Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation
Abstract
:1. Introduction
2. Factors Underlying Intra-National Variation in Drug-Related Deaths
3. Data and Methods
4. Results
4.1. Regression Findings
4.2. Spatial Clustering in Drug Death Risks
4.3. Skew Patterns and Spatial Concentration in Drug Death Risk
4.4. Spatially Varying Coefficients
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Regression Methods
Appendix B. Missing Death Data
Deaths | Age Adjusted Death Rate per 100,000 | Total μ | Total Expected Deaths | Modelled Relative Risk | |
---|---|---|---|---|---|
Alaska | 397 | 17.7 | 387.0 | 437.8 | 0.88 |
Alabama | 2327 | 16.6 | 2389.0 | 2814.6 | 0.85 |
Arkansas | 1239 | 14.4 | 1288.2 | 1693.8 | 0.76 |
Arizona | 4188 | 20.5 | 4185.0 | 3811.6 | 1.10 |
California | 14,181 | 11.4 | 14,188.2 | 22,966.6 | 0.62 |
Colorado | 2826 | 16.5 | 2796.7 | 3219.3 | 0.87 |
Connecticut | 2843 | 26.8 | 2838.9 | 2127.2 | 1.33 |
Distr. Columbia | 704 | 33.9 | 695.1 | 430.8 | 1.61 |
Delaware | 818 | 29.9 | 822.5 | 543.8 | 1.51 |
Florida | 13,044 | 21.7 | 13,032.9 | 11,544.2 | 1.13 |
Georgia | 4233 | 13.6 | 4294.6 | 5958.2 | 0.72 |
Hawaii | 563 | 12.6 | 560.1 | 827.8 | 0.68 |
Iowa | 964 | 10.8 | 994.8 | 1760.4 | 0.57 |
Idaho | 697 | 14.6 | 681.4 | 913.9 | 0.75 |
Illinois | 7024 | 18.2 | 7043.5 | 7595.5 | 0.93 |
Indiana | 4623 | 24.3 | 4661.5 | 3801.5 | 1.23 |
Kansas | 975 | 11.6 | 974.3 | 1642.4 | 0.59 |
Kentucky | 4258 | 33.6 | 4223.5 | 2580.1 | 1.64 |
Louisiana | 2965 | 21.8 | 2943.1 | 2708.6 | 1.09 |
Massachusetts | 6119 | 30.1 | 6117.3 | 4047.6 | 1.51 |
Maryland | 5576 | 30.1 | 5555.0 | 3574.3 | 1.55 |
Maine | 1046 | 28.1 | 1074.9 | 786.8 | 1.37 |
Michigan | 7021 | 24.2 | 7089.5 | 5754.9 | 1.23 |
Minnesota | 1986 | 12.1 | 1993.3 | 3189.8 | 0.62 |
Missouri | 3804 | 21.6 | 3828.9 | 3508.5 | 1.09 |
Mississippi | 1057 | 12.2 | 1106.3 | 1709.6 | 0.65 |
Montana | 376 | 12.4 | 369.1 | 586.4 | 0.63 |
North Carolina | 5937 | 19.9 | 5977.8 | 5829.5 | 1.03 |
North Dakota | 206 | 9.5 | 187.0 | 421.1 | 0.44 |
Nebraska | 398 | 7.2 | 406.2 | 1066.4 | 0.38 |
New Hampshire | 1370 | 36.8 | 1372.1 | 796.9 | 1.72 |
New Jersey | 6195 | 23.2 | 6195.3 | 5310.5 | 1.17 |
New Mexico | 1494 | 25.1 | 1456.4 | 1183.6 | 1.23 |
Nevada | 1960 | 21.2 | 1930.5 | 1686.5 | 1.14 |
New York | 10,313 | 17 | 10,370.9 | 11,799.5 | 0.88 |
Ohio | 12,750 | 38.5 | 12,811.0 | 6730.3 | 1.90 |
Oklahoma | 2313 | 20.2 | 2265.4 | 2212.0 | 1.02 |
Oregon | 1541 | 12.1 | 1570.6 | 2352.8 | 0.67 |
Pennsylvania | 13,279 | 36.1 | 13,305.5 | 7479.3 | 1.78 |
Rhode Island | 956 | 30 | 960.1 | 625.6 | 1.53 |
South Carolina | 2648 | 18.1 | 2698.7 | 2805.4 | 0.96 |
South Dakota | 207 | 8.4 | 194.4 | 477.8 | 0.41 |
Tennessee | 4863 | 24.5 | 4878.3 | 3836.3 | 1.27 |
Texas | 8408 | 10 | 8459.9 | 15,645.0 | 0.54 |
Utah | 1931 | 22.6 | 1910.3 | 1611.7 | 1.19 |
Virginia | 3951 | 15.7 | 3999.4 | 4969.9 | 0.80 |
Vermont | 358 | 20.7 | 371.3 | 369.2 | 1.01 |
Washington | 3365 | 14.8 | 3354.9 | 4215.7 | 0.80 |
Wisconsin | 3129 | 18.6 | 3131.8 | 3351.2 | 0.93 |
West Virginia | 2583 | 50.3 | 2525.5 | 1075.8 | 2.35 |
Wyoming | 264 | 15.4 | 258.7 | 338.8 | 0.76 |
USA | 186,273 | 19.3 | 186,726.7 | 186,726.7 | 1.0 |
References
- United Nations Office on Drugs and Crime (UNODC). Part 2 Global Overview of Drug Demand and Supply. In World Drug Report; United Nations Office on Drugs and Crime: Vienna, Austria, 2019. [Google Scholar]
- Degenhardt, L.; Charlson, F.; Ferrari, A.; Santomauro, D.; Erskine, H.; Mantilla-Herrara, A. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry 2018, 5, 987–1012. [Google Scholar] [CrossRef] [Green Version]
- Xibiao, Y.; Jenny, S.; Bonnie, H.; Mark, T.; William, K. At-a-glance-Impact of drug overdose-related deaths on life expectancy at birth in British Columbia. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2018, 38, 248. [Google Scholar]
- Leung, M. The Opioid Crisis: The United States and Canada’s Fentanyl Epidemic. 2019, THE Wilson Centre. Available online: https://www.wilsoncenter.org/article/the-opioid-crisis-the-united-states-and-canadas-fentanyl-epidemic (accessed on 2 April 2020).
- United Nations Office on Drugs and Crime (UNODC). Part 3 Depressants. In World Drug Report; United Nations Office on Drugs and Crime: Vienna, Austria, 2019. [Google Scholar]
- Centre for Disease Control. Drug Overdose Mortality by State. 2019, CDC, Washington. Available online: https://www.cdc.gov/nchs/pressroom/sosmap/drug_poisoning_mortality/drug_poisoning.htm (accessed on 10 April 2020).
- National Records of Scotland. Drug Related Deaths in Scotland in 2018; National Records of Scotland: Edinburgh, Scotland, 2019.
- Cooper, H.; Bossak, B.; Tempalski, B.; Des Jarlais, D.; Friedman, S. Geographic approaches to quantifying the risk environment: Drug-related law enforcement and access to syringe exchange programmes. Int. J. Drug Policy 2009, 20, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, T. Risk environments and drug harms: A social science for harm reduction approach. Int. J. Drug Policy 2009, 20, 193–201. [Google Scholar] [CrossRef]
- Macintyre, S.; Ellaway, A. Neighborhoods and health: An overview. In Neighborhoods and Health; Kawachi, I., Berkman, L., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 20–44. [Google Scholar]
- Pemberton, S.; Humphris, P. Locality, Neighborhood and Health: A Literature Review; IRiS Working Paper Series; No. 13/2016; UPWEB Working Paper Series; No. 2/2016; Institute for Research into Superdiversity: Birmingham, England, 2016. [Google Scholar]
- Twigg, L. Geographies of space, place, and population health. In The Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and Society; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 726–731. [Google Scholar]
- Bambra, C.; Smith, K.; Pearce, J. Scaling up: The politics of health and place. Soc. Sci. Med. 2019, 232, 36–42. [Google Scholar] [CrossRef]
- You, H.; Ha, J.; Kang, C.; Kim, L.; Kim, J.; Shen, J.; Park, S.; Chun, S.; Hwang, J.; Yamashita, T.; et al. Regional variation in states’ naloxone accessibility laws in association with opioid overdose death rates-Observational study (STROBE compliant). Medicine 2020, 99, e20033. [Google Scholar] [CrossRef]
- Kang, S.; Cramb, S.; White, N.; Ball, S.; Mengersen, K. Making the most of spatial information in health: A tutorial in Bayesian disease mapping for areal data. Geospat. Health 2016, 11, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, N.; Beletsky, L.; Ciccarone, D. Opioid crisis: No easy fix to its social and economic determinants. Amer. J. Public Health 2018, 108, 182–186. [Google Scholar] [CrossRef]
- Case, A.; Deaton, A. Mortality and morbidity in the 21st century. Brook. Pap. Econ. Act. 2017, 2017, 397–476. [Google Scholar] [CrossRef] [Green Version]
- Burns, H. GDP and the economics of despair (Editorial). Brit. Med. J. 2018, 360, k1239. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, A.; Ruhm, C.; Simon, K. Macroeconomic conditions and opioid abuse. J. Health Econ. 2017, 56, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.; Gennuso, K.; Ugboaja, D.; Remington, P. The epidemic of despair among White Americans: Trends in the leading causes of premature death, 1999–2015. Am. J. Public Health 2017, 107, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.; Kimmel, S. Free trade and opioid overdose death in the United States. SSM Popul. Health 2019, 8, 100409. [Google Scholar] [CrossRef]
- Ruhm, C. Deaths of despair or drug problems? Natl. Bur. Econ. Res. 2018. [Google Scholar] [CrossRef]
- Boardman, J.; Finch, B.; Ellison, C.; Williams, D.; Jackson, J. Neighborhood Disadvantage, Stress, and Drug Use among Adults. J. Health Soc. Behav. 2001, 42, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Monnat, S. Factors associated with county-level differences in US drug-related mortality rates. Am. J. Prev. Med. 2018, 54, 611–619. [Google Scholar] [CrossRef]
- Shah, R.; Uren, Z.; Baker, A.; Majeed, A. Trends in deaths from drug overdose and poisoning in England and Wales 1993–1998. J. Public Health 2001, 23, 242–246. [Google Scholar] [CrossRef] [Green Version]
- House of Commons Scottish Affairs Committee. Problem Drug Use in Scotland; House of Commons: London, UK, 2019.
- Bruhn, H. The Group Effect: Social Cohesion and Health Outcomes; Springer: New York, NY, USA, 2009. [Google Scholar]
- Congdon, P. Assessing Persistence in Spatial Clustering of Disease, with an Application to Drug Related Deaths in Scottish Neighborhoods. Epidemiol. Biostat. Public Health 2019, 16. [Google Scholar] [CrossRef]
- Zoorob, M.; Salemi, J. Bowling alone, dying together: The role of social capital in mitigating the drug overdose epidemic in the United States. Drug Alcohol Depend. 2017, 173, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Åslund, C.; Nilsson, K. Social capital in relation to alcohol consumption, smoking, and illicit drug use among adolescents: A cross-sectional study in Sweden. Int. J. Equity Health 2013, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Rupasingha, A.; Goetz, S.; Freshwater, D. The production of social capital in US counties. J. Socio-Econ. 2006, 35, 83–101. [Google Scholar] [CrossRef]
- Gatti, U.; Tremblay, R.; Schadee, H. Community characteristics and death by homicide, suicide and drug overdose in Italy: The role of civic engagement. Eur. J. Crim. Policy Res. 2007, 13, 255–275. [Google Scholar] [CrossRef]
- Cooper, H.; Friedman, S.; Tempalski, B.; Friedman, R. Residential segregation and injection drug use prevalence among Black adults in US metropolitan areas. Am. J. Public Health 2007, 97, 344–352. [Google Scholar] [CrossRef]
- Frankenfeld, C.; Leslie, T. County-level socioeconomic factors and residential racial, Hispanic, poverty, and unemployment segregation associated with drug overdose deaths in the United States, 2013–2017. Ann. Epidemiol. 2019, 35, 12–19. [Google Scholar] [CrossRef]
- Galea, S.; Ahern, J.; Vlahov, D.; Coffin, P.; Fuller, C.; Leon, A.; Tardiff, K. Income distribution and risk of fatal drug overdose in New York City neighborhoods. Drug Alcohol Depend. 2003, 70, 139–148. [Google Scholar] [CrossRef]
- Ompad, D.; Fuller, C. The urban environment, drug use, and health. In Handbook of Urban Health; Galea, S., Vlahov, D., Eds.; Springer: Boston, MA, USA, 2005; pp. 127–154. [Google Scholar]
- Barnum, J.D.; Campbell, W.L.; Trocchio, S.; Caplan, J.; Kennedy, L. Examining the environmental characteristics of drug dealing locations. Crime Delinq. 2017, 63, 1731–1756. [Google Scholar] [CrossRef]
- Hedegaard, H.; Miniño, A.; Warner, M. Urban–Rural Differences in Drug Overdose Death Rates, by Sex, Age, and Type of Drugs Involved, 2017; NCHS Data Brief 345; NCHS: Washington, DC, USA, 2019.
- Monnat, S. The contributions of socioeconomic and opioid supply factors to US drug mortality rates: Urban-rural and within-rural differences. J. Rural Stud. 2019, 68, 319–335. [Google Scholar] [CrossRef]
- Ruhm, C. Deaths of Despair or Drug Problems; NBER Working Papers 24188; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- DeWeerdt, S. Tracing the US opioid crisis to its roots. Nature 2019, 573, S10. [Google Scholar] [CrossRef] [Green Version]
- Giraudon, I.; Lowitz, K.; Dargan, P.; Wood, D.; Dart, R. Prescription opioid abuse in the UK. Br. J. Clin. Pharmacol. 2013, 76, 823–824. [Google Scholar] [CrossRef] [Green Version]
- Clarke, H.; Bao, J.; Weinrib, A.; Dubin, R.; Kahan, M. Canada’s hidden opioid crisis: The health care system’s inability to manage high-dose opioid patients: Fallout from the 2017 Canadian opioid guidelines. Can. Fam. Physician 2019, 65, 612–614. [Google Scholar]
- Hedegaard, H.; Miniño, A.; Warner, M. Drug Overdose Deaths in the United States, 1999–2018; NCHS Data Brief No. 356; NCHS: Washington, DC, USA, 2020.
- Best, N.; Arnold, N.; Thomas, A.; Waller, L.; Conlon, E. Bayesian models for spatially correlated disease and exposure data. In Proceedings of the Bayesian Statistics 6: The Sixth Valencia International Meeting, Valencia, Spain, 1–5 June 1999; Volume 6. [Google Scholar]
- Richardson, S.; Thomson, A.; Best, N.; Elliott, P. Interpreting posterior relative risk estimates in disease-mapping studies. Environ. Health Perspect. 2004, 112, 1016–1025. [Google Scholar] [CrossRef]
- Chiou, Y.; Jou, R.; Yang, C. Factors affecting public transportation usage rate: Geographically weighted regression. Transp. Res. Part A Policy Pract. 2015, 78, 161–177. [Google Scholar] [CrossRef]
- Fotheringham, A.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Assunçao, R. Space varying coefficient models for small area data. Environmetrics 2003, 14, 453–473. [Google Scholar] [CrossRef]
- Wheeler, D.; Waller, L. Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. J. Geogr. Syst. 2009, 11, 1–22. [Google Scholar] [CrossRef]
- Kerry, R.; Yoo, E.; Ingram, B. Spatial analysis of drug poisoning deaths in the American west: A comparison study using profile regression to adjust for collinearity and spatial correlation. Drug Alcohol Depend. 2019, 204, 107598. [Google Scholar] [CrossRef]
- Stewart, K.; Cao, Y.; Hsu, M.; Artigiani, E.; Wish, E. Geospatial analysis of drug poisoning deaths involving heroin in the USA, 2000–2014. J. Urban Health 2017, 94, 572–586. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wilt, G.; Lewis, B.; Adams, E. Peer Reviewed: A Spatial Exploration of Changes in Drug Overdose Mortality in the United States, 2000–2016. Prev. Chronic Dis. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Krieger, N.; Kim, R.; Feldman, J.; Waterman, P. Using the Index of Concentration at the Extremes at multiple geographical levels to monitor health inequities in an era of growing spatial social polarization: Massachusetts, USA (2010–14). Int. J. Epidemiol. 2018, 47, 788–819. [Google Scholar] [CrossRef]
- U.S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2016 Midyear Report; Drug Enforcement Administration: Springfield, VA, USA, 2017.
- Lippold, K.; Jones, C.; Olsen, E.; Giroir, B. Racial/ethnic and age group differences in opioid and synthetic opioid–involved overdose deaths among adults aged≥ 18 years in metropolitan areas—United States, 2015–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention, U.S. Opioid Prescribing Rate Maps. 2020. Available online: https://www.cdc.gov/drugoverdose/maps/rxrate-maps.html (accessed on 1 May 2020).
- National Institute on Drug Abuse (NIDA) Prescription Opioids and Heroin; NIDA: Rockville, MD, USA, 2015.
- Lunn, D.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Brooks, S.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar]
- Watanabe, S. A Widely Applicable Bayesian Information Criterion. J. Mach. Learn. Res. 2013, 14, 867–897. [Google Scholar]
- Marotta, P.; Hunt, T.; Gilbert, L.; Wu, E.; Goddard-Eckrich, D.; El-Bassel, N. Assessing Spatial Relationships between Prescription Drugs, Race, and Overdose in New York State from 2013 to 2015. J. Psychoact. Drugs 2019, 51, 360–370. [Google Scholar] [CrossRef]
- Kaiser Family Foundation. Opioid Overdose Deaths by Gender. Available online: https://www.kff.org/other/state-indicator/opioid-overdose-deaths-by-gender/ (accessed on 5 June 2020).
- Zoorob, M. Fentanyl shock: The changing geography of overdose in the United States. Int. J. Drug Policy 2019, 70, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R. Commentary: US mortality, geography, and the anti-social determinants of health. Prev. Med. 2016, 89, 324–326. [Google Scholar] [CrossRef]
- Haffajee, R.; Lin, L.; Bohnert, A.; Goldstick, J. Characteristics of US counties with high opioid overdose mortality and low capacity to deliver medications for opioid use disorder. JAMA Netw. Open 2019, 2, e196373. [Google Scholar] [CrossRef] [PubMed]
- Monash University Business School. How Economic Conditions Impact on Opioid Deaths in Australia, Monash University. 2020. Available online: https://www2.monash.edu/impact/articles/health-economics/how-economic-conditions-impact-on-opioid-deaths-in-australia/ (accessed on 5 July 2020).
- Nagelhout, G.; Hummel, K.; de Goeij, M.; de Vries, H.; Kaner, E.; Lemmens, P. How economic recessions and unemployment affect illegal drug use: A systematic realist literature review. Int. J. Drug Policy 2017, 44, 69–83. [Google Scholar] [CrossRef]
- Graham, C. Understanding the role of despair in America’s opioid crisis. In Policy 2020 Brookings; Brookings Institute: Washington, DC, USA, 2020. [Google Scholar]
- Treffers, S. The Role of Social Capital in Drug Use and Dependence in Four Canadian Provinces. Electronic Theses and Dissertations, University of Windsor. Available online: https://scholar.uwindsor.ca/etd/5770 (accessed on 1 May 2020).
- Mazumdar, S.; Mcrae, I.; Mofizul, M. How can geographical information systems and spatial analysis inform a response to prescription opioid misuse? A discussion in the context of existing literature. Curr. Drug Abus. Rev. 2015, 8, 104–110. [Google Scholar] [CrossRef]
- Spooner, C.; Hetherington, K. Social Determinants of Drug Use; National Drug and Alcohol Research Centre: Sydney, Australia; University of New South Wales: Kensington, Australia, 2005. [Google Scholar]
- Shiels, M.; De González, A.; Best, A.; Chen, Y.; Chernyavskiy, P.; Hartge, P.; Khan, S.; Pérez-Stable, E.; Rodriquez, E.; Spillane, S.; et al. Premature mortality from all causes and drug poisonings in the USA according to socioeconomic status and rurality: An analysis of death certificate data by County from 2000–15. Lancet Public Health 2019, 4, e97–e106. [Google Scholar] [CrossRef] [Green Version]
- Ayilara, O.; Zhang, L.; Sajobi, T.; Sawatzky, R.; Bohm, E.; Lix, L. Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry. Health Qual. Life Outcomes 2019, 17, 106. [Google Scholar] [CrossRef]
- Belzak, L.; Halverson, J. The opioid crisis in Canada: A national perspective. Health Promot. Chronic Dis. Prev. Can. 2018, 38, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, J.; Paulick, T.; Schulz, K.; Flössel, U.; Engel, A.; Schmitter, S.; Schmidt, U. Escalation of methamphetamine-related crime and fatalities in the Dresden region, Germany, between 2005 and 2011. Forensic Sci. Int. 2013, 233, 51–54. [Google Scholar] [CrossRef]
- Dwyer-Lindgren, L.; Bertozzi-Villa, A.; Stubbs, R.; Morozoff, C.; Shirude, S.; Unützer, J.; Naghavi, M.; Mokdad, A.; Murray, C. Trends and patterns of geographic variation in mortality from substance use disorders and intentional injuries among US counties, 1980–2014. JAMA 2018, 319, 1013–1023. [Google Scholar] [CrossRef]
- Finkelstein, A.; Gentzkow, M.; Williams, H. What Drives Prescription Opioid Abuse? Evidence from Migration. Stanford Institute for Economic Policy Research. Working Paper No. 18-028. 2018. Available online: https://siepr.stanford.edu/sites/default/files/publications/18-028.pdf (accessed on 11 May 2020).
- Slavova, S.; O’Brien, D.; Creppage, K.; Dao, D.; Fondario, A.; Haile, E.; Hume, B.; Largo, T.; Nguyen, C.; Sabel, J.; et al. Drug overdose deaths: Let’s get specific. Public Health Rep. 2015, 130, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Zhou, M.; Li, L.; Dunson, D.; Carin, L. Lognormal and gamma mixed negative binomial regression. In Proceedings of the International Conference on Machine Learning, Edinburgh, UK, 1–26 July 2012; Volume 2012, pp. 1343–1350. [Google Scholar]
- Karlis, D.; Xekalaki, E. Mixed Poisson distributions. Int. Stat. Rev. 2005, 73, 35–58. [Google Scholar] [CrossRef]
- Little, R.; Rubin, D. Statistical Analysis with Missing Data; John Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
Model Version and Area Predictor | Estimated Coefficient | 2.5% | 97.5% | Relative Risk of Drug-Related Mortality (Highest vs. Lowest County Score) | 2.5% | 97.5% |
---|---|---|---|---|---|---|
Unemployment Model | ||||||
Constant | −0.12 | −0.23 | −0.03 | |||
Unemployment | 0.33 | 0.06 | 0.59 | 1.39 | 1.07 | 1.81 |
ICE (High vs. Low Incomes) | −0.58 | −0.70 | −0.42 | 0.56 | 0.50 | 0.66 |
Social Capital | −0.57 | −0.96 | −0.21 | 0.57 | 0.38 | 0.81 |
Rurality | −0.31 | −0.40 | −0.23 | 0.73 | 0.67 | 0.79 |
Race Segregation | 0.36 | 0.26 | 0.45 | 1.43 | 1.29 | 1.57 |
Opioid Prescribing | 0.17 | 0.05 | 0.26 | 1.18 | 1.05 | 1.81 |
Fentanyl Seizure Rate | 0.19 | 0.04 | 0.37 | 1.21 | 1.04 | 1.30 |
Growth in Unemployment Model | ||||||
Constant | −0.14 | −0.28 | −0.01 | |||
Growth in Unemployment | 0.25 | 0.07 | 0.41 | 1.29 | 1.08 | 1.51 |
ICE (High vs. Low Incomes) | −0.71 | −0.84 | −0.59 | 0.49 | 0.43 | 0.55 |
Social Capital | −0.51 | −0.82 | −0.14 | 0.60 | 0.44 | 0.87 |
Rurality | −0.29 | −0.36 | −0.21 | 0.75 | 0.70 | 0.81 |
Race Segregation | 0.35 | 0.23 | 0.48 | 1.41 | 1.27 | 1.62 |
Opioid Prescribing | 0.16 | 0.06 | 0.25 | 1.18 | 1.07 | 1.28 |
Fentanyl Seizure Rate | 0.17 | 0.03 | 0.31 | 1.19 | 1.04 | 1.37 |
Percent of Counties Which Are | ||||
---|---|---|---|---|
State | High Risk | Low Risk | High-High Cluster Centers | Low-Low Cluster Centers |
Alabama | 7 | 73 | 4 | 66 |
Alaska | 0 | 86 | 0 | 82 |
Arizona | 47 | 13 | 20 | 0 |
Arkansas | 3 | 68 | 0 | 61 |
California | 12 | 60 | 2 | 38 |
Colorado | 6 | 78 | 0 | 55 |
Connecticut | 88 | 12 | 88 | 0 |
Delaware | 100 | 0 | 100 | 0 |
District of Columbia | 100 | 0 | 0 | 0 |
Florida | 27 | 34 | 15 | 18 |
Georgia | 6 | 72 | 1 | 67 |
Hawaii | 0 | 100 | 0 | 100 |
Idaho | 0 | 82 | 0 | 77 |
Illinois | 8 | 57 | 1 | 47 |
Indiana | 37 | 29 | 29 | 16 |
Iowa | 0 | 95 | 0 | 95 |
Kansas | 0 | 94 | 0 | 94 |
Kentucky | 52 | 24 | 48 | 12 |
Louisiana | 14 | 56 | 11 | 52 |
Maine | 56 | 0 | 63 | 0 |
Maryland | 88 | 12 | 83 | 4 |
Massachusetts | 71 | 7 | 71 | 0 |
Michigan | 22 | 35 | 5 | 17 |
Minnesota | 1 | 87 | 0 | 87 |
Mississippi | 4 | 84 | 2 | 79 |
Missouri | 10 | 63 | 7 | 55 |
Montana | 0 | 96 | 0 | 96 |
Nebraska | 0 | 100 | 0 | 100 |
Nevada | 24 | 59 | 0 | 12 |
New Hampshire | 80 | 0 | 80 | 0 |
New Jersey | 57 | 24 | 52 | 19 |
New Mexico | 30 | 33 | 12 | 6 |
New York | 24 | 37 | 13 | 27 |
North Carolina | 38 | 23 | 31 | 6 |
North Dakota | 0 | 100 | 0 | 100 |
Ohio | 65 | 6 | 61 | 0 |
Oklahoma | 26 | 43 | 14 | 23 |
Oregon | 0 | 78 | 0 | 69 |
Pennsylvania | 69 | 9 | 69 | 0 |
Rhode Island | 60 | 0 | 60 | 0 |
South Carolina | 13 | 43 | 7 | 41 |
South Dakota | 0 | 100 | 0 | 100 |
Tennessee | 45 | 20 | 34 | 5 |
Texas | 0 | 94 | 0 | 93 |
Utah | 21 | 45 | 3 | 17 |
Vermont | 7 | 21 | 0 | 0 |
Virginia | 18 | 57 | 8 | 41 |
Washington | 5 | 64 | 0 | 56 |
West Virginia | 62 | 27 | 58 | 4 |
Wisconsin | 8 | 74 | 0 | 65 |
Wyoming | 0 | 74 | 0 | 70 |
USA | 19 | 60 | 14 | 51 |
Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | ||||
---|---|---|---|---|---|---|---|---|---|
Unemployment | Divn 1 | 0.13 | −0.05 | 0.33 | Income Disparity (ICE Index) | Divn 1 | −0.79 | −1.05 | −0.48 |
Divn 2 | 0.09 | −0.07 | 0.27 | Divn 2 | −0.78 | −0.96 | −0.54 | ||
Divn 3 | 0.09 | −0.02 | 0.26 | Divn 3 | −0.78 | −0.93 | −0.62 | ||
Divn 4 | 0.11 | 0.01 | 0.28 | Divn 4 | −0.80 | −0.99 | −0.66 | ||
Divn 5 | 0.05 | −0.08 | 0.22 | Divn 5 | −0.74 | −0.89 | −0.57 | ||
Divn 6 | 0.06 | −0.05 | 0.23 | Divn 6 | −0.75 | −0.89 | −0.59 | ||
Divn 7 | 0.11 | −0.01 | 0.28 | Divn 7 | −0.77 | −0.94 | −0.61 | ||
Divn 8 | 0.14 | 0.02 | 0.31 | Divn 8 | −0.82 | −1.02 | −0.67 | ||
Divn 9 | −0.09 | −0.32 | 0.14 | Divn 9 | −0.51 | −0.74 | −0.34 | ||
US average | 0.08 | −0.01 | 0.24 | US average | −0.75 | −0.93 | −0.59 | ||
Social Capital | Divn 1 | −0.54 | −1.10 | 0.04 | Rurality | Divn 1 | −0.41 | −0.52 | −0.27 |
Divn 2 | −0.53 | −1.10 | −0.01 | Divn 2 | −0.41 | −0.51 | −0.32 | ||
Divn 3 | −0.50 | −1.05 | −0.03 | Divn 3 | −0.43 | −0.50 | −0.34 | ||
Divn 4 | −0.50 | −1.04 | −0.07 | Divn 4 | −0.44 | −0.53 | −0.33 | ||
Divn 5 | −0.51 | −1.07 | −0.04 | Divn 5 | −0.40 | −0.45 | −0.34 | ||
Divn 6 | −0.51 | −1.06 | −0.05 | Divn 6 | −0.39 | −0.45 | −0.33 | ||
Divn 7 | −0.49 | −1.02 | −0.05 | Divn 7 | −0.39 | −0.48 | −0.31 | ||
Divn 8 | −0.47 | −1.02 | −0.03 | Divn 8 | −0.44 | −0.55 | −0.35 | ||
Divn 9 | −0.73 | −1.45 | −0.15 | Divn 9 | −0.55 | −0.72 | −0.39 | ||
US average | −0.53 | −1.10 | −0.06 | US average | −0.43 | −0.50 | −0.36 | ||
Segregation | Divn 1 | 0.22 | 0.00 | 0.41 | Definitions | ||||
Divn 2 | 0.21 | 0.04 | 0.36 | Division 1 | New England | ||||
Divn 3 | 0.20 | 0.08 | 0.32 | Division 2 | Mid-Atlantic (New Jersey, New York, Pennsylvania) | ||||
Divn 4 | 0.17 | 0.05 | 0.29 | Division 3 | East North Central (Illinois, Indiana, Michigan, Ohio, Wisc) | ||||
Divn 5 | 0.19 | 0.03 | 0.33 | Division 4 | West North Central | ||||
Divn 6 | 0.18 | 0.05 | 0.33 | Division 5 | South Atlantic | ||||
Divn 7 | 0.14 | 0.02 | 0.29 | Division 6 | East South Central (Alab., Kentucky, Miss., Tennessee) | ||||
Divn 8 | 0.16 | −0.02 | 0.31 | Division 7 | West South Central (Ark., Louisiana, Okl., Texas) | ||||
Divn 9 | 0.10 | −0.20 | 0.37 | Division 8 | Mountain | ||||
US average | 0.17 | 0.03 | 0.31 | Division 9 | Pacific (Alaska, California, Hawaii, Oregon, Washington) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Congdon, P. Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation. Int. J. Environ. Res. Public Health 2020, 17, 8081. https://doi.org/10.3390/ijerph17218081
Congdon P. Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation. International Journal of Environmental Research and Public Health. 2020; 17(21):8081. https://doi.org/10.3390/ijerph17218081
Chicago/Turabian StyleCongdon, Peter. 2020. "Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation" International Journal of Environmental Research and Public Health 17, no. 21: 8081. https://doi.org/10.3390/ijerph17218081
APA StyleCongdon, P. (2020). Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation. International Journal of Environmental Research and Public Health, 17(21), 8081. https://doi.org/10.3390/ijerph17218081