. Opin. Pulm. Med. 2001, 7, 20–26. [Google Scholar] [CrossRef]
- Araujo, J.A.; Nel, A.E. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part. Fibre Toxicol. 2009, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM, editor ASTM Standard Practice for Controlling and Characterizing Errors in Weighing Collected Aerosols (ASTM D 6552)2000. Available online: http://www.astm.org/Standards/D6552.htm (accessed on 28 September 2020).
Site No. | Total No. of Workers | 1st PM4 Sampling Session | 2nd PM4 Sampling Session | 3rd PM4 Sampling Session | Indoor Sampling | Outdoor Sampling | Volume of the Site (m3) |
---|---|---|---|---|---|---|---|
1 | 5 | 2 | 1 | - | Yes | Yes | 42.5 |
2 | 2 | 2 | - | - | Yes | Yes | 34.9 |
3 | 5 | 2 | - | - | Yes | Yes | 77.8 |
4 | 13 | 2 | 2 | 2 | Yes | Yes | 127.0 |
* 5 | 6 | 2 | 2 | - | Yes (incomplete) | No | 71.7 |
Levels | Personal PM4 (µg/m3) | Indoor PM2.5 (µg/m3) | Outdoor PM2.5 (µg/m3) | Outdoor Temperature (°C) | Outdoor Humidity (%) |
---|---|---|---|---|---|
Min | 23 | 1 | 3.6 | 16 | 6 |
10th percentile | 74 | 31 | 7 | 18 | 15 |
25th percentile | 90 | 44 | 9 | 23 | 22 |
50th percentile | 124 | 64 | 13 | 26 | 27 |
75th percentile | 182 | 99 | 19 | 28 | 36 |
Max | 100 000 | 6097 | 1178 | 38 | 55 |
Mean (SD) | 492 (3546) | 98 (262) | 20 (45) | 26 (5) | 29 (11) |
Site No. | Indoor/Outdoor PM2.5 Levels | Indoor PM2.5/Temperature | Outdoor PM2.5/Temperature | Indoor PM2.5/Humidity | Outdoor PM2.5/Humidity |
---|---|---|---|---|---|
1 | −0.32 | 0.08 | −0.15 | −0.07 | 0.37 |
2 | 0.67 | −0.73 | −0.73 | 0.80 | 0.84 |
3 | 0.28 | −0.39 | −0.85 | 0.33 | 0.88 |
4 | 0.43 | −0.53 | −0.48 | 0.51 | 0.50 |
Sample Name | Indoor (µg/m3) | Outdoor (µg/m3) | *8-h TWA OEL-RL (µg/m3) |
---|---|---|---|
Al | 0.2 | 1.9 | 10500 |
As | 1.0 | 2.5 | 100 |
Ba | 0.1 | 0.2 | 500 |
Br | 0.0 | 0.2 | 100 |
Ca | 1.4 | 1.4 | - |
Ce | 0.4 | 0.9 | - |
Cd | 0.1 | 0.0 | 50 |
CI | 1.9 | 3.2 | - |
Cr | 0.4 | 0.6 | 50 |
Cs | 0.3 | 0.5 | |
Cu | 4.0 | 7.1 | 1000 |
Fe | 0.9 | 1.9 | - |
I | 0.2 | 0.4 | - |
In | 0.9 | 0.7 | - |
K | 0.3 | 2.9 | - |
Mg | 0.1 | 1.3 | 5100 |
Mn | 0.1 | 0.6 | 5000 |
Na | 7.7 | 7.4 | - |
Ni | 0.4 | 0.8 | 50 |
P | 0.0 | 0.1 | 100 |
Pb | 2.8 | 6.6 | 150 |
Pd | 71.8 | 162.2 | - |
Pt | 12.2 | 28.7 | 5000 |
Rb | 0.2 | 0.2 | - |
S | 0.2 | 0.1 | - |
Sb | 1.9 | 4.8 | - |
Sc | 0.1 | 0.2 | - |
Si | 0.8 | 7.4 | 100 |
Sr | 0.2 | 0.0 | - |
Te | 8.2 | 18.3 | 100 |
Ti | 0.0 | 0.1 | - |
V | 0.0 | 0.1 | - |
W | 0.0 | 0.1 | 5000 |
Y | 0.0 | 0.2 | 1000 |
Zn | 5.3 | 9.7 | |
Zr | 0.2 | 0.1 | 5000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shezi, B.; Mathee, A.; Cele, N.; Ndabandaba, S.; Street, R.A. Occupational Exposure to Fine Particulate Matter (PM4 and PM2.5) during Hand-Made Cookware Operation: Personal, Indoor and Outdoor Levels. Int. J. Environ. Res. Public Health 2020, 17, 7522. https://doi.org/10.3390/ijerph17207522
Shezi B, Mathee A, Cele N, Ndabandaba S, Street RA. Occupational Exposure to Fine Particulate Matter (PM4 and PM2.5) during Hand-Made Cookware Operation: Personal, Indoor and Outdoor Levels. International Journal of Environmental Research and Public Health. 2020; 17(20):7522. https://doi.org/10.3390/ijerph17207522
Chicago/Turabian StyleShezi, Busisiwe, Angela Mathee, Nokulunga Cele, Sipho Ndabandaba, and Renee A. Street. 2020. "Occupational Exposure to Fine Particulate Matter (PM4 and PM2.5) during Hand-Made Cookware Operation: Personal, Indoor and Outdoor Levels" International Journal of Environmental Research and Public Health 17, no. 20: 7522. https://doi.org/10.3390/ijerph17207522
APA StyleShezi, B., Mathee, A., Cele, N., Ndabandaba, S., & Street, R. A. (2020). Occupational Exposure to Fine Particulate Matter (PM4 and PM2.5) during Hand-Made Cookware Operation: Personal, Indoor and Outdoor Levels. International Journal of Environmental Research and Public Health, 17(20), 7522. https://doi.org/10.3390/ijerph17207522