Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Description Index of Cultivated Land Change
2.3.2. Trend Analysis
2.3.3. Landscape Pattern Index
2.3.4. Binary Logistic Regression
3. Results
3.1. Cultivated Land Changes
3.1.1. Changes in Cultivated Land Area
3.1.2. Spatial Distribution Characteristics of Cultivated Land
3.1.3. The Trend of Increase or Decrease
3.2. Driving Force Analysis of Cultivated Land Changes
3.2.1. Driving Factors and Sampling
3.2.2. Change of Driving Force
3.3. Landscape Pattern Changes
3.3.1. Dynamic Changes in Landscape Pattern Index
3.3.2. Correlation Analysis
3.3.3. Landscape Pattern Changes Caused by Cultivated Land Changes
4. Discussion
4.1. Complex Driving Force of Cultivated Land Change
4.2. Impact of Cultivated Land Changes on Landscape Pattern
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 2011, 369, 1010–1035. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [Green Version]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Bryan, B.A. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.A.; Currie, W.S.; Eshleman, K.N.; Kuers, K.; Monteleone, S.; Negley, T.L.; Pohlad, B.R.; Thomas, C.L. Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecol. Appl. 2008, 18, 104–118. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Scott, N.A.; Ross, D.J.; Salt, G.J.; Tate, K.R. Land-use change effects on soil C and N transformations in soils of high N status: Comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry 2003, 66, 203–221. [Google Scholar] [CrossRef]
- Turner, B.L.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio 1994, 23, 91–95. [Google Scholar]
- Shu, B.; Zhang, H.; Li, Y.; Qu, Y.; Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat Int. 2014, 43, 181–190. [Google Scholar] [CrossRef]
- Chakir, R.; Le Gallo, J. Predicting land use allocation in France: A spatial panel data analysis. Ecol. Econ. 2013, 92, 114–125. [Google Scholar] [CrossRef]
- Yulianto, F.; Maulana, T.; Khomarudin, M.R. Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model, in the upstream Citarum Watershed, West Java, Indonesia. Int. J. Digit. Earth 2019, 12, 1151–1176. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Luo, S.; Xu, B.; Zhou, Q. Land Use Changes in the Zoige Plateau Based on the Object-Oriented Method and Their Effects on Landscape Patterns. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Echeverría, C.; Newton, A.; Nahuelhual, L.; Coomes, D.; Rey-Benayas, J.M. How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl. Geogr. 2012, 32, 822–831. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Gong, J.; Yang, J.; Tang, W. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a national ecologically representative region in China. Int. J. Environ. Res. Pub. Health 2015, 12, 14192–14215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowe, P.; Pedzisai, E.; Gumindoga, W.; Rwasoka, D.T. An analysis of changes in the urban landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan City, Turkey using landscape metrics and satellite data. Geocarto Int. 2015, 30, 506–519. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Lepers, E.; Lambin, E.F.; Janetos, A.C.; DeFries, R.; Achard, F.; Ramankutty, N.; Scholes, R.J. A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience 2005, 55, 115–124. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.; Zhang, W.; Liao, A.; Chen, L.; Chen, Z.; Chen, J. Global cultivated land mapping at 30 m spatial resolution. Sci. China Earth Sci. 2016, 59, 2275–2284. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Beusen, A.; Van Drecht, G.; De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12, 000 years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, L.; Tang, S.; Li, X.; Hao, T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. J. Geogr. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samasse, K.; Hanan, N.P.; Tappan, G.; Diallo, Y. Assessing cropland area in West Africa for agricultural yield analysis. Remote Sens. 2018, 10, 1785. [Google Scholar] [CrossRef] [Green Version]
- Koga, N.; Sawamoto, T.; Tsuruta, H. Life cycle inventory-based analysis of greenhouse gas emissions from arable land farming systems in Hokkaido, northern Japan. Soil Sci. Plant Nutr. 2006, 52, 564–574. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bala, G.; Duffy, P.B. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett. 2006, 33, L06708. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Dekker, S.C.; Van Zanden, J.L. Per-capita estimations of long-term historical land use and the consequences for global change research. J. Land Use Sci. 2017, 12, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Pendrill, F.; Persson, U.M. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges. PLoS ONE 2017, 12, e0181202. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Spatiotemporal patterns of urban encroachment on cropland and its impacts on potential agricultural productivity in China. Remote Sens. 2013, 5, 6443–6460. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Cheng, W.; Wang, N.; Liu, Q.; Ma, T.; Chen, Y.; Zhou, C. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990–2015. J. Geogr. Sci. 2019, 29, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Song, W.; Liu, M. Farmland conversion decreases regional and national land quality in China. Land Degrad. Dev. 2017, 28, 459–471. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Chen, X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur. 2015, 7, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Zhao, J.; Deng, H.; Luo, Q. Predicting China’s cultivated land resources and supporting capacity in the twenty-first century. Int. J. Sust. Dev. World 2006, 13, 229–241. [Google Scholar] [CrossRef]
- Lu, Y.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Gordon, I.J.; Song, S.; Huang, J.; Jia, S.; Zhang, F.; Liu, X.; et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 2015, 1, e1400039. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhou, J.X.; Huang, B. Benefit evaluation of wetlands resource with different modes of protection and utilization in the Dongting Lake region. Proc. Environ. Sci. 2012, 13, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Lin, Z.; Jiang, X.; Yan, H.; Wang, X. Spatiotemporal differentiations of arable land use intensity—A comparative study of two typical grain producing regions in northern and southern China. J. Clean. Prod. 2019, 208, 1159–1170. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Qiao, W.; Sheng, Y.; Fang, B.; Wang, Y. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geogr. Res. 2013, 32, 1497–1507. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Ass. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Paukert, C.P.; Pitts, K.L.; Whittier, J.B.; Olden, J.D. Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. Ecol. Indic. 2011, 11, 304–310. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 21 April 2015).
- Yang, X.; Liu, Z. Quantifying landscape pattern and its change in an estuarine watershed using satellite imagery and landscape metrics. Int. J. Remote Sens. 2005, 26, 5297–5323. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, B.; Song, K.; Guo, Z.; Liu, D.; Li, F. Landscape dynamics and driving factors in Da’an County of Jilin Province in Northeast China during 1956–2000. Chin. Geogr. Sci. 2008, 18, 137–145. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Fu, Y.; Lu, Z.; Shen, X. Urban spatial growth modeling using logistic regression and cellular automata: A case study of Hangzhou. Ecol. Indic. 2020, 113, 106200. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Newman, M.E.; McLaren, K.P.; Wilson, B.S. Long-term socio-economic and spatial pattern drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, Jamaica. Agric. Ecosyst. Environ. 2014, 186, 185–200. [Google Scholar] [CrossRef]
- Schweizer, P.E.; Matlack, G.R. Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landsc. Urban Plan. 2014, 121, 55–64. [Google Scholar] [CrossRef]
- Long, H.L. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Gao, P.; Niu, X.; Wang, B.; Zheng, Y. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china. Sci. Rep. 2015, 5, 11038. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term monitoring of cropland change near dongting lake, china, using the LandTrendr algorithm with landsat imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, X.; Xie, Y.; Li, X.; Li, F.; Hou, Z. Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Sci. Rep. 2014, 4, 6339. [Google Scholar] [CrossRef]
- Börner, J.; Wunder, S.; Wertz-Kanounnikoff, S.; Tito, M.R.; Pereira, L.; Nascimento, N. Direct conservation payments in the Brazilian Amazon: Scope and equity implications. Ecol. Econ. 2010, 6, 1272–1282. [Google Scholar] [CrossRef]
- Crespo-Cebada, E.; Díaz-Caro, C.; Robina-Ramírez, R.; Sánchez-Hernández, M.I. Is Biodiversity a Relevant Attribute for Assessing Natural Parks? Evidence from Cornalvo Natural Park in Spain. Forests 2020, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Chen, Q.; Xiao, T.; Wang, H. Willingness to pay for ecological function regions protection based on a choice experiment method: A case study of the Shiwandashan nature reserve. Qual. Quant. 2019, 2, 813–829. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S. Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China). Environ. Monit. Assess. 2013, 185, 9729–9742. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Frate, L.; Saura, S.; Minotti, M.; Di Martino, P.; Giancola, C.; Carranza, M.L. Quantifying forest spatial pattern trends at multiple extents: An approach to detect significant changes at different scales. Remote Sens. 2014, 6, 9298–9315. [Google Scholar] [CrossRef] [Green Version]
Driving Factors | Unit | Describe |
---|---|---|
Elevation (x1) | m | Directly obtained DEM data. |
Slope (x2) | 1–5 | The slope was calculated from DEM data. The slope was classified into 2°, 6°, 15°, and 25° as the discontinuous points (including upper but not lower) and assigned values of 1, 2, 3, 4, and 5. |
Temperature (x3) | °C | We interpolated the annual average temperature (or annual precipitation) of each meteorological station by kriging to obtain the grid data of annual average temperature (or annual precipitation) with a spatial resolution of 30 m, and finally calculated the grid data of continuous average temperature (or annual precipitation) for many years during the research period. |
Precipitation (x4) | mm | |
Distance to Dongting Lake (x5) | km | Calculate the nearest direct distance of each grid to Dongting lake (the core area in Figure 1) |
Distance to the water source (x6) | km | The rivers and canals, lakes, and reservoirs on the maps of land use types in different periods (Figure 2) were extracted as irrigation water sources. Then calculate the direct distance from each grid to the water source. |
Distance to town (x7) | km | Extract the urban land on the land use type map of each period (Figure 2) and calculate the nearest distance of each grid to it. |
Distance to a rural residential area (x8) | km | Extract the rural residential area on the land use type map of each period (Figure 2) and calculate the nearest distance of each grid to it. |
Distance to other construction land (x9) | km | Extract the other construction land area on the land use type map of each period (Figure 2), mainly transportation land, mining area, industrial zone, etc., and calculate the nearest distance of each grid to it. |
Neighborhood enrichment of grassland (x10) | / | The first-class land use type was extracted from the land use map of each period, and the neighborhood abundance index was calculated according to the radius of 5 × 5 pixels. The cultivated land neighborhood abundance was not included in the index system because of its collinear with other driving factors. Similarly, unused land was not included in the indicator system due to its small distribution range and area. |
Neighborhood enrichment of construction land (x11) | / | |
Neighborhood enrichment of forest land (x12) | / | |
Neighborhood enrichment of water area (x13) | / | |
Population density (x14) | cap/km2 | The total resident population of each county divided by the county area. |
GDP per capita (x15) | 103yuan/cap | The total GDP of each county divided by the total resident population of the county. |
Rate of population change (x16) | % | It was calculated from the total population data of each period. |
Rate of GDP change (x17) | % | It was calculated from the total GDP data of each period. |
Driving Factors | 1980–1990 | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | exp(β) | β | exp(β) | β | exp(β) | β | exp(β) | β | exp(β) | β | exp(β) | β | exp(β) | |
x1 | −0.006 | 0.994 | −0.004 | 0.996 | −0.003 | 0.997 | * | * | −0.003 | 0.997 | * | * | * | * |
x2–1 | −4.078 | 0.017 | −2.668 | 0.069 | −1.399 | 0.247 | −0.610 | 0.543 | −2.018 | 0.133 | * | * | * | * |
x2–2 | −4.740 | 0.009 | −3.066 | 0.047 | −1.943 | 0.143 | −0.867 | 0.420 | −2.295 | 0.101 | * | * | * | * |
x2–3 | −4.089 | 0.017 | −2.797 | 0.061 | −1.553 | 0.212 | −0.929 | 0.395 | −2.096 | 0.123 | * | * | * | * |
x2–4 | −2.087 | 0.124 | −2.051 | 0.129 | −0.849 | 0.428 | −0.721 | 0.486 | −1.362 | 0.256 | * | * | * | * |
x3 | −2.628 | 0.072 | 2.215 | 9.162 | −2.029 | 0.131 | 0.489 | 1.631 | −0.684 | 0.505 | 0.659 | 1.932 | * | * |
x4 | 0.004 | 1.004 | −0.003 | 0.997 | −0.002 | 0.998 | −0.001 | 0.999 | −0.002 | 0.998 | −0.002 | 0.998 | 0.001 | 1.001 |
x5 | −0.024 | 0.976 | −0.014 | 0.986 | −0.006 | 0.994 | −0.003 | 0.997 | −0.005 | 0.995 | 0.010 | 1.011 | 0.002 | 1.002 |
x6 | −0.177 | 0.838 | −0.056 | 0.945 | −0.053 | 0.948 | −0.020 | 0.980 | −0.056 | 0.946 | 0.045 | 1.046 | 0.034 | 1.034 |
x7 | −0.013 | 0.987 | * | * | 0.010 | 1.010 | 0.008 | 1.008 | −0.015 | 0.985 | −0.037 | 0.964 | −0.043 | 0.958 |
x8 | 0.161 | 1.174 | 0.439 | 1.551 | 0.020 | 1.020 | −0.075 | 0.927 | 0.102 | 1.108 | −0.015 | 0.985 | * | * |
x9 | −0.008 | 0.992 | 0.026 | 1.026 | 0.014 | 1.014 | −0.006 | 0.994 | * | * | −0.034 | 0.966 | −0.039 | 0.962 |
x10 | 0.055 | 1.057 | 0.118 | 1.125 | 0.088 | 1.092 | 0.104 | 1.109 | 0.072 | 1.074 | 0.096 | 1.101 | 0.096 | 1.100 |
x11 | 0.065 | 1.067 | 0.259 | 1.296 | 0.167 | 1.182 | 0.256 | 1.292 | 0.183 | 1.200 | 0.368 | 1.445 | 0.358 | 1.430 |
x12 | 0.530 | 1.698 | 3.028 | 20.648 | 2.691 | 14.751 | 2.972 | 19.531 | 2.037 | 7.670 | 3.289 | 26.810 | 3.023 | 20.551 |
x13 | 0.720 | 2.055 | 1.351 | 3.863 | 1.283 | 3.608 | 1.615 | 5.028 | 1.158 | 3.184 | 1.964 | 7.128 | 1.947 | 7.006 |
x14 | 0.001 | 1.001 | −0.001 | 0.999 | 0.002 | 1.002 | 0.000 | 1.000 | 0.001 | 1.001 | 0.000 | 1.000 | 0.001 | 1.001 |
x15 | 0.195 | 1.215 | 0.128 | 1.136 | −0.078 | 0.925 | 0.036 | 1.037 | 0.015 | 1.015 | 0.020 | 1.021 | 0.002 | 1.002 |
x16 | −0.003 | 0.997 | 0.005 | 1.005 | 0.010 | 1.010 | −0.021 | 0.979 | −0.017 | 0.983 | −0.023 | 0.978 | 0.041 | 1.042 |
x17 | 0.003 | 1.003 | −0.002 | 0.998 | −0.001 | 0.999 | * | * | * | * | * | * | * | * |
ROC | 0.723 | 0.882 | 0.866 | 0.889 | 0.803 | 0.945 | 0.922 | |||||||
Percentage correct 0 | 70.96 | 83.50 | 86.67 | 85.32 | 83.84 | 87.88 | 85.70 | |||||||
Percentage correct 1 | 60.94 | 78.55 | 74.30 | 83.52 | 65.36 | 90.62 | 86.99 | |||||||
Overall percentage | 65.95 | 81.02 | 80.49 | 84.42 | 74.60 | 89.25 | 86.35 |
Landscape Pattern Index | 1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|
SHAPE_AM | 0.812 | 0.809 | 0.814 | 0.808 | 0.808 | 0.803 | 0.798 | 0.800 |
FRAC_MN | 0.816 | 0.813 | 0.817 | 0.812 | 0.810 | 0.804 | 0.801 | 0.802 |
PD | 0.603 | 0.602 | 0.603 | 0.600 | 0.605 | 0.613 | 0.615 | 0.621 |
COHESION | 0.062 | 0.056 | 0.057 | 0.055 | 0.054 | 0.059 | 0.063 | 0.067 |
Trend of Cultivated Land | Trend of Landscape Pattern Index | Class Level | Landscape Level | ||||||
---|---|---|---|---|---|---|---|---|---|
SHAPE_AM | FRAC_MN | PD | COHESION | SHAPE_AM | FRAC_MN | PD | COHESION | ||
Non-significant 78.71% | Non-significant | 91.36 | 91.38 | 97.62 | 96.71 | 88.24 | 87.47 | 93.78 | 88.04 |
Decrease | 3.64 | 3.69 | 0.82 | 1.81 | 4.80 | 5.27 | 1.43 | 7.60 | |
Increase | 5.00 | 4.92 | 1.56 | 1.48 | 6.96 | 7.26 | 4.79 | 4.36 | |
Decrease 14.45% | Non-significant | 57.11 | 39.72 | 77.63 | 10.73 | 51.1 | 52.72 | 60.20 | 42.27 |
Decrease | 14.42 | 11.05 | 9.55 | 88.51 | 16.64 | 17.14 | 6.67 | 42.87 | |
Increase | 28.46 | 49.23 | 12.82 | 0.76 | 32.25 | 30.14 | 33.12 | 14.86 | |
Increase 6.83% | Non-significant | 67.96 | 44.36 | 89.87 | 13.39 | 54.76 | 55.36 | 84.56 | 49.47 |
Decrease | 16.84 | 43.73 | 1.94 | 0.81 | 23.32 | 22.76 | 8.49 | 24.04 | |
Increase | 15.21 | 11.91 | 8.19 | 85.8 | 21.92 | 21.87 | 6.95 | 26.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhou, K.; Dong, H.; Xie, B. Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin. Int. J. Environ. Res. Public Health 2020, 17, 7988. https://doi.org/10.3390/ijerph17217988
Li J, Zhou K, Dong H, Xie B. Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin. International Journal of Environmental Research and Public Health. 2020; 17(21):7988. https://doi.org/10.3390/ijerph17217988
Chicago/Turabian StyleLi, Junhan, Kaichun Zhou, Huimin Dong, and Binggeng Xie. 2020. "Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin" International Journal of Environmental Research and Public Health 17, no. 21: 7988. https://doi.org/10.3390/ijerph17217988
APA StyleLi, J., Zhou, K., Dong, H., & Xie, B. (2020). Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin. International Journal of Environmental Research and Public Health, 17(21), 7988. https://doi.org/10.3390/ijerph17217988