Examining the Impact of Two Dimensions of Precarious Employment, Vulnerability and Insecurity on the Self-Reported Health of Men, Women and Migrants in Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures of Employment Precariousness
2.2. Indicators of Health
2.3. Analysis
3. Results
4. Discussion
5. Strengths/Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benach, J.; Vives, A.; Tarafa, G.; Delclos, C.; Muntaner, C. What should we know about precarious employment and health in 2025? Framing the agenda for the next decade of research. Int. J. Epidemiol. 2016, 45, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pérez, C.; Prieto-Alaiz, M.; Simón, H. A New Multidimensional Approach to Measuring Precarious Employment. Soc. Indic. Res. 2017, 134, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Kiersztyn, A. Non-standard employment and subjective insecurity: How can we capture job precarity using survey data? Res. Sociol. Work 2017, 31, 91–122. [Google Scholar]
- Vives, A.; Amable, M.; Ferrer, M.; Moncada, S.; Llorens, C.; Muntaner, C.; Benavides, F.G.; Benach, J. The Employment Precariousness Scale (EPRES): Psychometric properties of a new tool for epidemiological studies among waged and salaried workers. Occup. Environ. Med. 2010, 67, 548–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A. Nice Work If You Can Get It. Life and Labour in Precarious Times; New York University Press: New York, NY, USA, 2009; p. 263. [Google Scholar]
- Keuskamp, D.; Ziersch, A.M.; Baum, F.E.; LaMontagne, A.D. Precarious employment, psychosocial working conditions, and health: Cross-sectional associations in a population-based sample of working Australians. Am. J. Ind. Med. 2013, 56, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Moyce, S.C.; Schenker, M. Migrant Workers and Their Occupational Health and Safety. Ann. Rev. Public Health 2018, 39, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.; Rahkonen, O.; Martikainen, P.; Lahelma, E. Associations of psychosocial working conditions with self-rated general health and mental health among municipal employees. Int. Arch. Occup. Environ. Health 2006, 79, 205–212. [Google Scholar] [CrossRef]
- Koranyi, I.; Jonsson, J.; Ronnblad, T.; Stockfelt, L.; Bodin, T. Precarious employment and occupational accidents and injuries—A systematic review. Scand. J. Work Environ. Health 2018, 44, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Campos-Serna, J.; Ronda-Pérez, E.; Artazcoz, L.; Moen, B.E.; Benavides, F.G. Gender inequalities in occupational health related to the unequal distribution of working and employment conditions: A systematic review. Int. J. Equity Health 2013, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Ronda Perez, E.; Benavides, F.G.; Levecque, K.; Love, J.G.; Felt, E.; Van Rossem, R. Differences in working conditions and employment arrangements among migrant and non-migrant workers in Europe. Ethn. Health 2012, 17, 563–577. [Google Scholar] [CrossRef]
- Yanar, B.; Kosny, A.; Smith, P.M. Occupational Health and Safety Vulnerability of Recent Immigrants and Refugees. Int. J. Environ. Res. Public Health 2018, 15, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweileh, W.M.; Wickramage, K.; Pottie, K.; Hui, C.; Roberts, B.; Sawalha, A.F.; Zyoud, S.H. Bibliometric analysis of global migration health research in peer-reviewed literature (2000–2016). BMC Public Health 2018, 18, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthias, F. Transnational mobilities, migration research and intersectionality. Nordic J. Migr. Res. 2012, 2, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Benach, J.; Vives, A.; Amable, M.; Vanroelen, C.; Tarafa, G.; Muntaner, C. Precarious employment: Understanding an emerging social determinant of health. Ann. Rev. Public Health 2014, 35, 229–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ILO Labour Migration Branch and ILO Department of Statistics. ILO Global Estimates on International Migrant Workers, Results and Methodology; International Labour Organisation: Geneva, Switzerland, 2017; p. 78. [Google Scholar]
- Teicher, J.; Shah, C.; Griffin, G. Australian immigration: The triumph of economics over prejudice? Int. J. Manpow. 2002, 23, 209–236. [Google Scholar] [CrossRef]
- Hugo, G. Migration policies in Australia and their impact on development in countries or origin. In International Migration and the Millennium Development Goals; United Nations Population Fund: New York, NY, USA, 2005; pp. 198–215. [Google Scholar]
- Australian Bureau of Statistics. Census of Population and Housing; Australian Bureau of Statistics: Canberra, Australia, 2017.
- Australian Bureau of Statistics. 3412.0—Migration, Australia, 2018–2019. Available online: https://www.abs.gov.au/ausstats/[email protected]/lookup/3412.0Media%20Release12018-19 (accessed on 15 September 2020).
- Australian Bureau of Statistics. Australian Social Trends. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/4102.0Main+Features30April+20 (accessed on 20 August 2019).
- Daly, A.; Carey, R.N.; Darcey, E.; Chih, H.; LaMontagne, A.D.; Milner, A.; Reid, A. Using Three Cross-Sectional Surveys to Compare Workplace Psychosocial Stressors and Associated Mental Health Status in Six Migrant Groups Working in Australia Compared with Australian-Born Workers. Int. J. Environ. Res. Public Health 2019, 16, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Bureau of Statistics. Australian and New Zealand Standard Classification of Occupations; Australian Bureau of Statistics: Canberra, Australia, 2016.
- Vives, A.; Vanroelen, C.; Amable, M.; Ferrer, M.; Moncada, S.; Llorens, C.; Muntaner, C.; Benavides, F.G.; Benach, J. Employment precariousness in Spain: Prevalence, social distribution, and population-attributable risk percent of poor mental health. Int. J. Health Serv. Plan. Admin. Eval. 2011, 41, 625–646. [Google Scholar] [CrossRef]
- Leach, L.; Butterworth, P.; Rodgers, B.; Strazdins, L. Deriving an evidence-based measure of job quality from the HILDA survey. Aust. Soc. Policy 2010, 9, 67–86. [Google Scholar]
- Butterworth, P.; Leach, L.S.; Rodgers, B.; Broom, D.H.; Olesen, S.C.; Strazdins, L. Psychosocial job adversity and health in Australia: Analysis of data from the HILDA Survey. Aust. N. Z. J. Public Health 2011, 35. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Stewart, A.; Hays, R.; Ware, J. The MOS Short-Form General Health Survey. Reliability and Validity in a Patient Population. Med. Care 1988, 26, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Green, J.G.; Gruber, M.J.; Sampson, N.A.; Bromet, E.; Cuitan, M.; Furukawa, T.A.; Gureje, O.; Hinkov, H.; Hu, C.Y.; et al. Screening for serious mental illness in the general population with the K6 screening scale: Results from the WHO World Mental Health (WMH) survey initiative. Int. J. Methods Psychiatr. Res. 2010, 19 (Suppl. 1), 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Bureau of Statistics. Information Paper: Use of the Kessler Psychological Distress Scale in ABS Health Surveys, Australia, 2007–2008. Available online: http://www.abs.gov.au/ausstats/[email protected]/Lookup/4817.0.55.001Chapter92007-08 (accessed on 25 June 2018).
- Kolnekov, S. Calibrating survey data using iterative proportional fitting (raking). Stata J. 2014, 14, 22–59. [Google Scholar] [CrossRef] [Green Version]
- Little, R.J.A. A Test of Missing Completely at Random for Multivariate Data with Missing Values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001. [Google Scholar]
- Williams, R. Using the margins command to estimate and interpret adjusted predictions and marginal effects. Stata J. 2012, 12, 308–331. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. Second Thoughts on the Bootstrap. Stat. Sci. 2003, 18, 135–140. [Google Scholar] [CrossRef]
- Cassells, R.; Duncan, A.; Mavisakalyan, A.; Phillimore, J.; Seymour, R.; Tarverdi, Y. Future of Work in Australia: Preparing for Tomorrow’s World; Bankwest Curtin Economics Centre: Bentley, Australia, 2018. [Google Scholar]
- Reid, A.; Peters, S.; Felipe, N.; Lenguerrand, E.; Harding, S. The impact of migration on deaths and hospital admissions from work-related injuries in Australia. Aust. N. Z. J. Public Health 2016, 40, 49–54. [Google Scholar] [CrossRef]
- Cheng, G.H.-L.; Chan, D.K.-S. Who Suffers More from Job Insecurity? A Meta-Analytic Review. Appl. Psychol. 2008, 57, 272–303. [Google Scholar] [CrossRef]
- Ronnblad, T.; Gronholm, E.; Jonsson, J.; Koranyi, I.; Orellana, C.; Kreshpaj, B.; Chen, L.; Stockfelt, L.; Bodin, T. Precarious employment and mental health: A systematic review and meta-analysis of longitudinal studies. Scand. J. Work Environ. Health 2019, 45, 429–443. [Google Scholar] [CrossRef]
- Hewison, K.; Kalleberg, A.L. Precarious Work and Flexibilization in South and Southeast Asia. Am. Behav. Sci. 2012, 57, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Mark, G.M.; Smith, A.P. Stress Models: A Review and Suggested New Direction. In Occupational Health Psychology: European Perspectives on Research, Education and Practice; Houdmont, J., Leka, S., Eds.; Nottingham University Press: Nottingham, UK, 2008; pp. 111–144. [Google Scholar]
- Capasso, R.; Zurlo, M.C.; Smith, A.P. Ethnicity, work-related stress and subjective reports of health by migrant workers: A multi-dimensional model. Ethn. Health 2018, 23, 174–193. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.; Lenguerrand, E.; Santos, I.; Read, U.; LaMontagne, A.D.; Fritschi, L.; Harding, S. Taking risks and survival jobs: Foreign-born workers and work-related injuries in Australia. Saf. Sci. 2014, 70, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Keys, H.M.; Kaiser, B.N.; Foster, J.W.; Burgos Minaya, R.Y.; Kohrt, B.A. Perceived discrimination, humiliation, and mental health: A mixed-methods study among Haitian migrants in the Dominican Republic. Ethn. Health 2015, 20, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Enticott, J.C.; Shawyer, F.; Vasi, S.; Buck, K.; Cheng, I.H.; Russell, G.; Kakuma, R.; Minas, H.; Meadows, G. A systematic review of studies with a representative sample of refugees and asylum seekers living in the community for participation in mental health research. BMC Med. Res. Methodol. 2017, 17, 37. [Google Scholar] [CrossRef] [Green Version]
Participant Characteristics | Females (n = 1374) | Weighted % (95% CI) | Males (n = 1307) | Weighted % (95% CI) |
---|---|---|---|---|
Country of birth | ||||
Australia | 606 | 42.6 (39, 46.2) | 445 | 35.8 (32.2, 39.6) |
New Zealand | 328 | 23.5 (20.7, 26.5) | 238 | 16.9 (14.6, 19.5) |
India | 231 | 13.8 (11.6, 16.4) | 402 | 27 (23.8, 30.4) |
Philippines | 209 | 20.2 (17.5, 23.2) | 222 | 20.3 (17.6, 23.2) |
Age group b | ||||
18–45 years | 539 | 64.6 (61.6, 67.5) | 601 | 68.6 (65.6, 71.5) |
46–65 years | 830 | 35.4 (32.5, 38.4) | 701 | 31.4 (28.5, 34.4) |
Missing | 5 | 5 | ||
Highest level of education b | ||||
School only | 265 | 30.4 (26.8, 34.2) | 201 | 29.7 (25.8, 33.8) |
Trade/Diploma/Certificate | 415 | 23.1 (20.5, 25.9) | 436 | 25.9 (23.1, 28.9) |
Tertiary | 701 | 46.5 (43, 50.1) | 669 | 44.4 (40.9, 48) |
Missing | 2 | 1 | ||
Area of residence | ||||
Major metropolitan | 999 | 74.8 (71.6, 77.6) | 974 | 78.2 (74.9, 81.1) |
Rest of state | 384 | 25.2 (22.4, 28.4) | 335 | 21.8 (18.9, 25.1) |
Employment status | ||||
Self-employed | 153 | 9.8 (8, 11.9) | 256 | 18.1 (15.3, 21.3) |
Work for others part time | 577 | 45.3 (41.7, 48.9) | 174 | 18.1 (15.2, 21.6) |
Work for others full time | 644 | 45 (41.5, 48.6) | 876 | 63.4 (59.6, 67.1) |
Missing | 0 | 0 | 1 | 0.3 (0, 2.2) |
Employment type | ||||
Casual | 246 | 22.4 (19.4, 25.8) | 143 | 15.2 (12.5, 18.3) |
Fixed-Term Contract | 158 | 11.4 (9.4, 13.8) | 133 | 10 (7.8, 12.7) |
Permanent | 970 | 66.1 (62.6, 69.5) | 1031 | 74.8 (71.3, 78.1) |
Number working in company | ||||
Up to 19 workers | 343 | 23.9 (21, 27) | 430 | 34.9 (31.4, 38.7) |
20–199 workers | 340 | 25.7 (22.7, 29) | 288 | 23.5 (20.4, 26.8) |
200 & over workers | 680 | 49.4 (45.8, 53) | 574 | 40.5 (37, 44.1) |
Missing | 11 | 1 (0.5, 1.9) | 15 | 1.1 (0.6, 2.1) |
Occupation | ||||
Managers/Professionals | 465 | 28.1 (25.2, 31.1) | 466 | 29.7 (26.7, 33) |
Technician/community services/clerical/sales | 645 | 50 (46.5, 53.6) | 505 | 38.9 (35.3, 42.5) |
Machinery operators/Labourer | 112 | 11.4 (9.1, 14.1) | 217 | 21.2 (18, 24.9) |
Missing | 152 | 10.5 (8.4, 13) | 119 | 10.2 (8, 12.9) |
Mean hours worked weekly | ||||
Australia | 606 | 30.2 (28.6, 31.7) | 444 | 39.4 (37.1, 41.6) |
New Zealand | 328 | 33.6 (31.7, 35.6) | 238 | 43.1 (40.6, 45.6) |
India | 230 | 30.6 (28.6, 32.7) | 400 | 37.6 (35.5, 39.7) |
Philippines | 208 | 30.5 (28.6, 32.3) | 220 | 38.5 (36.6, 40.5) |
Mean years in Australia * | ||||
New Zealand | 328 | 19.5 (18.1, 20.9) | 236 | 19.4 (17.9, 21) |
India | 229 | 13.1 (11.7, 14.5) | 398 | 12.2 (11.2, 13.1) |
Philippines | 209 | 14.6 (13.1, 16) | 220 | 15.3 (13.3, 17.3) |
xxx | Vulnerability | Job Insecurity | ||||
---|---|---|---|---|---|---|
None | Low/Moderate | High | Low Insecurity | Moderate Insecurity | High Insecurity | |
% (95% CI) | % (95% CI) | % (95% CI) | % (95% CI) | % (95% CI) | % (95% CI) | |
Women | 56.7 (53.1, 60.2) | 27.2 (24.2, 30.6) | 16.1 (13.5, 19.0) | 54.3 (50.6, 58.0) | 27.0 (23.9, 30.3) | 18.7 (15.9, 21.9) |
Country of birth | ||||||
Australia | 56.7 (50.9, 62.4) | 26.7 (21.8, 32.4) | 16.5 (12.5, 21.5) | 53.0 (46.9, 58.9) | 28.4 (23.4, 34.1) | 18.6 (14.0, 24.3) |
New Zealand | 63.0 (56.1, 69.4) | 25.2 (19.4, 32.0) | 11.8 (8.5, 16.3] | 56.8 (49.7, 63.7) | 24.4 (19.1, 30.6) | 18.8 (13.5, 25.4) |
India | 52.0 (42.7, 61.1) | 30.0 (22.5, 38.9) | 18.0 (10.9, 28.3) | 48.8 (39.1, 58.5) | 30.2 (22.4, 39.2) | 21.1 (14.5, 29.6) |
Philippines | 51.3 (43.4, 59.2) | 29.7 (23.3, 37.0) | 19.0 (13.3, 26.4) | 57.6 (49.5, 65.4) | 24.7 (18.8, 31.9) | 17.6 (12.3, 24.6) |
Mean years in Australia # | 17.0 (15.8, 18.2) | 14.0 (12.5, 15.4) | 17.4 (15.3, 19.5) | 16.6 (15.4, 17.8) | 16.3 (14.5, 18.1) | 14.2 (12.4, 15.9) |
Men | 66.5 (63.0, 69.8) | 22.3 (19.5, 25.5) | 11.2 (9.2, 13.6] | 46.8 (43.0, 50.6) | 35.2 (31.6, 39.0) | 18.0 (15.4, 21.0) |
Country of birth | ||||||
Australia | 71.0 (64.4, 76.9) | 18.3 (13.4, 24.4) | 10.7 (7.2, 15.7) | 50.1 (43.0, 57.2) | 37.5 (30.7, 44.8) | 12.4 (9.0, 16.9) |
New Zealand | 65.5 (57.9, 72.4) | 24.2 (18.2, 31.3) | 10.3 (6.5, 16.1) | 51.1 (43.1, 59.1) | 34.3 (27.2, 42.3) | 14.5 (10.1, 20.5) |
India | 67.2 (60.8, 72.9) | 20.1 (15.5, 25.6) | 12.8 (9.4, 17.2) | 41.6 (34.9, 48.6) | 34.3 (28.1, 41.1) | 24.1 (18.4, 31.0) |
Philippines | 58.2 (50.6, 65.4) | 31.1 (24.6, 38.4) | 10.7 (7.1, 16.0) | 44.5 (36.7, 52.5) | 33.6 (26.5, 41.5) | 22.0 (16.1, 29.2) |
Mean years in Australia # | 15.9 (14.8, 17.0) | 13.2 (11.8, 14.6) | 14.6 (11.8, 17.4) | 15.4 (14.2, 16.6) | 14.8 (13.2, 16.5) | 14.5 (12.5, 16.5) |
Characteristics | SF1 (Fair to Poor Health) | SF9 (Health Worse or Much Worse Than Last Year) | K6 (High to Very High Psychological Distress | |||
---|---|---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | aOR (95% CI) | p | |
No vulnerability | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
Low–moderate vulnerability | 1.49 (1.11, 1.99) | 0.006 | 1.39 (1.05, 1.86) | 0.022 | 1.65 (0.75, 3.65) | 0.228 |
High Vulnerability | 1.81 (1.32, 2.49) | <0.0001 | 2.15 (1.59, 2.8) | <0.0001 | 6.24 (3.46, 12.23) | <0.0001 |
Low job insecurity | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
Moderate job insecurity | 1.54 (1.17, 2.18) | 0.005 | 1.65 (1.28, 2.25) | <0.0001 | 3.46 (1.75, 7.63) | 0.001 |
High job insecurity | 2.91 (2.09, 4.07) | <0.0001 | 2.96 (2.085, 4.04) | <0.0001 | 3.11 (1.54, 6.74) | 0.004 |
Female | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
Male | 0.76 (0.59, 0.98) | 0.037 | 0.86 (0.67, 1.09) | 0.210 | 0.72 (0.4, 1.13) | 0.218 |
Born in Australia | 1 (Reference | 1 (Reference) | 1 (Reference) | |||
Born in New Zealand | 1.19 (0.84, 1.61) | 0.273 | 1.14 (0.8, 1.53) | 0.408 | 0.8 (0.39, 1.77) | 0.579 |
Born in India | 0.74 (0.51, 1.04) | 0.099 | 0.98 (0.72, 1.3) | 0.889 | 0.95 (0.47, 1.63) | 0.871 |
Born in the Philippines | 0.79 (0.53, 1.147) | 0.219 | 0.83 (0.58, 1.22) | 0.346 | 0.46 (0.14, 1.13) | 0.162 |
Characteristics | Adjusted a Mean Health-Indicator Score b | ||
No Vulnerability Mean (95% CI) | Low–Moderate Vulnerability (95% CI) | High Vulnerability (95% CI) | |
Male | 13.5 (13.2, 13.7) | 14.6 (14.4, 14.9) | 16.8 (16.3, 17.3) |
Female | 13.8 (13.5, 14.0) | 14.9 (14.7, 15.2) | 17.2 (16.7, 17.7) |
Born in Australia | 14.2 (13.9, 14.5) | 15.5 (15.2, 15.8) | 17.9 (17.3, 18.4) |
Born in New Zealand | 13.5 (13.2, 13.8) | 14.71 (14.4, 15.1) | 16.9 (16.3, 17.5) |
Born in India | 13.1 (12.8, 13.4) | 14.4 (14.0, 14.7) | 16.5 (15.9, 17.1) |
Born in the Philippines | 12.9 (12.6, 13.3) | 14.1 (13.7, 14.5) | 16.3 (15.7, 16.9) |
Low Job Insecurity (95%CI) | Moderate Job Insecurity (95%CI) | High Job Insecurity (95% CI) | |
Male | 13.4 (13.1, 13.6) | 14.5 (14.3, 14.8) | 16.1 (15.7, 16.5) |
Female | 13.7 (13.4, 13.9) | 14.9 (14.6, 15.1) | 16.5 (16.0, 16.9) |
Born in Australia | 14.1 (13.9, 14.4) | 15.4 (15.1, 15.7) | 17.1 (16.6, 17.5) |
Born in New Zealand | 13.4 (13.1, 13.7) | 14.6 (14.2, 14.9) | 16.2 (15.7, 16.7) |
Born in India | 13.0 (12.7, 13.4) | 14.2 (13.9, 14.5) | 15.8 (15.3, 16.2) |
Born in the Philippines | 12.8 (12.5, 13.2) | 13.9 (13.6, 14.4) | 15.5 (15.0, 16.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, A.; Schenker, M.B.; Ronda-Perez, E.; Reid, A. Examining the Impact of Two Dimensions of Precarious Employment, Vulnerability and Insecurity on the Self-Reported Health of Men, Women and Migrants in Australia. Int. J. Environ. Res. Public Health 2020, 17, 7540. https://doi.org/10.3390/ijerph17207540
Daly A, Schenker MB, Ronda-Perez E, Reid A. Examining the Impact of Two Dimensions of Precarious Employment, Vulnerability and Insecurity on the Self-Reported Health of Men, Women and Migrants in Australia. International Journal of Environmental Research and Public Health. 2020; 17(20):7540. https://doi.org/10.3390/ijerph17207540
Chicago/Turabian StyleDaly, Alison, Marc B. Schenker, Elena Ronda-Perez, and Alison Reid. 2020. "Examining the Impact of Two Dimensions of Precarious Employment, Vulnerability and Insecurity on the Self-Reported Health of Men, Women and Migrants in Australia" International Journal of Environmental Research and Public Health 17, no. 20: 7540. https://doi.org/10.3390/ijerph17207540
APA StyleDaly, A., Schenker, M. B., Ronda-Perez, E., & Reid, A. (2020). Examining the Impact of Two Dimensions of Precarious Employment, Vulnerability and Insecurity on the Self-Reported Health of Men, Women and Migrants in Australia. International Journal of Environmental Research and Public Health, 17(20), 7540. https://doi.org/10.3390/ijerph17207540