Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Data
2.2. Research Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ranasinghe, R.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.M.; Lin, C.M. Life course effects of socioeconomic and lifestyle factors on metabolic syndrome and 10-year risk of cardiovascular disease: A longitudinal study in Taiwan adults. Int. J. Environ. Res. Public Health 2018, 15, 2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.Y.; Hong, S.; Kim, C.H.; Lee, S.; Kim, J.H.; Lee, J.T.; Kim, D.H. Prevalence of the metabolic syndrome among Korean workers by occupational group: Fifth Korean National Health and Nutrition Examination Survey (KNHANES) 2010. Ann. Occup. Environ. Med. 2013, 25, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, E.A.M. Should we dump the metabolic syndrome? Yes. BMJ 2008, 336, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastelein, J. Cardiovascular risk-through the ages. Atheroscler. Suppl. 2004, 5, 1–2. [Google Scholar] [CrossRef]
- Tuomilehto, J. Impact of age on cardiovascular risk: Implications for cardiovascular disease management. Atheroscler. Suppl. 2004, 5, 9–17. [Google Scholar] [CrossRef]
- Sattar, N.; Forouhi, N.G. Metabolic syndrome criteria: Ready for clinical prime time or work in progress? Eur. Heart J. 2005, 26, 1249–1251. [Google Scholar] [CrossRef] [Green Version]
- Simmons, R.K.; Alberti, K.G.; Gale, E.A.; Tuomilehto, J.; Qiao, Q.; Ramachandran, A.; Tajima, N.; Brajkovich Mirchov, I.; Ben-Nakhi, A.; Reaven, G.; et al. The metabolic syndrome: Useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 2010, 53, 600–605. [Google Scholar] [CrossRef]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef] [Green Version]
- Raitakari, O.T.; Porkka, K.V.; Rasanen, L.; Ronnemaa, T.; Viikari, J.S. Clustering and six year cluster-tracking of serum total cholesterol, HDL-cholesterol and diastolic blood pressure in children and young adults. The Cardiovascular Risk in Young Finns Study. J. Clin. Epidemiol. 1994, 47, 1085–1093. [Google Scholar] [CrossRef]
- Eisenmann, J.C.; Wickel, E.E.; Welk, G.; Blair, S.N. Combined influence of cardiorespiratory fitness and body mass index on cardiovascular disease risk factors among 8-18 year old youth: The Aerobics Center Longitudinal Study. Int. J. Pediatr. Obes. 2007, 2, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Harro, M.; Sardinha, L.B. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef]
- Guseman, E.H.; Eisenmann, J.C.; Laurson, K.R.; Cook, S.R.; Stratbucker, W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Acad. Pediatr. 2018, 18, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Auinger, P.; Huang, T.T.K. Growth curves for cardio-metabolic risk factors in children and adolescents. J. Pediatr. 2009, 155, e15–e26. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Perusse, L.; Malina, R.M.; Bergeron, J.; Despres, J.; Bouchard, C. Stability of indicators of the metabolic syndrome from childhood and adolescence to young adulthood: The Quebec Family Study. J. Clin. Epidemiol. 2001, 54, 190–195. [Google Scholar] [CrossRef]
- Wijndaele, K.; Beunen, G.; Duvigneaud, N.; Matton, L.; Duquet, W.; Thomis, M.; Lefevre, J.; Philippaerts, R.M. A Continuous Metabolic Syndrome Risk Score: Utility for epidemiological analyses. Diabetes Care 2006, 29, 2329. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; Lilly, C.; Oliver, M.N.; DeBoer, M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; DeBoer, M.D.; Filipp, S.L. MetS Calc: Metabolic syndrome severity calculator. Cardiovasc. Diabetol. 2019, 17, 17. [Google Scholar] [CrossRef]
- Huh, H.; Lee, J.H.; Moon, J.S.; Sung, K.C.; Kim, J.Y.; Kang, D.R. Metabolic syndrome severity score in Korean adults: Analysis of the 2010–2015 Korea National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2019, 34, e48. [Google Scholar] [CrossRef]
- Low, S.; Khoo, K.C.J.; Wang, J.; Irwan, B.; Sum, C.F.; Subramaniam, T.; Lim, S.C.; Wong, T.K.M. Development of a metabolic syndrome severity score and its association with incident diabetes in an Asian population—Results from a longitudinal cohort in Singapore. Endocrine 2019, 65, 73–80. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Kuczmarski, M.T.; Wang, Y.; Mason, M.A.; Evans, M.K.; Zonderman, A.B. Receiver-operating characteristics of adiposity for metabolic syndrome: The healthy aging in neighborhoods of diversity across the life span (HANDLS) study. Public Health Nutr. 2011, 14, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Tao, Y.; Tao, Y.; Yang, S.; Yu, Y.; Li, B.; Jin, L. Optimal cut-off of obesity indices to predict cardiovascular disease risk factors and metabolic syndrome among adults in Northeast China. BMC Public Health 2016, 16, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, Y.; Sun, X.; Yin, Z.; Li, H.; Deng, K.; Chen, X.; Cheng, C.; Luo, X.; Zhang, M.; et al. Identification of an obesity index for predicting metabolic syndrome by gender: the rural Chinese cohort study. BMC Endocr. Disord. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.H.; Hwang, S.Y. Influence of Occupational Type and Lifestyle Risk Factors on Prevalence of Metabolic Syndrome among Male Workers: A Retrospective Cohort Study. Korean J. Adult Nurs. 2016, 28, 180–190. [Google Scholar] [CrossRef]
- Adeseye, A.; Oloyede, T.W. Metabolic syndrome and occupation: Any association? Prevalence among auto technicians and school teachers in South West Nigeria. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S223–S227. [Google Scholar] [CrossRef]
- Bulka, C.M.; Daviglus, M.L.; Persky, V.W.; Durazo-Arvizu, R.A.; Avilés-Santa, M.L.; Gallo, L.C.; Hosgood, H.D.; Singer, R.H.; Talavera, G.A.; Thyagarajan, B.; et al. Occupational exposures and metabolic syndrome among hispanics/latinos. J. Occup. Environ. Med. 2017, 59, 1047–1055. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Yun, J.-M. Analysis of the association between health-related and work-related factors among workers and metabolic syndrome using data from the Korean National Health and Nutrition Examination Survey (2016). Nutr. Res. Pract. 2019, 13, 444–451. [Google Scholar] [CrossRef]
- Davila, E.P.; Florez, H.; Fleming, L.E.; Lee, D.J.; Goodman, E.; Leblanc, W.G.; Caban-Martinez, A.J.; Arheart, K.L.; McCollister, K.E.; Christ, S.L.; et al. Prevalence of the metabolic syndrome among US workers. Diabetes Care 2010, 33, 2390–2395. [Google Scholar] [CrossRef] [Green Version]
- Berry, J.D.; Lloyd-Jones, D.M.; Garside, D.B.; Greenland, P. Framingham risk score and prediction of coronary heart disease death in young men. Am. Heart J. 2007, 154, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Hemann, B.A.; Bimson, W.F.; Taylor, A.J. The Framingham Risk Score: An Appraisal of Its Benefits and Limitations. Am. Heart Hosp. J. 2007, 5, 91–96. [Google Scholar] [CrossRef]
- Khanna, R.; Kapoor, A.; Kumar, S.; Tewari, S.; Garg, N.; Goel, P.K. Metabolic syndrome & Framingham Risk Score: Observations from a coronary angiographic study in Indian patients. Indian J. Med Res. 2013, 137, 295–301. [Google Scholar] [PubMed]
- Kang, G.-D.; Guo, L.; Guo, Z.; Hu, X.-S.; Wu, M.; Yang, H.-T. Continuous metabolic syndrome risk score for predicting cardiovascular disease in the Chinese population. Asia Pac. J. Clin. Nutr. 2012, 21, 88–96. [Google Scholar] [PubMed]
- Lin, C.-M. An application of metabolic syndrome severity scores in the lifestyle risk assessment of taiwanese adults. Int. J. Environ. Res. Public Health 2020, 17, 3348. [Google Scholar] [CrossRef] [PubMed]
Demography | n | MS (%) | Waist Circumference (cm) | Fasting Plasma Glucose (mg/dL) | Triglycerides(mg/dL) | High-Density Lipoprotein (mg/dL) | Systolic Blood Pressure (mmHg) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Mean | Sd | Mean | Mean | Sd | Mean | Sd | Mean | |||
Men | 4327 | 25.8 | 84.45 | 10.43 | 98.49 | 22.21 | 142.07 | 138.37 | 49.89 | 11.59 | 130.08 | 14.57 |
20–34 years | 1355 | 16.2 | 82.5 | 11.32 | 93.11 | 12.57 | 117.91 | 84.53 | 50.69 | 11.04 | 127.87 | 12.84 |
35–49 years | 2145 | 30.3 | 85.79 | 10.32 | 99.66 | 23.67 | 155.37 | 156.71 | 49.03 | 11.74 | 130.67 | 14.69 |
50–64 years | 827 | 29.9 | 84.2 | 8.45 | 104.28 | 28.03 | 147.19 | 152.74 | 50.81 | 11.91 | 132.17 | 16.35 |
Women | 2126 | 14.3 | 75.38 | 10.24 | 94.91 | 17.05 | 91.06 | 52.03 | 60.7 | 13.57 | 124.28 | 16.34 |
20–34 years | 497 | 9.9 | 73.3 | 11.49 | 90.71 | 18.48 | 81.01 | 53.62 | 60.62 | 14.36 | 119.94 | 13.31 |
35–49 years | 1096 | 14.3 | 76.16 | 10.33 | 95.05 | 15.96 | 90.32 | 50.54 | 59.87 | 13.31 | 123.36 | 16.02 |
50–64 years | 533 | 18.6 | 75.71 | 8.4 | 98.54 | 16.94 | 101.96 | 51.46 | 62.49 | 13.17 | 130.21 | 17.83 |
MS Components | Men | Women | ||||
---|---|---|---|---|---|---|
20–34 Years | 35–49 Years | 20–34 Years | 35–49 Years | 20–34 Years | 35–49 Years | |
Waist circumference | 0.82 | 0.75 | 0.75 | 0.78 | 0.71 | 0.62 |
Fasting plasma glucose | 0.25 | 0.26 | 0.24 | 0.31 | 0.34 | 0.42 |
Ln-Triglycerides | 0.41 | 0.48 | 0.51 | 0.50 | 0.52 | 0.41 |
High-density lipoprotein | 0.34 | 0.45 | 0.48 | 0.36 | 0.45 | 0.40 |
Systolic blood pressure | 0.48 | 0.34 | 0.30 | 0.51 | 0.46 | 0.49 |
MS | MS Severity Score | Total | ||
---|---|---|---|---|
n | % | Mean (Sd) | ||
Sex | ||||
Male | 1116 | 25.8 | –0.004 (1.000) | 4327 |
Female | 305 | 14.4 | –0.005 (1.000) | 2126 |
Age (years) | ||||
20–34 | 268 | 14.5 | –0.012 (1.000) | 1852 |
35–54 | 1008 | 25.2 | –0.001 (0.994) | 4002 |
55–64 | 145 | 24.2 | –0.006 (1.039) | 599 |
Occupational field | ||||
Electronics | 525 | 24. 8 | 0.164 (1.001) | 2118 |
Food | 110 | 24.6 | 0.019 (1.123) | 448 |
Traditional industries | 535 | 22.5 | –0.057 (0.961) | 2377 |
Logistics | 251 | 16.6 | –0.165 (0.984) | 1510 |
Job title | ||||
Technician | 1122 | 22.9 | 0.012 (0.994) | 4902 |
Administrator | 241 | 17.5 | –0.083 (1.027) | 1377 |
Manager | 58 | 33.3 | 0.150 (0.914) | 174 |
Job tenure (years) | ||||
<5 | 288 | 15.4 | –0.075 (0.934) | 1872 |
5–10 | 259 | 22.2 | 0.082 (1.128) | 1169 |
11–20 | 409 | 27.0 | 0.043 (1.022) | 1516 |
>20 | 463 | 24.5 | –0.026 (0.955) | 1890 |
Missing | 2 | 33.3 | –0.006 (0.581) | 6 |
Smoke | ||||
No | 946 | 19.8 | -0.026 (0.985) | 4789 |
Yes | 475 | 28.5 | 0.058 (1.038) | 1664 |
Drink | ||||
No | 806 | 21.0 | 0.009 (1.000) | 3840 |
Yes | 615 | 23.5 | –0.024 (0.999) | 2613 |
Betel chewing | ||||
No | 1253 | 21.0 | –0.017 (0.995) | 5967 |
Yes | 168 | 34.6 | 0.149 (1.046) | 486 |
Sleep(h/day) | ||||
≤6 | 462 | 25.0 | 0.050 (1.023) | 1850 |
7 | 694 | 21.9 | –0.016 (1.007) | 3175 |
≥8 | 264 | 18.6 | –0.049 (0.950) | 1421 |
Missing | 1 | 14.3 | –0.033 (0.224) | 7 |
Logistic Regression | Linear Regression | |||
---|---|---|---|---|
AOR | 95%CI | β | 95%CI | |
Occupational field (vs. Logistics) | ||||
Electronics | 1.722 | 1.428–2.077 | 0.328 | 0.256–0.399 |
Food | 1.835 | 1.405–2.396 | 0.190 | 0.083–0.297 |
Traditional industry | 1.323 | 1.106–1.581 | 0.109 | 0.041–0.177 |
Job title (vs. Administrator) | ||||
Technician | 0.982 | 0.826–1.168 | –0.010 | –0.077–0.057 |
Manager | 1.341 | 0.933–1.926 | 0.135 | 0.025–0.296 |
Job tenure (vs. <5 years) | ||||
5–10 years | 1.320 | 1.081–1.612 | 0.138 | 0.063–0.214 |
11–20 years | 1.410 | 1.143–1.739 | 0.102 | 0.018–0.185 |
>0 years | 1.307 | 1.056–1.618 | 0.094 | 0.010–0.178 |
Smoke (vs. No) | ||||
Yes | 1.232 | 1.058–1.434 | 0.058 | –0.006–0.122 |
Drink (vs. No) | ||||
Yes | 0.862 | 0.755–0.985 | –0.067 | –0.12– –0.013 |
Betel chewing (vs. No) | ||||
Yes | 1.533 | 1.224–1.919 | 0.167 | 0.066–0.269 |
Sleep (vs. ≥8 h/day) | ||||
≤6 h/day | 1.345 | 1.127–1.605 | 0.071 | 0.001–0.140 |
7 h/day | 1.198 | 1.017–1.411 | 0.027 | –0.036–0.089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Lin, C.-M. Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. Int. J. Environ. Res. Public Health 2020, 17, 7539. https://doi.org/10.3390/ijerph17207539
Lin C-Y, Lin C-M. Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. International Journal of Environmental Research and Public Health. 2020; 17(20):7539. https://doi.org/10.3390/ijerph17207539
Chicago/Turabian StyleLin, Ching-Yuan, and Chih-Ming Lin. 2020. "Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index" International Journal of Environmental Research and Public Health 17, no. 20: 7539. https://doi.org/10.3390/ijerph17207539
APA StyleLin, C. -Y., & Lin, C. -M. (2020). Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. International Journal of Environmental Research and Public Health, 17(20), 7539. https://doi.org/10.3390/ijerph17207539