Association between Dietary Habits, Shift Work, and the Metabolic Syndrome: The Korea Nurses’ Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measure
2.2.1. Metabolic Syndrome (MetS)
2.2.2. Biochemical Evaluations
2.2.3. Anthropometric Measurements
2.2.4. Blood Pressure Measurement
2.2.5. Additional Variables
2.3. Ethical Considerations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States: National health and nutrition examination survey, 1988–2012. Prev. Chronic Dis. 2017, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016, 26, 364–473. [Google Scholar] [CrossRef]
- Palmer, M.K.; Toth, P.P. Trends in lipids, obesity, metabolic syndrome, and diabetes mellitus in the United States: An NHANES analysis (2003–2004 to 2013–2014). Obesity 2019, 27, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, L.; Yu, D.; Wang, Z.; Ding, G. Metabolic syndrome prevalence and its risk factors among adults in China: A nationally representative cross-sectional study. PLoS ONE 2018, 13, e0199293. [Google Scholar] [CrossRef]
- Park, E.; Choi, S.J.; Lee, H.Y. The prevalence of metabolic syndrome and related risk factors based on the KNHANES V 2010. J. Agric. Med. Community Health 2013, 38, 1–13. [Google Scholar] [CrossRef]
- Ghosh, A.; Liu, T.; Khoury, M.J.; Valdez, R. Family history of diabetes and prevalence of the metabolic syndrome in US adults without diabetes: 6-year results from the National Health and Nutrition Examination Survey (1999–2004). Public Health Genom. 2010, 13, 353–359. [Google Scholar] [CrossRef]
- Lipińska, A.; Koczaj-Bremer, M.; Jankowski, K.; Kaźmierczak, A.; Ciurzyński, M.; Ou-Pokrzewińska, A.; Mikocka, E.; Lewandowski, Z.; Demkow, U.; Pruszczyk, P. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals? Diabetol. Metab. Syndr. 2014, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Tucker, J.M.; Welk, G.J.; Beyler, N.K.; Kim, Y. Associations between physical activity and metabolic syndrome: Comparison between self-report and accelerometry. Am. J. Health Promot. 2016, 30, 155–162. [Google Scholar] [CrossRef]
- Hosseini, Z.; Whiting, S.J.; Vatanparast, H. Current evidence on the association of the metabolic syndrome and dietary patterns in a global perspective. Nutr. Res. Rev. 2016, 29, 152–162. [Google Scholar] [CrossRef]
- Chang, H.E. The Effects of Job Demands and Job Resources on the Health and Well-Being of Hospital Nurse. Unpublished. Doctoral Dissertation, Seoul National University, Seoul, Korea, August 2017. [Google Scholar]
- Kim, K.; Kim, K.; Park, S.M. Association between the prevalence of metabolic syndrome and the level of coffee consumption among Korean women. PLoS ONE 2016, 11, e0167007. [Google Scholar] [CrossRef]
- Kim, S.A.; Shin, S. The association between coffee consumption pattern and prevalence of metabolic syndrome in Korean adults. Nutrients 2019, 11, 2992. [Google Scholar] [CrossRef] [Green Version]
- Suliga, E.; Kozieł, D.; Ciesla, E.; Rebak, D.; Głuszek-Osuch, M.; Głuszek, S. Consumption of alcoholic beverages and the prevalence of metabolic syndrome and its components. Nutrients 2019, 11, 2764. [Google Scholar] [CrossRef] [Green Version]
- Pietroiusti, A.; Neri, A.; Somma, G.; Coppeta, L.; Iavicoli, I.; Bergamaschi, A.; Magrini, A. Incidence of metabolic syndrome among night-shift healthcare workers. Occup. Environ. Med. 2010, 67, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef]
- Tao, L.; Yang, K.; Huang, F.; Liu, X.; Li, X.; Luo, Y.; Wu, L.; Guo, X. Association between self-reported eating speed and metabolic syndrome in a Beijing adult population: A cross-sectional study. BMC Public Health 2018, 18, 855. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kim, S.A.; Ha, J.; Lim, K. Sugar-sweetened beverage consumption in relation to obesity and metabolic syndrome among Korean adults: A cross-sectional study from the 2012–2016 Korean National Health and Nutrition Examination Survey (KNHANES). Nutrients 2018, 10, 1467. [Google Scholar] [CrossRef] [Green Version]
- Narain, A.; Kwok, C.S.; Mamas, M.A. Soft drink intake and the risk of metabolic syndrome: A systematic review and meta-analysis. Int. J. Clin. Pract. 2017, 71(2). [Google Scholar] [CrossRef]
- Ley, S.H.; Ardisson Korat, A.V.; Sun, Q.; Tobias, D.K.; Zhang, C.; Qi, L.; Willett, W.C.; Manson, J.E.; Hu, F.B. Contribution of the nurses’ health studies to uncovering risk factors for type 2 diabetes: Diet, lifestyle, biomarkers, and genetics. Am. J. Public Health 2016, 106, 1624–1630. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety. 2019 Food & Drug Statistical Yearbook (Publication No. 11-1471000-000165-10). Available online: https://www.mfds.go.kr/brd/m_371/view.do?seq=30718&srchFr=&srchTo=&srch (accessed on 3 August 2020).
- Pae, S.J.; Lim, H.J.; Kim, J.Y.; Kang, H.T.; Lee, J.W. Health behavior and nutrient intake in metabolically abnormal overweight and metabolically abnormal obesity. Korean J. Health Promot. 2017, 17, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Marventano, S.; Salomone, F.; Godos, J.; Pluchinotta, F.; Rio, D.D.; Mistretta, A.; Grosso, G. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2016, 35, 1269–1281. [Google Scholar] [CrossRef]
- Yeon, J.Y.; Bae, Y.J. 3-in-1 coffee consumption is associated with metabolic factors in adults: Based on 2012~2015 Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2017, 50, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Je, Y.; Jeong, S.; Park, T. Coffee consumption patterns in Korean adults: The Korean National Health and Nutrition Examination Survey (2001–2011). Asia Pac. J. Clin. Nutr. 2014, 23, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Hong, S.H.; Chung, J.H.; Cho, K.B. Association between alcohol consumption and metabolic syndrome in a community-based cohort of Korean adults. Med. Sc.i Monit. 2017, 23, 2104–2110. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Yu, W.; Yang, L.; Pan, W.; Si, Q.; Chen, X.; Li, Q.; Gu, X. The association between first-degree family history of diabetes and metabolic syndrome. Endocr. Pract. 2019, 25, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Roh, E.; Oh, T.J.; Kim, K.M.; Moon, J.H.; Lim, S.; Jang, H.C.; Choi, S.H. Increased risk of metabolic disorders in healthy young adults with family history of diabetes: From the Korea National Health and Nutrition Survey. Diabetol. Metab. Syndr. 2017, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Bello-Chavolla, O.Y.; Kuri-García, A.; Ríos-Ríos, M.; Vargas-Vázquez, A.; Cortés-Arroyo, J.E.; Tapia-González, G.; Gruz-Bautista, I.; Aguilar-Salinas, C.A. Familial combined hyperlipidemia: Current nowledge, perspectives, and controversies. Rev. Investig. Clin. 2018, 70, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Skoumas, I.; Masoura, C.; Aznaouridis, K.; Metaxa, V.; Tsokanis, A.; Papadimitrious, L.; Tousoulis, D.; Pitsavos, C.; Stefanadis, C. Impact of cardio-metabolic risk factors on major cardiovascular events in patients with familial combined hyperlipidemia. Circ. J. 2013, 77, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, P.; Cooray, D.N.; Jayawardena, R.; Katulanda, P. The influence of family history of hypertension on disease prevalence and associated metabolic risk factors among Sri Lankan adults. BMC Public Health 2015, 15, 576. [Google Scholar] [CrossRef] [Green Version]
- Canuto, R.; Garcez, A.S.; Olinto, M.T. Metabolic syndrome and shift work: A systematic review. Sleep Med. Rev. 2013, 17, 425–431. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Ma, S. Obesity and metabolic syndrome: Association with chronodisruption, sleep deprivation, and melatonin suppression. Ann. Med. 2012, 44, 564–577. [Google Scholar] [CrossRef]
- Peplonska, B.; Bukowska, A.; Sobala, W. Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives. PLoS ONE 2015, 10, e0133761. [Google Scholar] [CrossRef]
- Khosravipour, M.; Shahmohammadi, M.; Athar, H.V. The effects of rotating and extended night shift work on the prevalence of metabolic syndrome and its components. Diabetes Metab. Syndr. 2019, 13, 3085–3089. [Google Scholar] [CrossRef]
- Terada, T.; Mistura, M.; Tulloch, H.; Pipe, A.; Reed, J. Dietary behaviour is associated with cardiometabolic and psychological risk indicators in female hospital nurses—A post-hoc, cross-sectional study. Nutrients 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Almajwal, A.M. Stress, shift duty, and eating behavior among nurses in Central Saudi Arabia. Saudi Med. J. 2016, 37, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.; Ahn, Y.; Lee, H.Y.; Jang, H.J.; Kim, S.; Lee, J.E.; Jung, H.; Cho, E.; Lim, J.Y.; Kim, M.J.; et al. The Korea Nurses’ Health Study: A prospective cohort study. J. Women’s Health 2017, 26, 892–899. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Yen, A.M.-F.; Boucher, B.J.; Yueh-Hsia, S.; Fann, J.C.-Y.; Chen, S.L.-S.; Huang, K.-C.; Chen, H.-H. Longer duration and earilier age of onset of paternal betel chewing and smoking increase metabolic syndrome risk in human offspring, independently, in a community-based screening program in Taiwan. Circulation 2016, 134, 392–404. [Google Scholar] [CrossRef]
- Kim, D.-W.; Her, S.-H.; Park, H.W.; Park, M.-W.; Chang, K.; Chung, W.S.; Seung, K.B.; Ahn, T.H.; Jeong, M.H.; Rha, S.-W.; et al. Association between body mass index and 1-year outcome after acute myocardial infarction. PLoS ONE 2019, 14, e0217525. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Song, S.; Lee, J.E.; Oh, K.; Shim, J.; Kweon, S.; Paik, H.Y.; Joung, H. Reproducibility and validity of an FFQ developed for the Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr. 2015, 18, 1369–1377. [Google Scholar] [CrossRef]
- Pan, W.; Bai, H. Propensity score methods in nursing research: Take advantage of them but proceed with caution. Nurs. Res. 2016, 65, 421–424. [Google Scholar] [CrossRef] [Green Version]
- Matilla-Santander, N.; Espinola, M.; Cartanyá-Hueso, À.; Lidón-Moyano, C.; González-Marrón, A.; Martín-Sánchez, J.C.; Cainzos-Achirica, M.; Sánchez, J.M.M. Prevalence and determinants of metabolic syndrome in Spanish salaried workers: Evidence from 15,614 men and women. J. Public Health 2020, 42, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Montano, D. Association between socioeconomic determinants and the metabolic syndrome in the German Health Interview and Examination Survey for Adults (DEGS1)—A mediation analysis. Rev. Diabet. Stud. 2017, 14, 279–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Lee, S.H.; Shin, K.S.; Son, D.Y.; Kim, S.H.; Joe, H.; Woo, B.W.; Hong, S.H.; Sho, C.Y.; Shin, H.S.; et al. The change of metabolic syndrome prevalence and its risk factors in Korean adults for decade: Korea National Health and Nutrition Examination Survey for 2008–2017. Korean J. Fam. Pract. 2020, 10, 44–52. [Google Scholar] [CrossRef]
- Chico-Barba, G.; Jimenez-Limas, K.; Sanchez-Jimenez, B.; Samano, R.; Rodriguez-Ventura, A.L.; Castillo-Perez, R.; Tolentino, M. Burnout and metabolic syndrome in female nurses: An observational study. Int. J. Environ. Res. Public Health 2019, 16, 1993. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.; Choi, S.-Y.; Seo, Y.-M. Factors affecting the metabolic syndrome of in adults aged the 20–30 years using the National Health and Nutrition Survey Data for 2016. Korean Data Anal. Soc. 2019, 21, 1539–1551. [Google Scholar] [CrossRef]
- Yoshida, J.; Eguchi, E.; Nagaoka, K.; Ito, T.; Ogino, K. Association of night eating habits with metabolic syndrome and its components: A longitudinal study. BMC Public Health 2018, 18, 1366. [Google Scholar] [CrossRef]
- Bo, S.; Musso, G.; Beccuti, G.; Fadda, M.; Fedele, D.; Gambino, R.; Cassader, M. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS ONE 2014, 9, e108467. [Google Scholar] [CrossRef]
- Na, S.-K.; Cheon, S.-H.; Choi, Y.-J.; Lee, H.-J.; Roh, Y.-K.; Choi, M.-K. Relationship between abdominal obesity and proportion of supper and late-night meals. Korean J. Obes. 2016, 25, 92–98. [Google Scholar] [CrossRef]
- Madjd, A.; Taylor, M.A.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: A randomized clinical trial. Am. J. Clin. Nutr. 2016, 104, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Kutsuma, A.; Nakajima, K.; Suwa, K. Potential association between breakfast skipping and concomitant late-night-dinner eating with metabolic syndrome and proteinuria in the Japanese population. Scientifica 2014, 2014, 253581. [Google Scholar] [CrossRef]
- Kregiel, D. Health safety of soft drinks: Contents, containers, and microorganisms. Biomed. Res. Int. 2015, 2015, 128697. [Google Scholar] [CrossRef] [Green Version]
- Funtikova, A.N.; Subirana, I.; Gomez, S.F.; Fito, M.; Elosua, R.; Benitez-Arciniega, A.A.; Schroder, H. Soft drink consumption is positively associated with increased waist circumference and 10-year incidence of abdominal obesity in Spanish adults. J. Nutr. 2015, 145, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Kwon, S.O.; Yon, M.; Kim, D.; Lee, J.Y.; Nam, J.; Park, S.J.; Yeon, J.Y.; Lee, S.K.; Lee, H.Y. Dietary total sugar intake of Koreans: Based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2011. J. Nutr. Health 2014, 47, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.J.; Kang, M.; Han, S.N. Relation between beverage consumption pattern and metabolic syndrome among healthy Korean adults. Korean J. Community Nutr. 2017, 22, 441–455. [Google Scholar] [CrossRef]
- Boyle, M.; Masson, S.; Anstee, Q.M. The bidirectional impacts of alcohol consumption and the metabolic syndrome: Cofactors for progressive fatty liver disease. J. Hepatol. 2018, 68, 251–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthanont, P.; Ramos, P.; Hames, K.C. Family history of type 2 diabetes, abdominal adipocyte size and markers of the metabolic syndrome. Int. J. Obes. 2017, 41, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.H.; Yi, Y.H.; Kim, Y.J.; Cho, B.M.; Lee, S.Y.; Lee, J.G.; Jeong, D.W.; Ji, S.Y. Shift work is associated with metabolic syndrome in young female Korean workers. Korean J. Fam. Med. 2017, 38, 51–56. [Google Scholar] [CrossRef]
- Nikpour, M.; Tirgar, A.; Hajiahmadi, M.; Hosseini, A.; Heidari, B.; Ghaffari, F.; Ebadi, A.; Nasiri, F.; Firouzbakht, M. Shift work and metabolic syndrome: A multi-center cross-sectional study on females of reproductive age. Biomed. Rep. 2019, 10, 311–317. [Google Scholar] [CrossRef]
- Loef, B.; van der Beek, A.J.; Holtermann, A.; Hulsegge, G.; van Baarle, D.; Proper, K.I. Objectively measured physical activity of hospital shift workers. Scand. J. Work. Eenviron. Health 2018, 44, 265–273. [Google Scholar] [CrossRef] [Green Version]
Variables | Category | Total | Non-MetS | MetS | x2 | p |
---|---|---|---|---|---|---|
N (%) | ||||||
403 | 316 | 87 | ||||
Meal speed (minutes) | 15≤ | 95(23.6) | 79 (25.0) | 16 (18.4) | 12.212 | 0.002 ** |
10–15 | 155 (38.5) | 131 (41.5) | 24 (27.6) | |||
<10 | 153 (38.0) | 106 (33.5) | 47 (54.0) | |||
Consuming more than 50% of calories per day after 7 p.m. | No | 181 (44.9) | 157 (49.7) | 24 (27.6) | 13.464 | <0.001 *** |
Yes | 222 (55.1) | 159 (50.3) | 63 (72.4) | |||
Amount of alcohol consumption (cups/day) | Non-drink | 97 (24.1) | 76 (24.1) | 21 (24.1) | 0.019 | 0.991 |
<1 | 284 (70.5) | 223 (70.6) | 61 (70.1) | |||
1≤ | 22 (5.5) | 17 (5.4) | 5 (5.7) | |||
Black coffee consumption (cups/day) | Non-drink | 58 (14.4) | 48 (15.2) | 10 (11.5) | 2.505 | 0.286 |
<1 | 166 (41.2) | 134 (42.4) | 32 (36.8) | |||
1≤ | 179 (44.4) | 134 (42.4) | 45 (51.7) | |||
Soft drink consumption (serving/day) (carbonated drink) | Non- drink | 118 (29.3) | 97 (30.7) | 21 (42.1) | 15.002 | 0.002 ** |
<1 | 268 (66.5) | 212 (67.1) | 56 (64.4) | |||
1≤ | 17 (4.2) | 7 (2.2) | 10 (11.5) | |||
Family history of Diabetes | No | 308 (76.4) | 255 (80.7) | 53 (60.9) | 14.810 | <0.001 *** |
Yes | 95 (23.6) | 61 (19.3) | 34 (39.1) | |||
Family history of Hypertension | No | 182 (45.2) | 154 (48.7) | 28 (32.2) | 7.545 | 0.006 ** |
Yes | 221 (54.8) | 162 (51.3) | 59 (67.8) | |||
Family history of Hyperlipidemia | No | 281 (69.7) | 230 (72.8) | 51 (58.6) | 6.484 | 0.011* |
Yes | 122 (30.3) | 86 (27.2) | 36 (41.4) | |||
Shift work | No | 162 (40.2) | 122 (38.6) | 40 (46.0) | 1.541 | 0.214 |
Yes | 241 (59.8) | 194 (61.4) | 47 (54.0) |
Total | Non-MetS | MetS | t | p | |
---|---|---|---|---|---|
Waist Circumference | 72.57 ± 9.847 | 68.56 ± 5.185 | 87.14 ± 9.007 | −18.414 | <0.001 *** |
Triglycerides | 94.75 ± 63.654 | 71.81 ± 23.879 | 178.07 ± 88.852 | −11.046 | <0.001 *** |
HDL-Cholesterol | 65.22 ± 15.746 | 70.45 ± 12.864 | 46.23 ± 9.351 | 19.591 | <0.001 *** |
Systolic Blood Pressure | 113.08 ± 9.603 | 110.82 ± 7.832 | 121.28 ± 10.937 | −8.347 | <0.001 *** |
Diastolic Blood Pressure | 71.67 ± 8.510 | 70.09 ± 7.623 | 77.38 ± 9.143 | −6.809 | <0.001 *** |
Fasting Glucose | 91.98 ± 12.219 | 88.39 ± 6.794 | 105.00 ± 17.607 | −8.623 | <0.001 *** |
Body Mass Index | 21.95 ± 3.392 | 20.64 ± 1.904 | 26.77 ± 3.267 | −16.741 | <0.001 *** |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Metabolic syndrome | 1 | |||||||||
2. Meal speed | −0.150 ** | 1 | ||||||||
3. Consuming more than 50% of calories per day after 7 p.m. | 0.183 ** | −0.148 ** | 1 | |||||||
4. Alcohol consumption | 0.002 | −0.024 | 0.120 * | 1 | ||||||
5. Black coffee consumption | 0.078 | −0.106 * | −0.014 | 0.114 * | 1 | |||||
6. Soft drink consumption | 0.111 * | −0.068 | 0.152 ** | 0.040 | −0.032 | 1 | ||||
7. Family history of Diabetes | 0.192 ** | −0.132 ** | −0.016 | 0.006 | 0.028 | −0.020 | 1 | |||
8. Family history of Hypertension | 0.137 ** | −0.070 | −0.118 * | −0.080 | 0.040 | 0.107 * | 0.304 ** | 1 | ||
9. Family history of Hyperlipidemia | 0.127 * | −0.058 | −0.089 | 0.036 | 0.033 | 0.026 | 0.207 ** | 0.305 ** | 1 | |
10. Shift work | 0.062 | 0.080 | −0.053 | −0.011 | 0.092 | −0.134 ** | −0.026 | 0.042 | −0.022 | 1 |
Variables | OR | 95%CI | p |
---|---|---|---|
Meal speed | |||
15≤ | 1.00 | ||
10–15 | 0.731 | 0.347–1.543 | 0.412 |
<10 | 1.671 | 0.149 | |
Consuming more than 50% of calories per day after 7 p.m. | |||
No | 1.00 | ||
Yes | 2.681 ** | 1.522–4.724 | 0.001 |
Amount of alcohol consumption (cups/day) | |||
Non-drink | 1.00 | ||
<1 | 0.852 | 0.457–1.592 | 0.616 |
1≤ | 0.684 | 0.203–2.309 | 0.541 |
Black coffee consumption (cups/day) | |||
Non-drink | 1.00 | ||
<1 | 1.361 | 0.548–3.381 | 0.507 |
1≤ | 1.718 | 0.707–4.175 | 0.233 |
Soft drink consumption (serving/day) | |||
Non-drink | 1.00 | ||
<1 | 1.186 | 0.644–2.186 | 0.584 |
1≤ | 6.326 ** | 1.908–20.971 | 0.003 |
Family medical history of Diabetes | |||
No | 1.00 | ||
Yes | 2.077 * | 1.141–3.784 | 0.017 |
Family medical history of Hypertension | |||
No | 1.00 | ||
Yes | 1.495 | 0.832–2.685 | 0.179 |
Family medical history of Hyperlipidemia | |||
No | 1.00 | ||
Yes | 1.618 | 0.912–2.870 | 0.100 |
Shift work | |||
Yes | 1.00 | ||
No | 1.757 * | 1.022–3.021 | .041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Dan, H.; Pang, Y.; Kim, B.; Jeong, H.; Lee, J.E.; Kim, O. Association between Dietary Habits, Shift Work, and the Metabolic Syndrome: The Korea Nurses’ Health Study. Int. J. Environ. Res. Public Health 2020, 17, 7697. https://doi.org/10.3390/ijerph17207697
Jung H, Dan H, Pang Y, Kim B, Jeong H, Lee JE, Kim O. Association between Dietary Habits, Shift Work, and the Metabolic Syndrome: The Korea Nurses’ Health Study. International Journal of Environmental Research and Public Health. 2020; 17(20):7697. https://doi.org/10.3390/ijerph17207697
Chicago/Turabian StyleJung, Heeja, Hyunju Dan, Yanghee Pang, Bohye Kim, Hyunseon Jeong, Jung Eun Lee, and Oksoo Kim. 2020. "Association between Dietary Habits, Shift Work, and the Metabolic Syndrome: The Korea Nurses’ Health Study" International Journal of Environmental Research and Public Health 17, no. 20: 7697. https://doi.org/10.3390/ijerph17207697
APA StyleJung, H., Dan, H., Pang, Y., Kim, B., Jeong, H., Lee, J. E., & Kim, O. (2020). Association between Dietary Habits, Shift Work, and the Metabolic Syndrome: The Korea Nurses’ Health Study. International Journal of Environmental Research and Public Health, 17(20), 7697. https://doi.org/10.3390/ijerph17207697