Impact of the “Sling Shot” Supportive Device on Upper-Body Neuromuscular Activity during the Bench Press Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedure
2.3. Familiarization Session and One-Repetition Maximum Test
2.4. Experimental Session
2.5. Electromyography
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gołaś, A.; Maszczyk, A.; Petr, M.; Statsny, P.; Wilk, M.; Wróbel, G. Changes in Bar Velocity and Muscular Activity during the Bench Press in Relation to the Load Lifted. CEJSSM 2015, 11, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Stastny, P.; Gołaś, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zając, A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [Green Version]
- Gepfert, M.; Krzysztofik, M.; Filip, A.; Mostowik, A.; Lulinska, A.; Wojdala, G.; Drozd, M.; Wilk, M. Effect of grip width on exercise volume in bench press with a controlled movement tempo in women. BJHPA 2019, 11, 11–18. [Google Scholar] [CrossRef]
- Lagally, K.M.; McCaw, S.T.; Young, G.T.; Medema, H.C.; Thomas, D.Q. Ratings of Perceived Exertion and Muscle Activity during the Bench Press Exercise in Recreational and Novice Lifters. J. Strength Cond. Res. 2004, 18, 359–364. [Google Scholar] [CrossRef]
- Lehman, G.J. The Influence of Grip Width and Forearm Pronation/Supination on Upper-Body Myoelectric Activity during the Flat Bench Press. J. Strength Cond. Res. 2005, 19, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Requena, B.; Zabala, M.; Ribas, J.; Ereline, J.; Pääsuke, M.; González-Badillo, J.J. Effect of Post-Tetanic Potentiation of Pectoralis and Triceps Brachii Muscles on Bench Press Performance. J. Strength Cond. Res. 2005, 19, 622–627. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Golas, A.; Wilk, M.; Stastny, P.; Lockie, R.G.; Zajac, A. A Comparison of Muscle Activity between the Cambered and Standard Bar during the Bench Press Exercise. Front. Physiol. 2020, 11, 875. [Google Scholar] [CrossRef]
- Coratella, G.; Tornatore, G.; Longo, S.; Esposito, F.; Cè, E. Specific prime movers’ excitation during free-weight bench press variations and chest press machine in competitive bodybuilders. Eur. J. Sport Sci. 2020, 20, 571–579. [Google Scholar] [CrossRef]
- Król, H.; Gołaś, A. Effect of Barbell Weight on the Structure of the Flat Bench Press. J. Strength Cond. Res. 2017, 31, 1321–1337. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.; McNAIR, P.; Marshall, R. The effects of bungy weight training on muscle function and functional performance. J. Sports Sci. 2003, 21, 59–71. [Google Scholar] [CrossRef]
- Santana, J.C.; Vera-Garcia, F.J.; McGill, S.M. A Kinetic and Electromyographic Comparison of the Standing Cable Press and Bench Press. J. Strength Cond. Res. 2007, 21, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Tufano, J.J.; Zajac, A. The Influence of Movement Tempo on Acute Neuromuscular, Hormonal, and Mechanical Responses to Resistance Exercise—A Mini Review. J. Strength Cond. Res. 2020, 34, 2369–2383. [Google Scholar] [CrossRef]
- Farina, D.; Merletti, R.; Enoka, R.M. The extraction of neural strategies from the surface EMG. J. Appl. Physiol. 2004, 96, 1486–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeterbakken, A.H.; Mo, D.-A.; Scott, S.; Andersen, V. The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance. J. Hum. Kinet. 2017, 57, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Gepfert, M.; Krzysztofik, M.; Golas, A.; Mostowik, A.; Maszczyk, A.; Zajac, A. The Influence of Grip Width on Training Volume during the Bench Press with Different Movement Tempos. J. Hum. Kinet. 2019, 68, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Swinton, P.A.; Lloyd, R.; Agouris, I.; Stewart, A. Contemporary Training Practices in Elite British Powerlifters: Survey Results from an International Competition. J. Strength Cond. Res. 2009, 23, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Godawa, T.M.; Credeur, D.P.; Welsch, M.A. Influence of Compressive Gear on Powerlifting Performance: Role of Blood Flow Restriction Training. J. Strength Cond. Res. 2012, 26, 1274–1280. [Google Scholar] [CrossRef]
- Silver, T.; Fortenbaugh, D.; Williams, R. Effects of the Bench Shirt on Sagittal Bar Path. J. Strength Cond. Res. 2009, 23, 1125–1128. [Google Scholar] [CrossRef] [Green Version]
- Ferland, P.-M.; Comtois, A.S. Classic Powerlifting Performance: A Systematic Review. J. Strength Cond. Res. 2019, 33, S194–S201. [Google Scholar] [CrossRef]
- Dugdale, J.H.; Hunter, A.M.; Di Virgilio, T.G.; Macgregor, L.J.; Hamilton, D.L. Influence of the “Slingshot” Bench Press Training Aid on Bench Press Kinematics and Neuromuscular Activity in Competitive Powerlifters. J. Strength Cond. Res. 2019, 33, 327–336. [Google Scholar] [CrossRef]
- Niblock, J.; Steele, J. The ‘Slingshot’ can enhance volume-loads during performance of bench press using unaided maximal loads. J. Trainol. 2017, 6, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P.K.; Ebert, J.R.; Littlewood, C.; Ackland, T.; Wang, A. A Systematic Review of Electromyography Studies in Normal Shoulders to Inform Postoperative Rehabilitation Following Rotator Cuff Repair. J. Orthop. Sports Phys. Ther. 2017, 47, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Beck, T.; Stock, M.; Fahs, C.; Daeyeol, K.; Leonneke, J.; Thiebaud, R.; DeFreitas, J.; Rossow, L. Acute effects of wearing an elastic, supportive device on bench press performance in young, resistance-trained males. Gazz. Med. Ital. 2014, 173, 91–101. [Google Scholar]
- Schick, E.E.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. A Comparison of Muscle Activation between a Smith Machine and Free Weight Bench Press. J. Strength Cond. Res. 2010, 24, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Van den Tillaar, R.; Saeterbakken, A. Effect of Fatigue upon Performance and Electromyographic Activity in 6-RM Bench Press. J. Hum. Kinet. 2014, 40, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatsiorsky, V.; Kraemer, W. Science and Practice of Strength Training, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Padulo, J.; Laffaye, G.; Chaouachi, A.; Chamari, K. Bench press exercise: The key points. J. Sports Med. Phys. Fitness 2015, 55, 604–608. [Google Scholar]
- Wilk, M.; Golas, A.; Zmijewski, P.; Krzysztofik, M.; Filip, A.; Coso, J.D.; Tufano, J.J. The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results. J. Hum. Kinet. 2020, 72, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Krzysztofik, M.; Wilk, M. The effects of plyometric conditioning on post-activation bench press performance. J. Hum. Kinet. 2020, 74, 7–20. [Google Scholar]
- Levinger, I.; Goodman, C.; Hare, D.L.; Jerums, G.; Toia, D.; Selig, S. The reliability of the 1RM strength test for untrained middle-aged individuals. J. Sci. Med. Sport 2009, 12, 310–316. [Google Scholar] [CrossRef]
- Jarosz, J.; Gołaś, A.; Krzysztofik, M.; Matykiewicz, P.; Strońska, K.; Zając, A.; Maszczyk, A. Changes in Muscle Pattern Activity during the Asymmetric Flat Bench Press (Offset Training). Int. J. Environ. Res. Public Health 2020, 17, 3912. [Google Scholar] [CrossRef]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Szkudlarek, A.; Lockie, R.G.; Zajac, A. Does Post-Activation Performance Enhancement Occur during the Bench Press Exercise under Blood Flow Restriction? IJERPH 2020, 17, 3752. [Google Scholar] [CrossRef] [PubMed]
- Krzysztofik, M.; Wilk, M.; Filip, A.; Zmijewski, P.; Zajac, A.; Tufano, J.J. Can Post-Activation Performance Enhancement (PAPE) Improve Resistance Training Volume during the Bench Press Exercise? IJERPH 2020, 17, 2554. [Google Scholar] [CrossRef] [Green Version]
- Padulo, J.; Laffaye, G.; Chamari, K.; Concu, A. Concentric and Eccentric: Muscle Contraction or Exercise? Sports Health 2013, 5, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konrad, P. A Practical Introduction to Kinesiological Electromyography; Noraxon U.S.A. Inc.: Scottsdale, AZ, USA, 2006; ISBN 0-9771622-1-4. [Google Scholar]
- Muyor, J.M.; Rodríguez-Ridao, D.; Martín-Fuentes, I.; Antequera-Vique, J.A. Evaluation and comparison of electromyographic activity in bench press with feet on the ground and active hip flexion. PLoS ONE 2019, 14, e0218209. [Google Scholar] [CrossRef] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Brennecke, A.; Guimarães, T.M.; Leone, R.; Cadarci, M.; Mochizuki, L.; Simão, R.; Amadio, A.C.; Serrão, J.C. Neuromuscular Activity during Bench Press Exercise Performed with and without the Preexhaustion Method. J. Strength Cond. Res. 2009, 23, 1933–1940. [Google Scholar] [CrossRef]
- Golas, A.; Maszczyk, A.; Stastny, P.; Wilk, M.; Ficek, K.; Lockie, R.; Zajac, A. A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press. Sports 2018, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Norwood, J.T.; Anderson, G.S.; Gaetz, M.B.; Twist, P.W. Electromyographic Activity of the Trunk Stabilizers during Stable and Unstable Bench Press. J. Strength Cond. Res. 2007, 21, 343–347. [Google Scholar] [CrossRef]
- Anderson, G.S.; Gaetz, M.; Holzmann, M.; Twist, P. Comparison of EMG activity during stable and unstable push-up protocols. Eur. J. Sport Sci. 2013, 13, 42–48. [Google Scholar] [CrossRef]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG activity and loss of force output with instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar] [CrossRef]
- Van Den Tillaar, R.; Ettema, G. A Comparison of Successful and Unsuccessful Attempts in Maximal Bench Pressing. Med. Sci. Sports Exerc. 2009, 41, 2056–2063. [Google Scholar] [CrossRef] [PubMed]
- Reiman, M.P.; Bolgla, L.A.; Loudon, J.K. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises. Physiother. Theory Pract. 2012, 28, 257–268. [Google Scholar] [CrossRef]
- Macadam, P.; Feser, E.H. Examination of Gluteus Maximus Electromyographic Excitation Associated with Dynamic Hip Extension during Body Weight Exercise: A Systematic Review. Int. J. Sports Phys. Ther. 2019, 14, 14–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, M.D.; Pistilli, E.; Haff, G.G.; Hoffman, E.P.; Gordon, P.M. Progression of volume load and muscular adaptation during resistance exercise. Eur. J. Appl. Physiol. 2011, 111, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- La Scala Teixeira, C.V.; Evangelista, A.L.; Pereira, P.E.d.A.; Da Silva-Grigoletto, M.E.; Bocalini, D.S.; Behm, D.G. Complexity: A Novel Load Progression Strategy in Strength Training. Front. Physiol. 2019, 10, 839. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function: Muscle fatigue. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Gentil, P.; Oliveira, E.; de Araújo Rocha, V., Jr.; do Carmo, J.; Bottaro, M. Effects of Exercise Order on Upper-Body Muscle Activation and Exercise Performance. J. Strength Cond. Res. 2007, 21, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- Folland, J.P. Fatigue is not a necessary stimulus for strength gains during resistance training * Commentary. Br. J. Sports Med. 2002, 36, 370–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methenitis, S.; Mpampoulis, T.; Spiliopoulou, P.; Papadimas, G.; Papadopoulos, C.; Chalari, E.; Evangelidou, E.; Stasinaki, A.-N.; Nomikos, T.; Terzis, G. Muscle fiber composition, jumping performance, and rate of force development adaptations induced by different power training volumes in females. Appl. Physiol. Nutr. Metab. 2020, 45, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Rodiles-Guerrero, L.; Pareja-Blanco, F.; León-Prados, J.A. Effect of Velocity Loss on Strength Performance in Bench Press Using a Weight Stack Machine. Int. J. Sports Med. 2020. [Google Scholar] [CrossRef] [PubMed]
ANOVA (Number of Factors) | F | p | η2 |
---|---|---|---|
Condition (2) | 273.5 | 0.01 * | 0.968 |
Load (3) | 359.5 | 0.01 * | 0.976 |
Muscle (3) | 386.3 | 0.01 * | 0.977 |
Condition × Load (2 × 3) | 6.5 | 0.01 * | 0.418 |
Condition × Muscle (2 × 3) | 11.9 | 0.01 * | 0.569 |
Load × Muscle (3 × 3) | 22.0 | 0.01 * | 0.709 |
Condition × Load × Muscle (2 × 3 × 3) | 0.9 | 0.47 | 0.091 |
Load | %MVIC of 3 Muscle Groups for CONT | %MVIC of 3 Muscle Groups for SS | p | ES |
---|---|---|---|---|
70%1RM | 75.6 ± 26.0 | 65.1 ± 23.5 | 0.001 * | 0.42 |
85%1RM | 86.9 ± 21.7 | 72.4 ± 21.5 | 0.001 * | 0.67 |
100%1RM | 104.2 ± 16.0 | 87.2 ± 14.4 | 0.001 * | 1.12 |
Muscle Group | %MVIC of 3 Loads for CONT | %MVIC of 3 Loads for SS | p | ES |
---|---|---|---|---|
Anterior deltoid | 115.0 ± 9.8 | 100.5 ± 7.1 | 0.001 * | 1.69 |
Pectoralis major | 67.0 ± 17.0 | 57.8 ± 13.0 | 0.001 * | 0.61 |
Triceps brachii | 84.7 ± 15.2 | 66.5 ± 14.5 | 0.001 * | 1.23 |
Load | Anterior Deltoid %MVIC | |
---|---|---|
70%1RM | 102.1 ± 9.9 | |
85%1RM | 107.9 ± 10.3 | |
100%1RM | 113.4 ± 10.6 | |
p | ES | |
70%1RM vs. 85%1RM | 0.135 | 0.57 |
70%1RM vs. 100%1RM | 0.001 * | 1.10 |
85%1RM vs. 100%1RM | 0.182 | 0.53 |
Load | Pectoralis Major %MVIC | |
70%1RM | 45.9 ± 5.4 | |
85%1RM | 61.5 ± 7.0 | |
100%1RM | 79.8 ± 8.9 | |
p | ES | |
70%1RM vs. 85%1RM | 0.001 * | 2.50 |
70%1RM vs. 100%1RM | 0.001 * | 4.61 |
85%1RM vs. 100%1RM | 0.001 * | 2.29 |
Load | Triceps Brachii %MVIC | |
70%1RM | 63.2 ± 9.6 | |
85%1RM | 69.6 ± 11.9 | |
100%1RM | 94.0 ± 12.0 | |
p | ES | |
70%1RM vs. 85%1RM | 0.067 | 0.59 |
70%1RM vs. 100%1RM | 0.001 * | 2.83 |
85%1RM vs. 100%1RM | 0.001 * | 2.04 |
Muscle Group | %MVIC for CONT (95% CI) | %MVIC for SS (95% CI) | p | ES |
---|---|---|---|---|
70% 1RM | ||||
Anterior deltoid | 108.0 ± 8.8 | 96.1 ± 7.1 | 0.001 * | 1.49 |
(101.7 to 114.3) | (91.0 to 101.2) | |||
Pectoralis major | 48.1 ± 5.6 | 43.7 ± 4.4 | 0.755 | 0.87 |
(44.1 to 52.1) | (40.6 to 46.8) | |||
Triceps brachii | 70.7 ± 6.6 | 55.6 ± 5.1 | 0.001 * | 2.56 |
(66.0 to 75.4) | (52.0 to 59.2) | |||
85%1RM | ||||
Anterior deltoid | 114.6 ± 8.1 | 101.1 ± 7.6 | 0.001 * | 1.72 |
(108.8 to 120.4) | (95.7 to 106.5) | |||
Pectoralis major | 66.4 ± 5.6 | 56.6 ± 4.5 | 0.001 * | 1.93 |
(62.4 to 70.4) | (53.4 to 59.8) | |||
Triceps brachii | 79.8 ± 6.1 | 59.4 ± 5.6 | 0.001 * | 3.48 |
(75.4 to 84.2) | (55.4 to 63.4) | |||
100%1RM | ||||
Anterior deltoid | 122.5 ± 6.0 | 104.2 ± 4.0 | 0.001 * | 3.59 |
(118.2 to 126.8) | (101.3 to 107.1) | |||
Pectoralis major | 86.6 ± 6.3 | 73.0 ± 4.8 | 0.001 * | 2.43 |
(82.1 to 91.1) | (69.6 to 76.4) | |||
Triceps brachii | 103.5 ± 5.5 | 84.4 ± 8.6 | 0.001 * | 2.65 |
(99.6 to 107.4) | (78.3 to 90.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojdala, G.; Golas, A.; Krzysztofik, M.; Lockie, R.G.; Roczniok, R.; Zajac, A.; Wilk, M. Impact of the “Sling Shot” Supportive Device on Upper-Body Neuromuscular Activity during the Bench Press Exercise. Int. J. Environ. Res. Public Health 2020, 17, 7695. https://doi.org/10.3390/ijerph17207695
Wojdala G, Golas A, Krzysztofik M, Lockie RG, Roczniok R, Zajac A, Wilk M. Impact of the “Sling Shot” Supportive Device on Upper-Body Neuromuscular Activity during the Bench Press Exercise. International Journal of Environmental Research and Public Health. 2020; 17(20):7695. https://doi.org/10.3390/ijerph17207695
Chicago/Turabian StyleWojdala, Grzegorz, Artur Golas, Michal Krzysztofik, Robert George Lockie, Robert Roczniok, Adam Zajac, and Michal Wilk. 2020. "Impact of the “Sling Shot” Supportive Device on Upper-Body Neuromuscular Activity during the Bench Press Exercise" International Journal of Environmental Research and Public Health 17, no. 20: 7695. https://doi.org/10.3390/ijerph17207695
APA StyleWojdala, G., Golas, A., Krzysztofik, M., Lockie, R. G., Roczniok, R., Zajac, A., & Wilk, M. (2020). Impact of the “Sling Shot” Supportive Device on Upper-Body Neuromuscular Activity during the Bench Press Exercise. International Journal of Environmental Research and Public Health, 17(20), 7695. https://doi.org/10.3390/ijerph17207695