The Effects of Epistemic Trust and Social Trust on Public Acceptance of Genetically Modified Food: An Empirical Study from China
Abstract
:1. Introduction
2. Research Hypotheses and Framework
2.1. Perceived Risks and Benefits
2.2. Social Trust
2.3. Epistemic Trust
3. Methods
3.1. Sample
3.2. Measures
3.3. Analysis Method
4. Results
4.1. Descriptive Analysis
4.2. Assessment of Measurement Model
4.3. Common Method Bias
4.4. Assessment of Structural Model
5. Discussion
5.1. Theoretical Implications
5.2. Policy Implications
5.3. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Frequently Asked Questions on Genetically Modified Foods. 2014. Available online: https://www.who.int/foodsafety/areas_work/food-technology/faq-geneically-modified-food/en/ (accessed on 11 December 2019).
- Lusk, J.L.; Rozan, A. Consumer acceptance of ingenic foods. Biotechnol. J. 2006, 1, 1433–1434. [Google Scholar] [CrossRef] [PubMed]
- Lusk, J.L.; Coble, K.H. Risk Perceptions, Risk Preference, and Acceptance of Risky Food. Am. J. Agric. Econ. 2005, 87, 393–405. [Google Scholar] [CrossRef]
- Hudson, J.; Caplanova, A.; Novak, M. Public attitudes to GM foods. The balancing of risks and gains. Appetite 2015, 92, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenbrandt, A.K.; Gamborg, C.; Thorsen, B.J. Consumers’ Preferences for Bread: Transgenic, Cisgenic, Organic or Pesticide-free? J. Agric. Econ. 2018, 69, 1–21. [Google Scholar] [CrossRef]
- Edenbrandt, A.K. Demand for pesticide-free, cisgenic food? Exploring differences between consumers of organic and conventional food. Br. Food J. 2018, 120, 1666–1679. [Google Scholar] [CrossRef]
- Delwaide, A.-C.; Nalley, L.L.; Dixon, B.L.; Danforth, D.M.; Nayga, R.M.N., Jr.; Van Loo, E.J.; Verbeke, W. Revisiting GMOs: Are There Differences in European Consumers’ Acceptance and Valuation for Cisgenically vs Transgenically Bred Rice? PLoS ONE 2015, 10, e0126060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoph, I.B.; Bruhn, M.; Roosen, J. Knowledge, attitudes towards and acceptability of genetic modification in Germany. Appetite 2008, 51, 58–68. [Google Scholar] [CrossRef]
- Ceccoli, S.; Hixon, W. Explaining attitudes toward genetically modified foods in the European Union. Int. Political Sci. Rev. 2012, 33, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Lusk, J.L.; Roosen, J.; Fox, J.A. Demand for beef from cattle administered growth hormones or fed genetically modified corn: A comparison of consumers in France, Germany, the United Kingdom, and the United States. Am. J. Agric. Econ. 2003, 85, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wu, Y.; Luan, J. Consumer-perceived risks of genetically modified food in China. Appetite 2020, 147, 104520. [Google Scholar] [CrossRef]
- Cui, K.; Shoemaker, S.P. Public perception of genetically-modified (GM) food: A Nationwide Chinese Consumer Study. NPJ Sci. Food 2018, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Frewer, L.J.; van der Lans, I.A.; Fischer, A.R.; Reinders, M.J.; Menozzi, D.; Zhang, X.; van den Berg, I.; Zimmermann, K.L. Public perceptions of agri-food applications of genetic modification—A systematic review and meta-analysis. Trends Food Sci. Technol. 2013, 30, 142–152. [Google Scholar] [CrossRef]
- López-Navarro, M.A.; Llorens-Monzonís, J.; Tortosa-Edo, V. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex. Int. J. Environ. Res. Public Health 2013, 10, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Entrena, M.; Salazar-Ordóñez, M. Influence of scientific-technical literacy on consumers’ behavioural intentions regarding new food. Appetite 2013, 60, 193–202. [Google Scholar] [CrossRef]
- Frewer, L.J.; Von Bergmann, K.; Brennan, M.; Lion, R.; Meertens, R.M.; Rowe, G.; Siegrist, M.; Vereijken, C.M.J.L. Consumer response to novel agri-food technologies: Implications for predicting consumer acceptance of emerging food technologies. Trends Food Sci. Technol. 2011, 22, 442–456. [Google Scholar] [CrossRef]
- Gupta, N.; Fischer, A.R.; Frewer, L.J. Socio-psychological determinants of public acceptance of technologies: A review. Public Underst. Sci. 2012, 21, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Hakim, M.P.; Zanetta, L.D.; De Oliveira, J.M.; Da Cunha, D.T. The mandatory labeling of genetically modified foods in Brazil: Consumer’s knowledge, trust, and risk perception. Food Res. Int. 2020, 132, 109053. [Google Scholar] [CrossRef]
- Nardi, V.A.M.; Teixeira, R.; Ladeira, W.J.; Santini, F.D.O. A meta-analytic review of food safety risk perception. Food Control 2020, 112, 107089. [Google Scholar] [CrossRef]
- Guo, Q.; Yao, N.; Zhu, W. How consumers’ perception and information processing affect their acceptance of genetically modified foods in China: A risk communication perspective. Food Res. Int. 2020, 137, 109518. [Google Scholar] [CrossRef]
- Butkowski, O.K.; Baum, C.M.; Pakseresht, A.; Bröring, S.; Lagerkvist, C.J. Examining the social acceptance of genetically modified bioenergy in Germany: Labels, information valence, corporate actors, and consumer decisions. Energy Res. Soc. Sci. 2020, 60, 101308. [Google Scholar] [CrossRef]
- Ardebili, A.T.; Rickertsen, K. Personality traits, knowledge, and consumer acceptance of genetically modified plant and animal products. Food Qual. Prefer. 2020, 80, 103825. [Google Scholar] [CrossRef]
- Siegrist, M. The Influence of Trust and Perceptions of Risks and Benefits on the Acceptance of Gene Technology. Risk Anal. 2000, 20, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M. A Causal Model Explaining the Perception and Acceptance of Gene Technology. J. Appl. Soc. Psychol. 1999, 29, 2093–2106. [Google Scholar] [CrossRef]
- Sjöberg, L. Antagonism, Trust and Perceived Risk. Risk Manag. 2008, 10, 32–55. [Google Scholar] [CrossRef]
- Rousseau, D.M.; Sitkin, S.B.; Burt, R.S.; Camerer, C. Not So Different After All--A Cross-Discipline View of Trust. Acadomy Manag. Rev. 1998, 23, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Eiser, J.R.; Miles, S.; Frewer, L.J. Trust, Perceived Risk, and Attitudes Toward food technologies. J. Appl. Soc. Psychol. 2002, 32, 2423–2433. [Google Scholar] [CrossRef]
- Sjöberg, L. Limits of Knowledge and the Limited Importance of Trust. Risk Anal. 2001, 21, 189–198. [Google Scholar] [CrossRef]
- Sjöberg, L.; Herber, M.W. Too much trust in (social) trust? The importance of epistemic concerns and perceived antagonism. Int. J. Glob. Environ. Issues 2008, 8, 30–44. [Google Scholar] [CrossRef]
- Peters, R.G.; Covello, V.T.; McCallum, D.B. The Determinants of Trust and Credibility in Environmental Risk Communication: An Empirical Study. Risk Anal. 1997, 17, 43–54. [Google Scholar] [CrossRef]
- Deljoo, A.; Van Engers, T.; Gommans, L.; De Laat, C. The Impact of Competence and Benevolence in a Computational Model of Trust. In International Federation for Information Processing 2018; Gal-Oz, N., Lewis, P.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 45–57. [Google Scholar]
- Xiao, Q.; Liu, H.; Feldman, M.W. How does trust affect acceptance of a nuclear power plant (NPP): A survey among people living with Qinshan NPP in China. PLoS ONE 2017, 12, e0187941. [Google Scholar] [CrossRef] [PubMed]
- Terwel, B.W.; Harinck, F.; Ellemers, N.; Daamen, D.D.L. Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS). Risk Anal. 2009, 29, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Bearth, A.; Siegrist, M. Are risk or benefit perceptions more important for public acceptance of innovative food technologies: A meta-analysis. Trends Food Sci. Technol. 2016, 49, 14–23. [Google Scholar] [CrossRef]
- Adell, E.; Varhelyi, A.; Nilsson, L. The Definition of Acceptance and Acceptability: Theory, measurement and optimisation. In Driver Acceptance of New Technology; Reagan, M.A., Horberry, T., Stevens, A., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 11–21. [Google Scholar]
- Chen, Y.; Chang, C. Enhance green purchase intentions. Manag. Decis. 2012, 50, 502–520. [Google Scholar] [CrossRef]
- Chen, M.-F. An integrated research framework to understand consumer attitudes and purchase intentions toward genetically modified foods. Br. Food J. 2008, 110, 559–579. [Google Scholar] [CrossRef]
- Huijts, N.M.A.; Molin, E.J.E.; Steg, L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renew. Sustain. Energy Rev. 2012, 16, 525–531. [Google Scholar] [CrossRef]
- Connor, M.; Siegrist, M. Factors Influencing People’s Acceptance of Gene Technology: The Role of Knowledge, Health Expectations, Naturalness, and Social Trust. Sci. Commun. 2010, 32, 514–538. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, L.; Bai, Q.; Shao, W.; Feng, Y.; Yin, S.; Zhang, M. Application of an integrated framework to examine Chinese consumers’ purchase intention toward genetically modified food. Food Qual. Prefer. 2018, 65, 118–128. [Google Scholar] [CrossRef]
- Hall, C.R. Genetically Modified Food and Crops: Perceptions of Risks. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, May 2010. [Google Scholar]
- Hu, Z.; Ding, S.; Li, S.; Chen, L.; Yang, S. Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry 2019, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Oliveira, T.; Popovič, A. Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. Int. J. Inf. Manag. 2014, 34, 1–13. [Google Scholar] [CrossRef]
- Kamarulzaman, N.A.; Lee, K.E.; Siow, K.S.; Mokhtar, M. Public benefit and risk perceptions of nanotechnology development: Psychological and sociological aspects. Technol. Soc. 2020, 62, 101329. [Google Scholar] [CrossRef]
- Joubert, I.A.; Geppert, M.; Ess, S.; Nestelbacher, R.; Gadermaier, G.; Duschl, A.; Bathke, A.C.; Himly, M. Public perception and knowledge on nanotechnology: A study based on a citizen science approach. NanoImpact 2020, 17, 100201. [Google Scholar] [CrossRef]
- Ho, S.S.; Scheufele, D.A.; Corley, E.A. Factors influencing public risk-benefit considerations of nanotechnology: Assessing the effects of mass media, interpersonal communication, and elaborative processing. Public Underst. Sci. 2013, 22, 606–623. [Google Scholar] [CrossRef] [PubMed]
- Capon, A.; A Gillespie, J.; Rolfe, M.; Smith, W. Perceptions of risk from nanotechnologies and trust in stakeholders: A cross sectional study of public, academic, government and business attitudes. BMC Public Health 2015, 15, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Yeo, S.K.; Brossard, D.; Scheufele, D.A.; Xenos, M.A. Disentangling the Influence of Value Predispositions and Risk/Benefit Perceptions on Support for Nanotechnology Among the American Public. Risk Anal. 2014, 34, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Keller, C. Labeling of Nanotechnology Consumer Products Can Influence Risk and Benefit Perceptions. Risk Anal. 2011, 31, 1762–1769. [Google Scholar] [CrossRef]
- Yasmin, N.; Grundmann, P. Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan. Energies 2019, 12, 3184. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.-C.; Kao, S.-F.; Wang, J.-D.; Su, C.-T.; Lee, C.-T.P.; Chen, R.-Y.; Chang, H.-L.; Ieong, M.C.F.; Chang, P.W. Risk perception, trust, and factors related to a planned new nuclear power plant in Taiwan after the 2011 Fukushima disaster. J. Radiol. Prot. 2013, 33, 773–789. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, L.; Drottz-Sjoberg, B.-M. Public risk perception of nuclear waste. Int. J. Risk Assess. Manag. 2009, 11, 248–280. [Google Scholar] [CrossRef]
- Clothier, R.; Greer, D.A.; Greer, D.G.; Mehta, A.M. Risk Perception and The Public Acceptance of Drones. Risk Anal. 2015, 35, 1167–1183. [Google Scholar] [CrossRef]
- Liu, P.; Yang, R.; Xu, Z. Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions. Risk Anal. 2018, 39, 326–341. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Mitchell, V.-W. Consumer Perceived Risk: Conceptualizations and Models. Eur. J. Mark. 1999, 33, 163–195. [Google Scholar] [CrossRef]
- Renn, O.; Benighaus, C. Perception of technological risk: Insights from research and lessons for risk communication and management. J. Risk Res. 2013, 16, 293–313. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Puth, G.; Mostert, P.; Ewing, M.T. Consumer perceptions of mentioned product and brand attributes in magazine advertising. J. Prod. Brand Manag. 1999, 8, 38–50. [Google Scholar] [CrossRef]
- Kotler, P. Marketing Management: Analysis, Planning, Implementation, and Control, 9th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Margulis, C. The Hazards of Genetically Engineered Foods. Environ. Health Perspect. 2006, 114, A146–A147. [Google Scholar] [CrossRef] [Green Version]
- Séralini, G.-E.; Cellier, D.; De Vendômois, J.S. New Analysis of a Rat Feeding Study with a Genetically Modified Maize Reveals Signs of Hepatorenal Toxicity. Arch. Environ. Contam. Toxicol. 2007, 52, 596–602. [Google Scholar] [CrossRef]
- Zawide, F.; Birke, W. Emerging Risks of Genetically Modified Foods. EC Nutr. 2017, 8, 233–236. [Google Scholar] [CrossRef]
- Amin, L.; Hamdan, F.; Hashim, R.; Samani, M.C.; Anuar, N.; Zainol, Z.A.; Jusoff, K. Risks and benefits of genetically modified foods. Afr. J. Biotechnol. 2011, 10, 12481–12485. [Google Scholar]
- Knight, J.G.; Gao, H. Chinese gatekeeper perceptions of genetically modified food. Br. Food J. 2009, 111, 56–69. [Google Scholar] [CrossRef]
- Blackwell, R.F.; Miniard, P.W.; Engel, J.F. Consumer Behavior, 9th ed.; Harcourt Collage Publishers: New York, NY, USA, 2001. [Google Scholar]
- Dowling, G.R.; Staelin, R. A Model of Perceived Risk and Intended Risk-handling Activity. J. Consum. Res. 1994, 21, 119–134. [Google Scholar] [CrossRef]
- Sajiwani, J.W.A.; Rathnayaka, R.M.U.S.K. Consumer Perception on Genetically Modified Food in Sri Lanka. Adv. Res. 2014, 2, 846–855. [Google Scholar] [CrossRef]
- Lü, L.; Chen, H. Chinese Publics Risk Perceptions of Genetically Modified Food: From the 1990s to 2015. Sci. Technol. Soc. 2016, 21, 110–128. [Google Scholar] [CrossRef]
- Animashaun, J.O. Consumers’ Evaluation of Genetically Modified (GM) Food: A Meta-Review and Implications for Policy Regulation in Africa; African Association of Agricultural Economists (AAAE): Nairobi, Kenya, 2019. [Google Scholar]
- Marques, M.D.; Critchley, C.R.; Walshe, J. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support. Public Underst. Sci. 2015, 24, 601–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buah, J.N. Public Perception of Genetically Modified Food in Ghana. Am. J. Food Technol. 2011, 6, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Augoustinos, M.; Crabb, S.; Shepherd, R. Genetically modified food in the news: Media representations of the GM debate in the UK. Public Underst. Sci. 2010, 19, 98–114. [Google Scholar] [CrossRef]
- Prati, G.; Pietrantoni, L.; Zani, B. The prediction of intention to consume genetically modified food: Test of an integrated psychosocial model. Food Qual. Prefer. 2012, 25, 163–170. [Google Scholar] [CrossRef]
- Pham, N.; Mandel, N. What Influences Consumer Evaluation of Genetically Modified Foods? J. Public Policy Mark. 2019, 38, 263–279. [Google Scholar] [CrossRef]
- AlHakami, A.S.; Slovic, P. A psychological study of the inverse relationship between perceived risk and perceived benefit. Risk Anal. 1994, 14, 1085–1096. [Google Scholar] [CrossRef]
- Finucane, M.L.; Alhakami, A.; Slovic, P.; Johnson, S.M. The Affect Heuristic in Judgments of Risks and Benefits. J. Behav. Decis. Mak. 2000, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Qiu, H.; Bai, J.; Pray, C. Awareness, acceptance of and willingness to buy genetically modified foods in Urban China. Appetite 2006, 46, 144–151. [Google Scholar] [CrossRef]
- Eiser, J.R.; Donovan, A.; Sparks, R.S.J. Risk Perceptions and Trust Following the 2010 and 2011 Icelandic Volcanic Ash Crises. Risk Anal. 2015, 35, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xie, X. Effects of Knowledge on Attitude Formation and Change toward Genetically Modified Foods. Risk Anal. 2015, 35, 790–810. [Google Scholar] [CrossRef] [PubMed]
- Klerck, D.; Sweeney, J.C. The effect of knowledge types on consumer-perceived risk and adoption of genetically modified foods. Psychol. Mark. 2007, 24, 171–193. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Siegrist, M. Differences in Risk Perception between Hazards and Between Individuals. In Psychological Perspectives on Risk and Risk Analysis: Theory, Models, and Applications; Raue, M., Lerme, E., Streicher, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–80. [Google Scholar]
- Frewer, L.J.; Scholderer, J.; Bredahl, L. Communicating about the Risks and Benefits of Genetically Modified Foods: The Mediating Role of Trust. Risk Anal. 2003, 23, 1117–1133. [Google Scholar] [CrossRef]
- Chen, M.F. Consumer trust in food safety--a multidisciplinary approach and empirical evidence from Taiwan. Risk Anal. 2008, 28, 1553–1569. [Google Scholar] [CrossRef]
- Maeda, Y.; Miyahara, M. Determinants of Trust in Industry, Government, and Citizen’s Groups in Japan. Risk Anal. 2003, 23, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.T.; Hallman, W.K. Who does the public trust? The case of genetically modified food in the United States. Risk Anal. 2005, 25, 1241–1252. [Google Scholar] [CrossRef]
- Drottz-Sjöberg, B.M. Stämningar i Storuman efter Folkomröstningen om ett Djupförvar [Sentiments in Storuman after the Referendum on a Deep Level Repository]; SKB: Stockholm, Sweden, 1996. [Google Scholar]
- Sjöberg, L. Risk Perception by the Public and by Experts: A Dilemma in Risk Management. Res. Hum. Ecol. 1999, 6, 1–9. [Google Scholar]
- Sjöberg, L. Attitudes toward technology and risk: Going beyond what is immediately given. Policy Sci. 2002, 35, 379–400. [Google Scholar] [CrossRef]
- Sjöberg, L. Policy Implications of Risk Perception Research: A Case of the Emperor’s New Clothes? Risk Manag. 2002, 4, 11–20. [Google Scholar] [CrossRef]
- Drottz-Sjöberg, B.-M. Perceptions of Nuclear Wastes across Extreme Time Perspectives. Risk Hazards Crisis Public Policy 2010, 1, 231–253. [Google Scholar] [CrossRef]
- Sjöberg, L.; Drottz-Sjöberg, B.-M. Attitudes toward nuclear waste and siting policy:expert and the public. In Nuclear Waste Research: Siting, Technology and Treatment; Lattefer, A.P., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2008; p. 28. [Google Scholar]
- Sjoberg, L.; Engelberg, E. Risk perception and movies: A study of availability as a factor in risk perception. Risk Anal. 2010, 30, 95–106. [Google Scholar] [CrossRef]
- Sjöberg, L. Genetically Modified Food in The Eyes of the Public and Experts. Risk Manag. 2008, 10, 168–193. [Google Scholar] [CrossRef]
- Sjöberg, L. As Time Goes By: The Beginnings of Social and Behavioural Science Risk Research. J. Risk Res. 2006, 9, 601–604. [Google Scholar] [CrossRef]
- Sjöberg, L. Gene Technology in the Eyes of the Public and Experts: Moral Opinions, Attitudes and Risk Perception; SSE/EFI Working Paper Series in Business Administration; Stockholm School of Economics: Stockholm, Sweden, May 2005. [Google Scholar]
- Zhang, W. Study on the Consumption Behavior for Genetically Modified Food. Ph.D. Thesis, Northwest A & F University, Xian, China, May 2017. [Google Scholar]
- Ghoochani, O.M.; Ghanian, M.; Baradaran, M.; Alimirzaei, E.; Azadi, H. Behavioral intentions toward genetically modified crops in Southwest Iran: A multi-stakeholder analysis. Environ. Dev. Sustain. 2016, 20, 233–253. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, J.; Folmer, H.; Hussain, K. Perceived Risk of Genetically Modified Foods among Residents in Xi’an, China: A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2019, 16, 574. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-F.; Li, H.-L. The consumer’s attitude toward genetically modified foods in Taiwan. Food Qual. Prefer. 2007, 18, 662–674. [Google Scholar] [CrossRef]
- Chin, W.; Marcolin, B.; Newsted, P. A partial least squares latent variable modeling app roach for measuring interaction effects: Results from a Monte Carlo simulation study and voice mail emotion/adoption study. In Proceedings of the 15th International Conference on Information Systems, Cleveland, OH, USA, 16–18 December 1996; pp. 21–41. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. “SmartPLS 3.”. Boenningstedt: SmartPLS GmbH. 2015. Available online: http://www.smartpls.com (accessed on 11 March 2016).
- Chin, W.W. The partial least squares approach for structural equation modeling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares StructuralEquation Modeling (PLS-SEM), 2nd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Liang, H.; Saraf, N.; Hu, Q.; Xue, Y. Assimilation of Enterprise Systems: The Effect of Institutional Pressures and the Mediating Role of Top Management. MIS Q. 2007, 31, 59–87. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Barclay, D.; Thompson, R.; Higgins, C. The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technol. Stud. 1995, 2, 285–309. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Statistical Models; Irwin Inc.: Boston, MA, USA, 1990. [Google Scholar]
- Siegrist, M.; Gutscher, H.; Earle, T.C. Perception of risk: The influence of general trust, and general confidence. J. Risk Res. 2006, 8, 145–156. [Google Scholar] [CrossRef]
- Thaler, R.H.; Tversky, A.; Kahneman, D.; Schwartz, A. The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test. Q. J. Econ. 1997, 112, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M. GM Food: A Study of Chinese Public’s Recognition and Attitude. J. Anhui Agric. Sci. 2014, 42, 6783–6786. [Google Scholar]
Construct | Items | Source |
---|---|---|
Public acceptance (ACC) | (ACC1) Would you like to buy genetically modified food? | [23,24,97] |
(ACC2) Would you like to buy this kind of food if the product trademark indicates that it contains genetically modified ingredients? | ||
(ACC3) Whenever possible I avoid buying GMF (reversed scoring). | ||
(ACC4) Compared with ordinary food, genetically modified food has a longer shelf life. Would you choose to buy because of this point? | ||
Perceived benefits (PEB) | (PEB1) Overall, GM food technology is useful for society. | [96,98] |
(PEB2) Transgenic technology can increase crop yields and feed more people. | ||
(PEB3) GMF creates a higher quality of life; it is a great technological advancement. | ||
(PEB4) Genetically modified foods will eventually be accepted by the majority of people. | ||
Perceived risks (PER) | (PER1) Overall, GMF can be dangerous to people. | [37,96,98,99] |
(PER2) Eating genetically modified food will lead to infertility. | ||
(PER3) Eating genetically modified food will change the genes of us or future generations. | ||
(PER4) The production of genetically modified food will destroy the diversity of animals and plants. | ||
(PER5) Planting genetically modified crops will have a negative impact on the environment. | ||
Trust in industrial organizations (STC) | (STC1) food corporation. | [39,100] |
(STC2) agricultural corporation. | ||
(STC3) pharmaceutical corporation. | ||
Trust in public organizations (STP) | (STP1) National Food Administration. | [39,96] |
(STP2) public research institution in the domain of GMF. | ||
(STP3) National Institute of Public Health. | ||
Epistemic trust (EPT) | (EPT1) There could be negative side effects of GMF unknown for scientific knowledge today. | [94,96] |
(EPT2) Scientific knowledge about GMF is probably still incomplete | ||
(EPT3) Researchers behind GMF technology are hardly aware of all consequences of what they create. |
Characteristic | Classification | Number | Sample (%) | Population (%) * | χ2 Test (p-Value) |
---|---|---|---|---|---|
Gender | Male | 483 | 44.3 | 51.2 | 0.982 (0.322) |
Female | 608 | 55.7 | 48.8 | ||
Age | 15–29 years old and below | 523 | 47.9 | 42.9 | 0.902 (0.637) |
30–50 years old | 447 | 41.0 | 42.3 | ||
51 years old and above | 121 | 11.1 | 14.8 | ||
Type of Habitat | Rural inhabitant | 585 | 53.6 | 55.9 | 0.081 (0.776) |
Urban inhabitant | 506 | 46.4 | 44.1 | ||
Education background | Primary education | 183 | 16.8 | 27.7 | 4.744 (0.192) |
Junior high school | 427 | 39.1 | 40.6 | ||
High school (including technical secondary school) | 254 | 23.3 | 17.5 | ||
College degree and above (including junior College) | 227 | 20.8 | 14.2 | ||
Monthly income (Chinese Yuan) | <3000 | 843 | 77.3% | No available | |
3001–5000 | 204 | 18.7% | No available | ||
>5001 | 44 | 4.0% | No available |
Construct | Mean(SD) | Item | Mean | SD | Loading | P | CR | AVE | |
---|---|---|---|---|---|---|---|---|---|
ACC | 3.682(1.481) | ACC1 | 3.432 | 2.071 | 0.827 | 0.000 | 0.804 | 0.872 | 0.640 |
ACC2 | 3.372 | 1.631 | 0.840 | 0.000 | |||||
ACC3 | 4.813 | 1.642 | 0.800 | 0.000 | |||||
ACC4 | 3.112 | 2.142 | 0.701 | 0.000 | |||||
EPT | 2.852(1.161) | EPT1 | 2.531 | 1.379 | 0.801 | 0.000 | 0.777 | 0.857 | 0.668 |
EPT2 | 2.742 | 1.382 | 0.773 | 0.000 | |||||
EPT3 | 3.301 | 1.421 | 0.874 | 0.000 | |||||
PEB | 4.479(1.232) | PEB1 | 4.711 | 1.501 | 0.858 | 0.000 | 0.816 | 0.879 | 0.645 |
PEB2 | 4.751 | 1.558 | 0.768 | 0.000 | |||||
PEB3 | 4.282 | 1.589 | 0.853 | 0.000 | |||||
PEB4 | 4.169 | 1.519 | 0.725 | 0.000 | |||||
PER | 3.887(1.129) | PER1 | 3.801 | 1.561 | 0.820 | 0.000 | 0.802 | 0.862 | 0.558 |
PER2 | 3.682 | 1.468 | 0.794 | 0.000 | |||||
PER3 | 3.551 | 1.659 | 0.761 | 0.000 | |||||
PER4 | 4.151 | 1.492 | 0.711 | 0.000 | |||||
PER5 | 4.282 | 1.371 | 0.634 | 0.000 | |||||
STC | 4.078(1.292) | STC1 | 3.850 | 1.451 | 0.864 | 0.000 | 0.884 | 0.928 | 0.811 |
STC2 | 4.253 | 1.401 | 0.921 | 0.000 | |||||
STC3 | 4.161 | 1.471 | 0.916 | 0.000 | |||||
STP | 5.258(1.191) | STP1 | 5.661 | 1.382 | 0.800 | 0.000 | 0.765 | 0.864 | 0.680 |
STP2 | 5.162 | 1.471 | 0.822 | 0.000 | |||||
STP3 | 4.961 | 1.460 | 0.850 | 0.000 |
ACC | EPT | PEB | PER | STC | STP | |
---|---|---|---|---|---|---|
ACC | ||||||
EPT | 0.239 | |||||
PEB | 0.668 | 0.154 | ||||
PER | 0.755 | 0.436 | 0.466 | |||
STC | 0.316 | 0.120 | 0.270 | 0.183 | ||
STP | 0.305 | 0.326 | 0.422 | 0.137 | 0.694 |
Path | Path Coefficients | t-Value | p Values | Hypothesis Check | |
---|---|---|---|---|---|
PER -> ACC | −0.455 | 0.303(medium -large) | 22.473 | 0.000 | H1 (Supported) |
PEB -> ACC | 0.345 | 0.196(medium) | 15.260 | 0.000 | H2 (Supported) |
PEB -> PER | −0.390 | 0.195(medium) | 13.463 | 0.000 | H3 (Supported) |
STC -> PER | −0.072 | 0.006(small) | 2.147 | 0.032 | H4 (Supported) |
STC -> PEB | 0.049 | 0.003(small) | 1.303 | 0.193 | H5 (Not supported) |
STP -> PEB | 0.317 | 0.073(small–medium) | 8.454 | 0.000 | H6 (Supported) |
STP -> PER | −0.014 | 0.001(small) | 0.410 | 0.682 | H7 (Not supported) |
STP -> STC | 0.581 | 0.513(large) | 26.571 | 0.000 | H8 (Supported) |
EPT -> PER | −0.364 | 0.181(medium) | 12.917 | 0.000 | H9 (Supported) |
EPT -> PEB | 0.067 | 0.006(small) | 1.820 | 0.069 | H10 (Supported) |
ACC | PEB | PER | STC | |
---|---|---|---|---|
EPT | 1.057 | 1.062 | ||
PEB | 1.271 | 1.133 | ||
PER | 1.433 | |||
STC | 1.541 | 1.543 | ||
STP | 1.593 | 1.707 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Liu, R.; Zhang, W.; Zhang, T. The Effects of Epistemic Trust and Social Trust on Public Acceptance of Genetically Modified Food: An Empirical Study from China. Int. J. Environ. Res. Public Health 2020, 17, 7700. https://doi.org/10.3390/ijerph17207700
Hu L, Liu R, Zhang W, Zhang T. The Effects of Epistemic Trust and Social Trust on Public Acceptance of Genetically Modified Food: An Empirical Study from China. International Journal of Environmental Research and Public Health. 2020; 17(20):7700. https://doi.org/10.3390/ijerph17207700
Chicago/Turabian StyleHu, Longji, Rongjin Liu, Wei Zhang, and Tian Zhang. 2020. "The Effects of Epistemic Trust and Social Trust on Public Acceptance of Genetically Modified Food: An Empirical Study from China" International Journal of Environmental Research and Public Health 17, no. 20: 7700. https://doi.org/10.3390/ijerph17207700
APA StyleHu, L., Liu, R., Zhang, W., & Zhang, T. (2020). The Effects of Epistemic Trust and Social Trust on Public Acceptance of Genetically Modified Food: An Empirical Study from China. International Journal of Environmental Research and Public Health, 17(20), 7700. https://doi.org/10.3390/ijerph17207700