Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Conceptual Model
- Personal and demographic variables: nationality, weight and height, blood pressure, gender, and age.
- Occupational variables: previous jobs (noise exposure in, years of occupational noise), noise level at workplace (measurement), daily hours of noise exposure, years at current job, occupational exposure to ototoxic agents, sector, workstation, and system for protecting against noise or use of personal protection.
- Non-occupational variables: off-hours exposure to noise, a family history of hearing problems, the presence of general diseases with the potential to affect hearing, a history of otologic events, and the use of ototoxic drugs.
- Hypoacusia evaluation variables: objective such as SAL index/ELI index/% Overall loss; or subjective such as hearing perception, quality of communications, Television volume, hearing ability in noisy environment, and sensitivity to loud noise.
2.3. Study Variables
2.3.1. Percentage of Binaural Loss
2.3.2. Gender
2.3.3. Age
2.3.4. Family History of Hearing Problems
2.4. Bayesian Networks (BN)
2.5. Model Performance. Receiver-Operating Characteristics
3. Results
3.1. Bayesian Network Utilized
3.2. Sensitivity Analysis. Gender and Age vs. Percentage of Binaural Loss Index
3.3. Sensitivity Analysis. Gender and Family History of Hearing Problems vs. Percentage of Binaural Loss Index
3.4. Sensitivity Analysis. Age and Family History of Hearing Problems vs. Percentage of Binaural Loss Index
3.5. Sensitivity Analysis. Family History of Hearing Problems, Gender and Age vs. Percentage of Binaural Loss Index
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Díaz, C.; Goycoolea, M.; Cardemil, F. Hipoacusia: Trascendencia, incidencia y prevalencia. Rev. Médica Clínica Condes 2016, 27, 731–739. [Google Scholar]
- Lin, F.R.; Yaffe, K.; Xia, J.; Xue, Q.; Harris, T.; Purchase-Helzner, E.; Satterfield, S.; Ayonayon, H.; Ferrucci, L.; Simonsick, E. Hearing loss and cognitive decline in older adults. JAMA Intern. Med. 2013, 173, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.E.; Feldman, J.; Dunbar, J.; McConkey-Robbins, A.; Niparko, J.; Rittenhouse, R.; Skinner, M. The societal costs of severe to profound hearing loss in the United States. Int. J. Technol. Assess. Health Care 2000, 16, 1120–1135. [Google Scholar] [CrossRef] [PubMed]
- Pascolini, D.; Smith, A. Hearing Impairment in 2008: A compilation of available epidemiological studies. Int. J. Audiol. 2009, 48, 473–485. [Google Scholar] [CrossRef]
- Van Vliet, D. The current status of hearing care: Can we change the status quo? J. Am. Acad. Audiolm 2005, 16, 410–418. [Google Scholar] [CrossRef]
- Yueh, B.; Shapiro, N.; MacLean, C.; Shekelle, P. Screening and management of adult hearing loss in primary care: Scientific review. JAMA 2003, 289, 1976–1985. [Google Scholar] [CrossRef] [Green Version]
- Hallam, R.; Ashton, P.; Sherbourne, K.; Gailey, L. Acquired profound hearing loss: Mental health and other characteristics of a large sample: Hipoacusia adquirida profunda: Salud mental y otras características de una muestra grande. Int. J. Audiol. 2006, 45, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.-Y.; Schrauwen, I.; Moteki, H.; Azaiez, H. Advances in Molecular Genetics and the Molecular Biology of Deafness. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Fernando Pablo, J.A. Manual de Higiene Industrial; Fundación Mapfre: Madríd, Spain, 1996. [Google Scholar]
- Sanz López, L. Caracterización del Cocleograma de Ratón CBA en un Modelo de Ototoxicidad Inducido por Ruido; Universidad de Alcalá: Alcalá de Henares, Spain, 2013. [Google Scholar]
- Bartosińska, M.; Ejsmont, J. Health Condition of Employees Exposed to Noise-Extra Auditory Health Effects. Wiad. Lek. (Wars. Pol. 1960) 2002, 55, 20–25. [Google Scholar]
- Babisch, W. Noise and Health. Environ. Health Perspect. 2005, 113. [Google Scholar] [CrossRef] [Green Version]
- Barrero, J.P.; García-Herrero, S.; Mariscal, M.A.; Gutierrez, J.M. How activity type, time on the job and noise level on the job affect the hearing of the working population. Using Bayesian networks to predict the development of hypoacusia. Saf. Sci. 2018, 110, 1–12. [Google Scholar] [CrossRef]
- Barrero, J.P.; García-Herrero, S.; Mariscal, M.A.; Gutierrez, J.M. Data on the main working conditions with influence on the development of hearing loss amongst the occupational population in Spain. Data Brief 2018, 20, 1004–1017. [Google Scholar] [CrossRef]
- Herrero, S.G.; Saldana, M.A.M.; Campo, M.A.M.; Ritzel, D.O. A model for the improvement of occupational safety management. J. Saf. Health Environ. Res. 2006, 3, 1–21. [Google Scholar]
- Martín Villares, C.; San Román, J.; Dominguez, J.; Fernández, M.E.; Pomar, P.; Tapia, M. Perfil lipídico de la sordera ligada al envejecimiento. Nutr. Hosp. 2005, 20, 52–57. [Google Scholar]
- Muñiz, J.F.; Ventura, A.M.; Algarra, J.M. Estudio de la correlación existente entre el efecto supresor contralateral y la Fatiga auditiva mediante Otoemisiones Acústicas Transitorias. Acta Otorrinolaringol. Esp. 2006, 57, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Flodgren, E.; Kylin, B. Sex differences in hearing in relation to noise exposure. Acta Oto Laryngol. 1960, 52, 358–366. [Google Scholar] [CrossRef]
- Dieroff, H.; Beck, C. Experimentellmikrosopische Studien Zur Frage der Lokalisation von bleibenden Horschanden nach industrielarnbelastung mit tonalen gerauschanteilen. Arch. Ohr. Nas. Kehl. 1964, 184, 433–445. [Google Scholar]
- Hallmo, P.; Sundby, A.; Mair, I.W. Extended high-frequency audiometry: Air-and bone-conduction thresholds, age and gender variations. Scand. Audiol. 1994, 23, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Calviño del Río, A.; Abreu García, V.; Cárdenas Sotolongo, B. Sordera profesional; enfermedad frecuente en la práctica de la salud ocupacional; informe preliminar. Rev. Cuba. Hig. Epidemiol. 1982, 20, 408–418. [Google Scholar]
- Tambs, K.; Hoffman, J.; Borchgrevink, M.; Holmen, J.; Engdahl, B. Hearing loss induced by occupational and impulse noise: Results on threshold shifts by frequencies, age and gender from the Nord-Trøndelag Hearing Loss Study: Hipoacusia inducida por ruido laboral y de impacto: Resultados del estudio de Pérdidas Auditivas de Nord-Trondelag sobre los cambios del umbral según frecuencia, edad y género. Int. J. Audiol. 2006, 45, 309–317. [Google Scholar]
- Pearson, J.D.; Morrell, H.; Gordon-Salant, S.; Brant, L.; Metter, J.; Klein, L.; Fozard, J. Gender differences in a longitudinal study of age—Associated hearing loss. J. Acoust. Soc. Am. 1995, 97, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Sharashenidze, N.; Schacht, J.; Kevanishvili, Z. Age-related hearing loss: Gender differences. Georgian Med. News 2007, 144, 14–18. [Google Scholar]
- Ruiz, E. Contaminación Acústica: Efectos sobre Parámetros Físicos y Psicológicos. Ph.D. Thesis, San Cristóbal de la Laguna, España, Spain, 1997. Available online: ftp://tesis.bbtk.ull.es/ccppytec/cp188.pdf, https://riull.ull.es/xmlui/handle/915/21221 (accessed on 31 July 2014).
- Guerrero Pupo, J. Ruido Como Agente Agresor a la Salud en la Fábrica de Combinadas Caneras KTP de Holguín; Centro Provincial de Higiene y Epidemiología de La Habana: La Habana, Cuba, 1985. [Google Scholar]
- Mcshane, D.P.; Hyde, M.; Finkelstein, D.; Alberti, P. Unilateral otosclerosis and noise—Induced occupational hearing loss. Clin. Otolaryngol. 1991, 16, 70–75. [Google Scholar] [CrossRef]
- Friedman, N.; Linial, M.; Nachman, I.; Peter, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 2000, 7, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.J.; Van der Gaag, L.C.; Abu-Hanna, A. Bayesian Networks in Biomedicine and Health-Care; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Mani, S.; Valtorta, M.; McDermott, S. Building Bayesian network models in medicine: The MENTOR experience. Appl. Intell. 2005, 22, 93–108. [Google Scholar] [CrossRef]
- García-Herrero, S.; Mariscal-Saldaña, M.A.; López-Perea, E.M.; Quiroz-Fores, M.F. Influence of demand, control and social support on job stress. Analysis by employment status from the V European working conditions survey. DYNA (Colomb.) 2016, 83, 52–60. [Google Scholar] [CrossRef]
- Febres, J.D.; Fatemeh, M.; Mariscal-Saldaña, M.A.; Herrera, S.; García-Herrero, S. The role of journey purpose in road traffic injuries: A bayesian network approach. J. Adv. Transp. 2019. [Google Scholar] [CrossRef]
- Mariscal, M.A.; López-Perea, E.; López-García, J.R.; Herrea, S.; García-Herrero, S. The influence of employee training and information on the probability of accident rates. Int. J. Ind. Ergon. 2019, 72, 311–319. [Google Scholar] [CrossRef]
- Lau, C.L.; Mayfield, H.; Lowry, J.; Watson, C.; Kama, M.; Nilles, E.; Smith, C. Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji. Environ. Model. Softw. 2017, 97, 271–286. [Google Scholar] [CrossRef]
- Argiento, R.; Guglielmi, A.; Lanzarote, E.; Nawajah, I. Bayesian joint modelling of the health profile and demand of home care patients. IMA J. Manag. Math. 2016, 28, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Miyauchi, Y.; Nishimura, H. Bayesian Network Modeling for Specific Health Checkups on Metabolic Syndrome. In Advances in Biomedical Informatics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 79–96. [Google Scholar]
- Farmani, M.; de Vries, B. A probabilistic approach to hearing loss compensation. In Proceedings of the 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Reims, France, 21–24 September 2014. [Google Scholar]
- Wen, Y.-H.; Wu, S.; Lin, C.; Tsai, J.; Yang, P.; Chang, Y.; Tseng, K. A Bayesian approach to identifying new risk factors for dementia: A nationwide population-based study. Medicine 2016, 95, e3658. [Google Scholar] [CrossRef] [PubMed]
- Pittavino, M.; Dreyfus, A.; Heuer, C.; Benschop, J.; Wilson, P.; Collins-Emerson, J.; Togerson, P.R.; Furrer, R. Comparison between generalized linear modelling and additive Bayesian network; identification of factors associated with the incidence of antibodies against Leptospira interrogans sv Pomona in meat workers in New Zealand. Acta Trop. 2017, 173, 191–199. [Google Scholar] [CrossRef] [PubMed]
- García-Herrero, S.; López-García, J.R.; Herrera, S.; Fontaneda, I.; Báscones, S.; Mariscal, M.A. The Influence of Recognition and Social Support on European Health Professionals’ Occupational Stress: A Demands-Control-Social Support-Recognition Bayesian Network Model. BioMed Res. Int. 2017, 2017, 4673047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 2009, 90, 363–368. [Google Scholar] [CrossRef]
- Peter, R.; March, S.; du Prel, J.-B. Are status inconsistency, work stress and work-family conflict associated with depressive symptoms? Testing prospective evidence in the lidA study. Soc. Sci. Med. 2016, 151, 100–109. [Google Scholar] [CrossRef]
- Uña, M.; García, E.; Betegón, A. Protocolo de Vigilancia Sanitaria Específica para los/las Trabajadores/as Expuestos al Ruido; Centro de Publicaciones de la Secretaría Técnica del Ministerio de Sanidad y Consumo: Madrid, Spain, 2000; pp. 1–77. [Google Scholar]
- RD 286, RD REAL DECRETO 286/2006, de 10 de Marzo, sobre la Protección de la Salud y la Seguridad de los Trabajadores Contra los riesgos Relacionados con la Exposición al Ruido; Ministerio de la Presidencia: Madrid, Spain, 2006.
- Ley, B.O.E. 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales. Boletín Off. Estado 1995, 10, 32590–32611. [Google Scholar]
- RD 1971, Real Decreto 1971/1999, de 23 de Diciembre, de Procedimiento Para el Reconocimiento, Declaración y Calificación del Grado de Minusvalía; Boletín Oficial: Madrid, Spain, 1999.
- Castillo, E.; Gutierrez, J.M.; Hadi, A.S. Expert Systems and Probabilistic Network Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Neapolitan, R.E. Learning Bayesian Networks; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; Volume 38. [Google Scholar]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection; Ijcai: Montreal, QC, Canada, 1995. [Google Scholar]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
Group | Binaural Loss | No. of Cases | Frequency |
---|---|---|---|
I | 0% | 1221 | 86.11% |
II | 15% ≥ X > 0% | 163 | 11.50% |
III | 30% ≥ X > 15% | 28 | 1.97% |
IV | 45% ≥ X > 30% | 4 | 0.28% |
V | X > 45% | 2 | 0.00% |
TOTAL | 1418 | 100% |
Group | Age Range | No. of Cases | Frequency % |
---|---|---|---|
1 | <29 | 273 | 19 |
2 | ≥29 < 35 | 276 | 20 |
3 | ≥35 < 40 | 269 | 19 |
4 | ≥40 < 49 | 303 | 21 |
5 | ≥49 | 297 | 21 |
Total | 1418 | 100 |
Group | Family History of Hearing Problems | No. of Cases | Frequency % |
---|---|---|---|
1 | No | 1239 | 87.38 |
2 | Yes | 179 | 12.62 |
Total | 1418 | 100 |
Initial Probabilities | ||||||
---|---|---|---|---|---|---|
Variables | Groups of Binaural Loss Index | |||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | ||
(0%) | (≥0 < 15%) | (≥15 < 30%) | (≥30 < 45%) | (≥45%) | ||
Hypoacusia | Initial percentage | 89.04 | 9.89 | 1.01 | 0.06 | 0.00 |
Gender | Women | 96.08 | 3.74 | 0.18 | 0.00 | 0.00 |
Men | 87.95 | 10.84 | 1.14 | 0.07 | 0.00 | |
Age | <29 | 95.97 | 3.86 | 0.00 | 0.17 | 0.00 |
≥29 < 35 | 95.25 | 4.52 | 0.23 | 0.00 | 0.00 | |
≥35 < 40 | 93.75 | 6.22 | 0.03 | 0.00 | 0.00 | |
≥40 < 49 | 85.93 | 12.93 | 1.12 | 0.02 | 0.00 | |
≥49 | 74.83 | 21.38 | 3.67 | 0.12 | 0.00 | |
Family history of hearing problems | No | 89.26 | 9.65 | 1.03 | 0.06 | 0.00 |
Yes | 87.25 | 11.87 | 0.84 | 0.04 | 0.00 |
Variables | Groups of Binaural Loss Index | |||||
---|---|---|---|---|---|---|
Group 1 (0%) | Group 2 (≥0 < 15%) | Group 3 (≥15 < 30%) | Group 4 (≥30 < 45%) | Group 5 (≥45%) | ||
Initial percentage of hypoacusia | 89.04 | 9.89 | 1.01 | 0.06 | 0.00 | |
Gender | Age | |||||
Women | <29 | 98.01 | 1.99 | 0.00 | 0.00 | 0.00 |
≥29 < 35 | 97.46 | 2.15 | 0.38 | 0.00 | 0.01 | |
≥35 < 40 | 97.84 | 2.16 | 0.00 | 0.00 | 0.00 | |
≥40 < 49 | 93.15 | 6.56 | 0.29 | 0.00 | 0.00 | |
≥49 | 90.47 | 9.27 | 0.25 | 0.01 | 0.00 | |
Men | <29 | 95.69 | 4.11 | 0.00 | 0.19 | 0.00 |
≥29 < 35 | 94.80 | 5.01 | 0.20 | 0.00 | 0.00 | |
≥35 < 40 | 92.68 | 7.29 | 0.04 | 0.00 | 0.00 | |
≥40 < 49 | 85.13 | 13.64 | 1.21 | 0.02 | 0.00 | |
≥49 | 73.42 | 22.47 | 3.98 | 0.13 | 0.00 |
Variables | Groups of Binaural Loss Index | |||||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | ||
(0%) | (≥0 < 15%) | (≥15 < 30%) | (≥30 < 45%) | (≥45%) | ||
Initial percentage of hypoacusia | 89.04 | 9.89 | 1.01 | 0.06 | 0.00 | |
Gender | Family history of hearing problems | |||||
Women | No | 96.17 | 3.65 | 0.18 | 0.00 | 0.00 |
Yes | 94.86 | 4.98 | 0.12 | 0.00 | 0.03 | |
Men | No | 88.14 | 10.62 | 1.17 | 0.07 | 0.00 |
Yes | 86.52 | 12.53 | 0.91 | 0.04 | 0.00 |
Variables | Groups of Binaural Loss Index | |||||
---|---|---|---|---|---|---|
Group 1 (0%) | Group 2 (≥0 < 15%) | Group 3 (≥15 < 30%) | Group 4 (≥30 < 45%) | Group 5 (≥45%) | ||
Initial percentage of hypoacusia | 89.04 | 9.89 | 1.01 | 0.06 | 0.00 | |
Age | Family history of hearing problems | |||||
<29 | No | 96.04 | 3.78 | 0.00 | 0.19 | 0.00 |
Yes | 95.19 | 4.81 | 0.00 | 0.00 | 0.00 | |
≥29 < 35 | No | 95.38 | 4.38 | 0.24 | 0.00 | 0.00 |
Yes | 93.99 | 5.85 | 0.14 | 0.00 | 0.02 | |
≥35 < 40 | No | 93.82 | 6.15 | 0.03 | 0.00 | 0.00 |
Yes | 93.15 | 6.81 | 0.04 | 0.00 | 0.00 | |
≥40 < 49 | No | 85.95 | 12.92 | 1.11 | 0.02 | 0.00 |
Yes | 85.82 | 13.03 | 1.13 | 0.02 | 0.00 | |
≥49 | No | 75.04 | 20.98 | 3.87 | 0.12 | 0.00 |
Yes | 73.31 | 24.27 | 2.28 | 0.14 | 0.00 |
Variables | Groups of Binaural Loss Index | ||||||
---|---|---|---|---|---|---|---|
Group 1 (0%) | Group 2 (≥0 < 15%) | Group 3 (≥15 < 30%) | Group 4 (≥30 < 45%) | Group 5 (≥45%) | |||
Initial percentage of hypoacusia | 89.04 | 9.89 | 1.01 | 0.06 | 0.00 | ||
Family history of hearing problems | Gender | Age | |||||
No | Women | <29 | 98.04 | 1.96 | 0.00 | 0.00 | 0.00 |
≥29 < 35 | 97.48 | 2.13 | 0.39 | 0.00 | 0.00 | ||
≥35 < 40 | 97.92 | 2.08 | 0.00 | 0.00 | 0.00 | ||
≥40 < 49 | 93.22 | 6.47 | 0.31 | 0.00 | 0.00 | ||
≥49 | 90.56 | 9.18 | 0.25 | 0.01 | 0.00 | ||
Men | <29 | 95.76 | 4.03 | 0.00 | 0.21 | 0.00 | |
≥29 < 35 | 94.93 | 4.86 | 0.21 | 0.00 | 0.00 | ||
≥35 < 40 | 92.70 | 7.27 | 0.04 | 0.00 | 0.00 | ||
≥40 < 49 | 85.10 | 13.67 | 1.21 | 0.02 | 0.00 | ||
≥49 | 73.58 | 22.09 | 4.21 | 0.13 | 0.00 | ||
Yes | Women | <29 | 97.35 | 2.65 | 0.00 | 0.00 | 0.00 |
≥29 < 35 | 97.14 | 2.39 | 0.31 | 0.00 | 0.16 | ||
≥35 < 40 | 96.78 | 3.22 | 0.00 | 0.00 | 0.00 | ||
≥40 < 49 | 92.48 | 7.43 | 0.09 | 0.00 | 0.00 | ||
≥49 | 89.49 | 10.23 | 0.25 | 0.03 | 0.00 | ||
Men | <29 | 95.03 | 4.97 | 0.00 | 0.00 | 0.00 | |
≥29 < 35 | 93.62 | 6.26 | 0.12 | 0.00 | 0.00 | ||
≥35 < 40 | 92.52 | 7.42 | 0.05 | 0.00 | 0.00 | ||
≥40 < 49 | 85.31 | 13.46 | 1.21 | 0.02 | 0.00 | ||
≥49 | 72.29 | 25.15 | 2.41 | 0.14 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrero, J.P.; López-Perea, E.M.; Herrera, S.; Mariscal, M.A.; García-Herrero, S. Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population. Int. J. Environ. Res. Public Health 2020, 17, 8041. https://doi.org/10.3390/ijerph17218041
Barrero JP, López-Perea EM, Herrera S, Mariscal MA, García-Herrero S. Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population. International Journal of Environmental Research and Public Health. 2020; 17(21):8041. https://doi.org/10.3390/ijerph17218041
Chicago/Turabian StyleBarrero, Jesús P., Eva M. López-Perea, Sixto Herrera, Miguel A. Mariscal, and Susana García-Herrero. 2020. "Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population" International Journal of Environmental Research and Public Health 17, no. 21: 8041. https://doi.org/10.3390/ijerph17218041
APA StyleBarrero, J. P., López-Perea, E. M., Herrera, S., Mariscal, M. A., & García-Herrero, S. (2020). Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population. International Journal of Environmental Research and Public Health, 17(21), 8041. https://doi.org/10.3390/ijerph17218041