Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Method and Materials
2.1. Propensity Score Matching Method
2.2. Study Area
- (1)
- City classification based on the annual precipitation in the area where the city is located, namely, cities in arid areas, where the annual precipitation was less than 200 mm and the amount of water that can be stored and used is small; cities in humid areas, where the annual precipitation was greater than 800 mm and the available water resources are sufficient; and cities in semi-humid or semi-arid areas, where the annual precipitation was between 200 mm and 800 mm.
- (2)
- City classification based on the per capita GDP of each city, namely, high economic development cities (with per capita GDP higher than the national average urban per capita GDP) and low economic development cities (with per capita GDP lower than or equal to the national average urban per capita GDP).
- (3)
- City classification based on the Chinese city scale classification standard during the study period, namely, small cities (with a resident population of less than 500,000); medium cities (with a resident population of more than 500,000 and less than 1 million); and big cities (cities with a resident population of more than 1 million).
2.3. Data
3. Results
3.1. Balancing Assumption and Common Support Test Results
3.2. The Effect of Water-Saving Society Policy on Water Consumption
3.2.1. Urban Water-Saving Society Policy Significantly Reduced Water Consumption of Cities in China during the Study Period
3.2.2. The Effect in Humid Areas, Semi-Humid and Semi-Arid Areas, and Arid Areas Decreases Successively
3.2.3. The Effect in Low Economic Development Cities Is More Significant and More Stable than in High Economic Development Cities
3.2.4. The Effect in Big- and Medium-Sized Cities Is Significant, but Not in Small Cities
4. Discussion
4.1. Water Resource Endowment and the Effect of Water-Saving Society Policy
4.2. Economic Development and the Effect of Water-Saving Society Policy
4.3. City Scale and the Effect of Water-Saving Society Policy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Z.H.; Li, Y.S.; Qu, S.; Xu, M. Supply chain-wide sectoral water use characteristics based on multi-perspective measurements. J. Clean. Prod. 2020, 268, 122345. [Google Scholar] [CrossRef]
- Zhang, C.J.; Zhao, Y.; Shi, C.F.; Chiu, Y. Can China achieve its water use peaking in 2030? A scenario analysis based on LMDI and Monte Carlo method. J. Clean. Prod. 2021, 278, 123214. [Google Scholar] [CrossRef]
- 2013 World Economic Forum. The Global Risks 2013; World Economic Forum: Geneva, Switzerland, 2013. [Google Scholar]
- He, C.S.; Harden, C.P.; Liu, Y.X. Comparison of water resources management between China and the United States. Geogr. Sustain. 2020, 1, 98–108. [Google Scholar] [CrossRef]
- Gao, C.K.; Gao, W.G.; Song, K.H.; Na, H.M.; Tian, F.; Zhang, S.B. Comprehensive evaluation on energy-water saving effects in iron and steel industry. Sci. Total Environ. 2019, 670, 346–360. [Google Scholar] [CrossRef]
- Gao, C.K.; Na, H.M.; Song, K.H.; Tian, F.; Strawa, N.; Du, T. Technologies-based potential analysis on saving energy and water of China’s iron and steel industry. Sci. Total Environ. 2019, 699, 134225. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C. System dynamics evaluation of household water use behavior and associated greenhouse gas emissions and environmental costs: A case study of Taipei city. J. Water Process Eng. 2020, 37, 101409. [Google Scholar] [CrossRef]
- Perren, K.; Yang, L. Psychosocial and behavioural factors associated with intention to save water around the home: A Greek case study. Procedia Eng. 2015, 119, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Seelen, L.M.S.; Flaim, G.; Jennings, E.; Lisette, N. Saving water for the future: Public awareness of water usage and water quality. J. Environ. Manag. 2019, 242, 246–257. [Google Scholar] [CrossRef]
- Damerau, K.; Patt, A.G.; van Vliet, O.P.R. Water saving potentials and possible trade-offs for future food and energy supply. Glob. Environ. Chang. 2016, 39, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Zeitoun, M.; Allan, J.A.; Mohieldeen, Y. Virtual water ‘flows’ of the Nile Basin, 1998–2004: A first approximation and implications for water security. Glob. Environ. Chang. 2010, 20, 229–242. [Google Scholar] [CrossRef]
- Perry, C. Accounting for water use: Terminology and implications for saving water and increasing production. Agric. Water Manag. 2011, 98, 1840–1846. [Google Scholar] [CrossRef]
- Deng, C.X.; Zhang, G.J.; Li, Z.W.; Li, K. Interprovincial food trade and water resources conservation in China. Sci. Total Environ. 2020, 737, 139651. [Google Scholar] [CrossRef]
- Hussein, H. Tomatoes, tribes, bananas, and businessmen: An analysis of the shadow state and of the politics of water in Jordan. Environ. Sci. Policy 2018, 84, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Luckmann, J.; Grethe, H.; McDonald, S. When water saving limits recycling: Modelling economy-wide linkages of wastewater use. Water Res. 2016, 88, 972–980. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.L.; Garrick, D.E.; Horne, A.C. Reallocation through irrigation modernization: The ‘once-in-a-hundred-year’ opportunity of the North-South Pipeline, Australia. Water Secur. 2019, 6, 100028. [Google Scholar] [CrossRef]
- Aguilar-Barajas, I.; Garrick, D.E. Water reallocation, benefit sharing, and compensation in northeastern Mexico: A retrospective assessment of El Cuchillo Dam. Water Secur. 2019, 8, 100036. [Google Scholar] [CrossRef]
- Liptrot, T.; Hussein, H. Between regulation and targeted expropriation: Rural-to-urban groundwater reallocation in Jordan. Water Altern. 2020, 13, 864–885. [Google Scholar]
- Villarreal, E.L.; Dixon, A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Build. Environ. 2005, 40, 1174–1184. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, J.J.; Yue, T.J.; Jing, X. Impacts of climate change on urban rainwater harvesting systems. Sci. Total Environ. 2019, 665, 262–274. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, J.J.; Jing, X.; Wang, Y.J.; Wang, Y.Q.; Yue, T. Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change. J. Clean. Prod. 2018, 196, 1341–1355. [Google Scholar] [CrossRef]
- Lv, H.D.; Zhou, L.S.; Zhou, J.S.; Zhang, X.; Wu, W.J.; Li, Y.M.; Jiang, D.L. Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resour. Conserv. Recycl. 2020, 163, 105095. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Hefny, A. Institutional arrangements for beneficial regional cooperation on water, energy and food priority issues in the Eastern Nile Basin. J. Hydrol. 2018, 562, 821–831. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al-Saidi, M. Balancing the benefits from the water-energy-land-food nexus through agroforestry in the Sahel. Sci. Total Environ. 2020, 742, 140509. [Google Scholar] [CrossRef]
- Koop, S.H.A.; van Dorssen, A.J.; Brouwer, S. Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics. J. Environ. Manag. 2019, 247, 867–876. [Google Scholar] [CrossRef]
- Stavenhagen, M.; Buurman, J.; Tortajada, C. Saving water in cities: Assessing policies for residential water demand management in four cities in Europe. Cities 2018, 79, 187–195. [Google Scholar] [CrossRef]
- Tortajada, C.; González-Gómez, F.; Biswas, A.K.; Buurman, J. Water demand management strategies for water-scarce cities: The case of Spain. Sustain. Cities Soc. 2019, 45, 649–656. [Google Scholar] [CrossRef]
- Li, Q.; Wang, W.; Jiang, X.H.; Lu, D.L.; Zhang, Y.B.; Li, J.X. Analysis of the potential of reclaimed water utilization in typical inland cities in northwest China via system dynamics. J. Environ. Manag. 2020, 270, 110878. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme). The UN World Water Development Report 2016, Water and Jobs: A Critical Review; UNESCO: Paris, France, 2016; p. 101. [Google Scholar]
- Long, K.S.; Pijanowski, B.C. Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales. Land Use Policy 2017, 69, 502–511. [Google Scholar] [CrossRef]
- Li, M.; Long, K.S. Direct or spillover effect: The impact of pure technical and scale efficiencies of water use on water scarcity in China. Int. J. Environ. Res. Public Health 2019, 16, 3401. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Zhao, X.; Yang, H.; Liu, Q.Y.; Xiao, H.L.; Cheng, G.D. Assessing China’s “developing a water-saving society” policy at a river basin level: A structural decomposition analysis approach. J. Clean. Prod. 2018, 190, 799–808. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The Paradox of Irrigation Efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.Q.; Wang, J.X.; Li, Y.M. Do water saving technologies save water? Empirical evidence from North China. J. Environ. Econ. Manag. 2017, 82, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Long, A.H.; Xiang, L.Y.; Deng, X.Y.; Zhang, P.; Hai, Y.; Wang, J.; Li, Y. The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on water footprint. Agric. Water Manag. 2020, 239, 106163. [Google Scholar] [CrossRef]
- Zhang, L.X.; Liang, J. Effect of the regional resource endowment on resource utilization efficiency. J. Nat. Resour. 2010, 25, 1237–1247. (In Chinese) [Google Scholar] [CrossRef]
- Gao, H.C.; Wei, T.; Lou, I.; Yang, Z.F.; Shen, Z.Y.; Li, Y.X. Water saving effect on integrated water resource management. Resour. Conserv. Recycl. 2014, 93, 50–58. [Google Scholar] [CrossRef]
- Liu, M.C.; Yang, L.; Min, Q.W. Water-saving irrigation subsidy could increase regional water consumption. J. Clean. Prod. 2019, 213, 283–288. [Google Scholar] [CrossRef]
- Batchelor, C.; Reddy, V.R.; Linstead, C.; Dhar, M.; Roy, S.; May, R. Do water-saving technologies improve environmental flows? J. Hydrol. 2014, 518, 140–149. [Google Scholar] [CrossRef]
- Sabzi, H.Z.; Rezapour, S.; Fovargue, R.; Moreno, H.; Neeson, T.M. Strategic allocation of water conservation incentives to balance environmental flows and societal outcomes. Ecol. Eng. 2019, 127, 160–169. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, D.T.; He, Y.; Chiu, Y.H. The efficiencies of resource-saving and environment: A case study based on Chinese cities. Energy 2018, 150, 493–507. [Google Scholar] [CrossRef]
- Long, H.Y.; Lin, B.Q.; Ou, Y.T.; Chen, Q. Spatio-temporal analysis of driving factors of water resources consumption in China. Sci. Total Environ. 2019, 690, 1321–1330. [Google Scholar] [CrossRef]
- Lu, S.B.; Gao, X.R.; Li, W.; Jiang, S.L.; Huang, L. A study on the spatial and temporal variability of the urban residential water consumption and its influencing factors in the major cities of China. Habitat Int. 2018, 78, 29–40. [Google Scholar] [CrossRef]
- Wang, X.G.; Chen, L.J.; Chen, S.Q.; Zou, Y.X. Post evaluation for construction of water saving society. J. Econ. Water Resour. 2012, 30, 6–10. [Google Scholar] [CrossRef]
- Zhao, S.W.; Tang, D.S. Effect evaluation of the construction of water-saving society in Shanghai. South-North Water Transf. Water Sci. Technol. 2014, 12, 173–176. [Google Scholar] [CrossRef]
- Zhao, H.L.; Zhang, Z.Q.; Wei, Y.P. Performance evaluation of water-saving society building—A case study of Heihe River in Zhangye City. J. Northwest Norm. Univ. (Nat. Sci.) 2015, 51, 108–113. [Google Scholar] [CrossRef]
- Odeh, T.; Mohammad, A.H.; Hussein, H.; Ismail, M.; Almomani, T. Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci. 2019, 78, 40. [Google Scholar] [CrossRef] [Green Version]
- Riad, P.; Graefe, S.; Hussein, H.; Buerkert, A. Landscape transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landsc. Urban Plan. 2020, 197, 103766. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Fong, C.; Hazlett, C.; Imai, K. Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements. Ann. Appl. Stat. 2018, 12, 156–177. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a control group using multivariate matched sampling method that incorporate the propensity score. Am. Stat. 1985, 39, 33–38. [Google Scholar] [CrossRef]
- Chen, W.; Ning, S.Y.; Chen, W.J.; Liu, E.N.; Wang, Y.N.; Zhao, M.J. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China City Statistical Yearbook; China Statistics Press: Beijing, China, 2005–2018.
- Ministry of Housing and Urban-Rural Development of China. China Urban Construction Statistical Yearbook; China Statistics Press: Beijing, China, 2005–2018. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2005–2018.
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Millington, N. Producing water scarcity in São Paulo, Brazil: The 2014–2015 water crisis and the binding politics of infrastructure. Political Geogr. 2018, 65, 26–34. [Google Scholar] [CrossRef]
- van Dijk, S.; Lounsbury, A.W.; Hoekstra, A.Y.; Wang, R.R. Strategic design and finance of rainwater harvesting to cost-effectively meet large-scale urban water infrastructure needs. Water Res. 2020, 184, 116063. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, W.K.; Plantinga, A.J.; Chang, H.; Dello, K.; Grant, G.; Hulse, D.; McDonnell, J.J.; Lancaster, S.; Moradkhani, H.; Morzillo, A.T.; et al. Toward a formal definition of water scarcity in natural-human systems. Water Resour. Res. 2013, 49, 4506–4517. [Google Scholar] [CrossRef]
- Domènech, L.; Saurí, D. Socio-technical transitions in water scarcity contexts: Public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona. Resour. Conserv. Recycl. 2010, 55, 53–62. [Google Scholar] [CrossRef]
- Xu, Z.W.; Yao, L.M.; Zhou, X.Y.; Moudi, M.; Zhang, L.W. Optimal irrigation for sustainable development considering water rights transaction: A Stackelberg-Nash-Cournot equilibrium model. J. Hydrol. 2019, 575, 628–637. [Google Scholar] [CrossRef]
- García-López, M.; Montano, B.; Melgarejo, J. Water pricing policy as tool to induce efficiency in water resources management. Int. J. Environ. Res. Public Health 2020, 17, 3534. [Google Scholar] [CrossRef] [PubMed]
- Garrone, P.; Grilli, L.; Marzano, R. Incentives to water conservation under scarcity: Comparing price and reward effects through stated preferences. J. Clean. Prod. 2020, 244, 118632. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.Y.; Wang, L.; Meng, L.Y.; Zhang, W.X. Farmers’ attitudes toward mandatory water-saving policies: A case study in two basins in northwest China. J. Environ. Manag. 2016, 181, 455–464. [Google Scholar] [CrossRef]
- Qing, P.; Nie, P.; Tao, R. An empirical analysis on water-saving of urban residents—From perspective of theory of planned behavior. J. Huazhong Agric. Univerity (Soc. Sci. Ed.) 2012, 6, 64–69. [Google Scholar]
- Swyngedouw, E. Scaled geographies: Nature, place, and the politics of scale. In Scale and Geographic Inquiry: Nature, Society, and Method; Sheppard, E., McMaster, R.B., Eds.; Blackwell Publishing Ltd: Hoboken, NJ, USA, 2004; pp. 129–153. [Google Scholar]
- Menga, F. Domestic and international dimensions of transboundary water politics. Water Altern. 2016, 9, 704–723. [Google Scholar]
- da Silva, L.P.B.; Hussein, H. Production of scale in regional hydropolitics: An analysis of La Plata River Basin and the Guarani Aquifer System in South America. Geoforum 2019, 99, 42–53. [Google Scholar] [CrossRef]
- Kampas, A.; Rozakis, S. On the scarcity value of irrigation water: Juxtaposing two market estimating approaches. Water Resour. Manag. 2017, 31, 1257–1269. [Google Scholar] [CrossRef]
- UN-Water. Step-by-Step Monitoring Methodology for SDG Indicator 6.5.2 Version “2020”. Available online: https://www.unwater.org/publications/step-step-methodology-monitoring-transboundary-cooperation-6-5-2/ (accessed on 16 October 2020).
- Zinzani, A.; Menga, F. The Circle of Hydro-Hegemony between riparian states, development policies and borderlands: Evidence from the Talas waterscape (Kyrgyzstan-Kazakhstan). Geoforum 2017, 85, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Bréthaut, C.; Gallagher, L.; Dalton, J.; Allouche, J. Power dynamics and integration in the water-energy-food nexus: Learning lessons for transdisciplinary research in Cambodia. Environ. Sci. Policy 2019, 94, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Neal, M.J.; Greco, F.; Connell, D.; Conrad, J.; Patrick, M.J.N. The social-environmental justice of groundwater governance. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 253–272. [Google Scholar] [CrossRef] [Green Version]
- Swyngedouw, E. Modernity and hybridity: Nature, regeneracionismo, and the production of the Spanish waterscape, 1890–1930. Ann. Assoc. Am. Geogr. 1999, 89, 443–465. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, Q.; Tillotson, M.R.; Guan, D.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 112, 1031–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | U/M | NNM | RM | KM | LLRM | ||||
---|---|---|---|---|---|---|---|---|---|
%bias | p-Value | %Bias | p-Value | %Bias | p-Value | %Bias | p-Value | ||
X1 | U | 25.9 | 0.000 | 25.9 | 0.000 | 25.9 | 0.000 | 25.9 | 0.000 |
M | −13.8 | 0.051 | −6.9 | 0.215 | −5.7 | 0.364 | −13.8 | 0.051 | |
X2 | U | 22.1 | 0.000 | 22.1 | 0.000 | 22.1 | 0.000 | 22.1 | 0.000 |
M | 8.6 | 0.004 | 7.1 | 0.015 | 9.0 | 0.002 | 8.6 | 0.004 | |
X3 | U | −5.6 | 0.171 | −5.6 | 0.171 | −5.6 | 0.171 | −5.6 | 0.171 |
M | −6.5 | 0.176 | −1.7 | 0.721 | −3.0 | 0.536 | -6.5 | 0.176 | |
X4 | U | 45.0 | 0.000 | 45.0 | 0.000 | 45.0 | 0.000 | 45.0 | 0.000 |
M | 0.7 | 0.874 | −0.3 | 0.944 | 1.1 | 0.796 | 0.7 | 0.874 | |
X5 | U | 19.4 | 0.000 | 19.4 | 0.000 | 19.4 | 0.000 | 19.4 | 0.000 |
M | −3.1 | 0.593 | −2.2 | 0.696 | −1.2 | 0.836 | −3.1 | 0.593 |
Propensity Score for Cities | Mean | Min | Max | Std.Dev. | Obs |
---|---|---|---|---|---|
Implementing water-saving society policy | 0.278 | 0.043 | 0.828 | 0.103 | 800 |
Without implementing water-saving society policy | 0.221 | 0.039 | 0.999 | 0.090 | 2612 |
Category | Matching Method | Treated | Control | ATT | Std. | T. |
---|---|---|---|---|---|---|
All cities | NNM | 34.24 | 43.41 | −9.17 *** | 1.77 | −5.16 |
RM | 34.17 | 42.46 | −8.28 *** | 0.95 | −8.71 | |
KM | 34.24 | 42.69 | −8.44 *** | 0.93 | −9.08 | |
LLRM | 34.24 | 43.01 | −8.77 *** | 1.77 | −4.93 |
Category | Match Method | Treated | Control | ATT | Std. | T. |
---|---|---|---|---|---|---|
Cities in arid areas | NNM | 33.33 | 34.39 | −1.05 | 5.25 | −0.20 |
RM | 34.54 | 35.30 | −0.75 | 4.62 | −0.16 | |
KM | 33.33 | 35.24 | −1.91 | 5.56 | −0.34 | |
LLRM | 33.33 | 36.46 | −3.13 | 5.25 | −0.60 | |
Cities in semi-humid or semi-arid areas | NNM | 31.32 | 36.38 | −5.05 *** | 1.70 | −2.96 |
RM | 31.32 | 36.06 | −4.74 *** | 1.09 | −4.33 | |
KM | 31.32 | 36.16 | −4.83 *** | 1.07 | −4.52 | |
LLRM | 31.32 | 35.42 | −4.09 ** | 1.70 | −2.40 | |
Cities in humid areas | NNM | 38.35 | 55.98 | −17.63 *** | 3.42 | −5.15 |
RM | 37.66 | 45.79 | −8.12 *** | 1.44 | −5.61 | |
KM | 38.35 | 54.84 | −16.49 *** | 1.60 | −10.26 | |
LLRM | 38.35 | 53.21 | −14.85 *** | 3.42 | −4.34 |
Category | Match Method | Treated | Control | ATT | Std. | T. |
---|---|---|---|---|---|---|
Cities with high economic development | NNM | 31.15 | 34.29 | −3.13 * | 1.81 | −1.73 |
RM | 29.87 | 31.74 | −1.87 * | 1.01 | −1.84 | |
KM | 31.00 | 33.20 | −2.20 * | 1.28 | −1.71 | |
LLRM | 31.15 | 31.89 | −0.73 | 1.81 | −0.40 | |
Cities with low economic development | NNM | 35.87 | 37.65 | −1.78 | 1.32 | −1.34 |
RM | 35.92 | 38.73 | −2.80 *** | 1.06 | -2.63 | |
KM | 35.87 | 39.42 | −3.55 *** | 1.04 | −3.39 | |
LLRM | 35.87 | 39.01 | −3.14 *** | 1.32 | −2.36 |
Category | Match Method | Treated | Control | ATT | Std. | T. |
---|---|---|---|---|---|---|
Small cities | NNM | 29.46 | 31.57 | −2.11 | 3.35 | −0.63 |
RM | 30.75 | 33.01 | −2.25 | 2.76 | −0.82 | |
KM | 29.79 | 32.17 | −2.38 | 2.76 | −0.86 | |
LLRM | 29.46 | 32.02 | −2.55 | 3.35 | −0.76 | |
Medium-sized cities | NNM | 38.34 | 44.09 | −5.74 * | 3.20 | −1.79 |
RM | 38.18 | 43.52 | −5.33 *** | 1.84 | −2.89 | |
KM | 38.18 | 45.14 | −6.95 *** | 1.78 | −3.89 | |
LLRM | 38.34 | 43.32 | −4.97 | 3.20 | −1.55 | |
Big cities | NNM | 33.72 | 38.07 | −4.34 *** | 1.56 | −2.77 |
RM | 33.13 | 36.67 | −3.54 *** | 1.09 | −3.25 | |
KM | 33.66 | 37.38 | −3.71 *** | 1.22 | −3.03 | |
LLRM | 33.72 | 37.89 | −4.17 *** | 1.56 | −2.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, M. Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8171. https://doi.org/10.3390/ijerph17218171
Zhao Y, Li M. Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis. International Journal of Environmental Research and Public Health. 2020; 17(21):8171. https://doi.org/10.3390/ijerph17218171
Chicago/Turabian StyleZhao, Yali, and Min Li. 2020. "Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis" International Journal of Environmental Research and Public Health 17, no. 21: 8171. https://doi.org/10.3390/ijerph17218171
APA StyleZhao, Y., & Li, M. (2020). Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis. International Journal of Environmental Research and Public Health, 17(21), 8171. https://doi.org/10.3390/ijerph17218171