Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Lorenzo, A.; Andreoli, A.; Matthie, J.; Withers, P. Predicting body cell mass with bioimpedance by using theoretical methods: A technological review. J. Appl. Physiol. 1997, 82, 1542–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gomez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Genton, L.; Pichard, C. Low phase angle determined by bioelectrical impedance analysis is associated with malnutrition and nutritional risk at hospital admission. Clin. Nutr. 2013, 32, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Soundar, E.P.; Genton, L.; Pichard, C. Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects. Clin. Nutr. 2012, 31, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin. Nutr. Res. 2015, 4, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Phase angle is a useful indicator for muscle function in older adults. J. Nutr. Health Aging 2019, 23, 251–255. [Google Scholar] [CrossRef]
- Uemura, K.; Yamada, M.; Okamoto, H. Association of bioimpedance phase angle and prospective falls in older adults. Geriatr. Gerontol. Int. 2019, 19, 503–507. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Horwitz, R.I.; Chertow, G.M. Phase angle, frailty and mortality in older adults. J. Gen. Intern. Med. 2014, 29, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Uemura, K.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Ishii, H.; Shimada, H. Predictivity of bioimpedance phase angle for incident disability in older adults. J. Cachexia Sarcopenia Muscle 2020, 11, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Wirth, R.; Neubauer, M.; Eckardt, R.; Stobaus, N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J. Am. Med. Dir. Assoc. 2015, 16, 173.e17–173.e22. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Buehring, B.; Krueger, D.; Anderson, R.M.; Schoeller, D.A.; Binkley, N. Electrical properties assessed by bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1180–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.M.; Tomeleri, C.M.; Nascimento, M.A.D.; Nunes, J.P.; Antunes, M.; Nabuco, H.C.G.; Quadros, Y.; Cavalcante, E.F.; Mayhew, J.L.; Sardinha, L.B.; et al. Improvement of cellular health indicators and muscle quality in older women with different resistance training volumes. J. Sports Sci. 2018, 36, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Gonzalez, M.C.; Lu, J.H.; Jia, G.; Zheng, J.N. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc. 2015, 74, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Polderman, T.J.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Silventoinen, K.; Jelenkovic, A.; Sund, R.; Honda, C.; Aaltonen, S.; Yokoyama, Y.; Tarnoki, A.D.; Tarnoki, D.L.; Ning, F.; Ji, F.; et al. The CODATwins project: The cohort description of collaborative project of development of anthropometrical measures in twins to study macro-environmental variation in genetic and environmental effects on anthropometric traits. Twin Res. Hum. Genet. 2015, 18, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Silventoinen, K.; Jelenkovic, A.; Sund, R.; Yokoyama, Y.; Hur, Y.M.; Cozen, W.; Hwang, A.E.; Mack, T.M.; Honda, C.; Inui, F.; et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: An individual-based pooled analysis of 40 twin cohorts. Am. J. Clin. Nutr. 2017, 106, 457–466. [Google Scholar] [CrossRef]
- Elder, S.J.; Roberts, S.B.; McCrory, M.A.; Das, S.K.; Fuss, P.J.; Pittas, A.G.; Greenberg, A.S.; Heymsfield, S.B.; Dawson-Hughes, B.; Bouchard, T.J., Jr.; et al. Effect of body composition methodology on heritability estimation of body fatness. Open Nutr. J. 2012, 6, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Tarnoki, A.D.; Tarnoki, D.L.; Medda, E.; Cotichini, R.; Stazi, M.A.; Fagnani, C.; Nistic, A.L.; Lucatelli, P.; Boatta, E.; Zini, C.; et al. Bioimpedance analysis of body composition in an international twin cohort. Obes. Res. Clin. Pract. 2014, 8, e201–e298. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nishizawa, M.; Uchiyama, T.; Kasahara, Y.; Shindo, M.; Miyachi, M.; Tanaka, S. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for Sarcopenia. Int. J. Environ. Res. Public Health 2017, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.; Slagboom, P.E.; Draisma, H.H.; Martin, N.G.; Boomsma, D.I. The continuing value of twin studies in the omics era. Nat. Rev. Genet. 2012, 13, 640–653. [Google Scholar] [CrossRef]
- Rijsdijk, F.V.; Sham, P.C. Analytic approaches to twin data using structural equation models. Brief. Bioinform. 2002, 3, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Grayson, D.A. Twins reared together: Minimizing shared environmental effects. Behav. Genet. 1989, 19, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Loehlin, J.C. The Cholesky approach: A cautionary note. Behav. Genet. 1996, 26, 65–69. [Google Scholar] [CrossRef]
- Neale, M.C.; Hunter, M.D.; Pritikin, J.N.; Zahery, M.; Brick, T.R.; Kirkpatrick, R.M.; Estabrook, R.; Bates, T.C.; Maes, H.H.; Boker, S.M. OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika 2016, 81, 535–549. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dorhofer, R.P.; Later, W.; Wiese, S.; Muller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enteral. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Santana, N.M.; Pinho, C.P.S.; da Silva, C.P.; dos Santos, N.F.; Mendes, R.M.L. Phase angle as a sarcopenia marker in hospitalized elderly patients. Nutr. Clin. Pract. 2018, 33, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Kilic, M.K.; Kizilarslanoglu, M.C.; Arik, G.; Bolayir, B.; Kara, O.; Dogan Varan, H.; Sumer, F.; Kuyumcu, M.E.; Halil, M.; Ulger, Z. Association of bioelectrical impedance analysis-derived phase angle and sarcopenia in older adults. Nutr. Clin. Pract. 2017, 32, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.F.; Tomeleri, C.M.; Ribeiro, A.S.; Schoenfeld, B.J.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effect of resistance training on phase angle in older women: A randomized controlled trial. Scand. J. Med. Sci. Sports 2017, 27, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Schoenfeld, B.J.; Souza, M.F.; Tomeleri, C.M.; Silva, A.M.; Teixeira, D.C.; Sardinha, L.B.; Cyrino, E.S. Resistance training prescription with different load-management methods improves phase angle in older women. Eur. J. Sport Sci. 2017, 17, 913–921. [Google Scholar] [CrossRef]
- Sardinha, L.B. Physiology of exercise and phase angle: Another look at BIA. Eur. J. Clin. Nutr. 2018, 72, 1323–1327. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Zadro, J.R.; Shirley, D.; Andrade, T.B.; Scurrah, K.J.; Bauman, A.; Ferreira, P.H. The beneficial effects of physical activity: Is it down to your genes? A systematic review and meta-analysis of twin and family studies. Sports Med. Open 2017, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Churchward-Venne, T.A.; Tieland, M.; Verdijk, L.B.; Leenders, M.; Dirks, M.L.; de Groot, L.C.; van Loon, L.J. There are no nonresponders to resistance-type exercise training in older men and women. J. Am. Med. Dir. Assoc. 2015, 16, 400–411. [Google Scholar] [CrossRef]
- Dittmar, M. Reliability and variability of bioimpedance measures in normal adults: Effects of age, gender, and body mass. Am. J. Phys. Anthropol. 2003, 122, 361–370. [Google Scholar] [CrossRef]
Variable | Total (n = 168) | Male (n = 54) | Female (n = 114) | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | |
Age (years) | 61.0 | 16.5 | 60.7 | 20.9 | 61.1 | 14.0 | 0.903 |
Height (cm) | 157.8 | 8.23 | 165.9 | 6.30 | 153.9 | 5.95 | <0.001 |
Body Weight (kg) | 53.8 | 10.3 | 63.0 | 9.57 | 49.5 | 7.34 | <0.001 |
BMI (kg/m2) | 21.5 | 3.19 | 22.9 | 3.32 | 20.9 | 2.93 | <0.001 |
SMI (kg/m2) | 6.79 | 1.12 | 7.95 | 0.93 | 6.22 | 0.67 | <0.001 |
PhA (°) | 5.46 | 0.88 | 5.94 | 0.92 | 5.24 | 0.76 | <0.001 |
Variable | Body Weight | BMI | SMI | PhA | ||||
---|---|---|---|---|---|---|---|---|
r | r | r | r | |||||
Total (n = 168) | ||||||||
Height (cm) | 0.387 | ** | −0.088 | −0.0550 | −0.082 | |||
Body Weight (kg) | 0.879 | ** | 0.590 | ** | 0.151 | |||
BMI (kg/m2) | 0.655 | ** | 0.189 | * | ||||
SMI (kg/m2) | 0.467 | ** | ||||||
MZ (n = 150) | ||||||||
Height (cm) | 0.370 | ** | −0.094 | −0.066 | −0.107 | |||
Body Weight (kg) | 0.885 | ** | 0.618 | ** | 0.127 | |||
BMI (kg/m2) | 0.681 | ** | 0.163 | * | ||||
SMI (kg/m2) | 0.390 | ** | ||||||
DZ (n = 18) | ||||||||
Height (cm) | 0.527 | * | −0.060 | −0.029 | −0.029 | |||
Body Weight (kg) | 0.813 | ** | 0.376 | 0.171 | ||||
BMI (kg/m2) | 0.464 | 0.232 | ||||||
SMI (kg/m2) | 0.605 | ** |
Variable | −2LL | AIC | p-Value | A (95% CI) | C (95% CI) | E (95% CI) |
---|---|---|---|---|---|---|
Height (cm) | ||||||
ACE | 1782 | 1119 | - | - | - | - |
AE | 1783 | 1117 | 0.558 | 0.932 (0.908–0.950) | - | 0.068 (0.050–0.091) |
CE | 1831 | 1165 | <0.01 | - | 0.888 (0.851–0.916) | 0.112 (0.084–0.149) |
E | 2092 | 1424 | <0.01 | - | - | - |
Body Weight (kg) | ||||||
ACE | 2228 | 1564 | - | - | - | - |
AE | 2228 | 1562 | 1.000 | 0.758 (0.682–0.817) | - | 0.242 (0.183–0.318) |
CE | 2241 | 1575 | <0.01 | - | 0.704 (0.619–0.772) | 0.296 (0.228–0.381) |
E | 2356 | 1688 | <0.01 | - | - | - |
BMI (kg/m2) | ||||||
ACE | 1568 | 904.0 | - | - | - | - |
AE | 1568 | 902.0 | 1.000 | 0.718 (0.630–0.786) | - | 0.282 (0.214–0.370) |
CE | 1585 | 919.1 | <0.01 | - | 0.645 (0.548–0.725) | 0.355 (0.275–0.451) |
E | 1675 | 1007 | <0.01 | - | - | - |
SMI (kg/m2) | ||||||
ACE | 699.8 | 55.83 | - | - | - | - |
AE | 700.4 | 54.43 | 0.439 | 0.513 (0.457–0.625) | - | 0.487 (0.375–0.543) |
CE | 700.9 | 54.89 | 0.304 | - | 0.467 (0.337–0.579) | 0.533 (0.421–0.663) |
E | 740.1 | 92.10 | <0.01 | - | - | - |
PhA (°) | ||||||
ACE | 1783 | 1119 | - | - | - | - |
AE | 1783 | 1117 | 0.558 | 0.506 (0.341–0.642) | - | 0.494 (0.358–0.659) |
CE | 1831 | 1165 | <0.01 | - | 0.281 (0.137–0.414) | 0.718 (0.585–0.863) |
E | 2092 | 1424 | <0.01 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, D.; Inui, F.; Honda, C.; Tomizawa, R.; Watanabe, M.; Silventoinen, K.; Sakai, N. Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study. Int. J. Environ. Res. Public Health 2020, 17, 7810. https://doi.org/10.3390/ijerph17217810
Matsumoto D, Inui F, Honda C, Tomizawa R, Watanabe M, Silventoinen K, Sakai N. Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study. International Journal of Environmental Research and Public Health. 2020; 17(21):7810. https://doi.org/10.3390/ijerph17217810
Chicago/Turabian StyleMatsumoto, Daisuke, Fujio Inui, Chika Honda, Rie Tomizawa, Mikio Watanabe, Karri Silventoinen, and Norio Sakai. 2020. "Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study" International Journal of Environmental Research and Public Health 17, no. 21: 7810. https://doi.org/10.3390/ijerph17217810
APA StyleMatsumoto, D., Inui, F., Honda, C., Tomizawa, R., Watanabe, M., Silventoinen, K., & Sakai, N. (2020). Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study. International Journal of Environmental Research and Public Health, 17(21), 7810. https://doi.org/10.3390/ijerph17217810