Obesity Indices to Use for Identifying Metabolic Syndrome among Rural Adults in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Region
2.2. Sample
2.3. Anthropometric Measurements
2.3.1. Waist Circumference
2.3.2. Neck Circumference
2.3.3. Body Mass Index (Body Weight)
2.4. Blood Pressure
2.5. Blood Sample Collection and Processing
2.6. Quality Control
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoebel, S.; Malan, L.; de Ridder, J.H. Determining ethnic-, gender-, and age-specific waist circumference cut-off points to determine metabolic syndrome: The Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA) study. J. Clin. Endocrinol. Metab. S. Afr. 2013, 18, 88–96. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- World Health Organization. Noncommunicable diseases. Available online: http://www.who.int/mediacentre/factsheets/fs355/en/ (accessed on 16 February 2020).
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V.; Adedokun, A.O.; Seekoe, E. Prevalence and correlates of metabolic syndrome among adults attending healthcare facilities in Eastern Cape, South Africa. Open Pub. Health J. 2017, 10, 148–159. [Google Scholar] [CrossRef]
- Motamed, N.; Zamani, F.; Rabiee, B.; Saeedian, F.S.; Maadi, M.; Akhavan-Niaki, H.; Asouri, M. The best obesity indices to use in a single factor model indicating metabolic syndrome: A population-based study. Arch. Iran. Med. 2016, 19, 110–115. [Google Scholar] [PubMed]
- Joshipura, K.; Muñoz-Torres, F.; Vergara, J.; Palacios, C.; Pérez, C.M. Neck circumference may be a better alternative to standard anthropometric measures. J. Diabetes Res. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Borel, A.L.; Coumes, S.; Reche, F.; Ruckly, S.; Pepin, J.L.; Tamisier, R.; Wion, N.; Arvieux, C. Waist, neck circumferences, waist-to-hip ratio: Which is the best cardiometabolic risk marker in women with severe obesity? The SOON cohort. PLoS ONE 2018, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tal, S.; Litovchik, I.; Klar, M.M.; Maresky, H.S.; Grysman, N.; Wiser, I.; Vitkon-Barkay, I.; Marcus, G.; Tzuman, O.; Pereg, D.; et al. The association between neck adiposity and long-term outcome. PLoS ONE 2019, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Saka, M.; Türker, P.; Ercan, A.; Kızıltan, G.; Baş, M. Is neck circumference measurement an indicator for abdominal obesity? A pilot study on Turkish Adults. Afr. Health Sci. 2014, 14, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N. Neck circumference as an indicator of overweight and obesity in young adults. Am. J. Appl. Math. Stat. 2018, 6, 176–180. [Google Scholar] [CrossRef]
- Fan, H.; Li, X.; Zheng, L.; Chen, X.; Wu, H.; Ding, X.; Qian, D.; Shen, Y.; Yu, Z.; Fan, L.; et al. Abdominal obesity is strongly associated with cardiovascular disease and its risk factors in elderly and very elderly community-dwelling Chinese. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alzeidan, R.; Fayed, A.; Hersi, A.S.; Elmorshedy, H. Performance of neck circumference to determine obesity and metabolic syndrome among adult Saudis: A cross-sectional study. BMC Obesity 2019, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford Publications: New York, NY, USA, 2015; pp. 1–10. [Google Scholar]
- Harrington, D. Confirmatory Factor Analysis; Oxford University Press: New York, NY, USA, 2009; pp. 3–21. [Google Scholar]
- Anothaisintawee, T.; Sansanayudh, N.; Thamakaison, S.; Lertrattananon, D.; Thakkinstian, A. Neck circumference as an anthropometric indicator of central obesity in patients with prediabetes: A cross-sectional study. BMR Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peer, N.; Steyn, K.; Levitt, N. Differential obesity indices identify the metabolic syndrome in black men and women in Cape Town: The CRIBSA study. J. Pub. Health 2016, 38, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V.; Ajayi, A.I. Optimal waist circumference cut-off points for predicting metabolic syndrome among low-income black South African adults. BMC Res. Notes 2018, 11, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramoshaba, N.E.; Monyeki, K.D.; Zatu, M.C.; Hay, L.; Mabata, L.R. The relationship between blood pressure and anthropometric indicators in rural South African children: Ellisras longitudinal study. J. Obes. Weight Loss Ther. 2015, 5, 1–7. [Google Scholar]
- Sebati, B.; Monyeki, K.; Kemper, H.C.G.; Sekgala, M.D.; Mphekgwana, P. Anthropometric indices for predicting cardiovascular risk factors: Ellisras longitudinal study. Am. J. Hum. Biol. 2019, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, E.; Mashabela, H.; Mackay, S.; Gordon-Brown, S.; Frielinghaus, J.; Musiker, C.; Swanepoel, H.; Gallocher, R.; Forgey, H. South Africa Survey. 1994/95; South African Institute of Race and Relations: Johannesburg, South Africa, 1995; pp. 234–360. [Google Scholar]
- Monyeki, K.D.; Cameron, N.; Getz, B. Growth and nutritional status of rural South African children 3–10 years old: The Ellisras growth study. Am. J. Hum. Biol. 2000, 12, 42–49. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses, 2nd ed.; UNSW Press: Sydney, Australia, 1996; pp. 1–90. [Google Scholar]
- Monyeki, K.D.; Van Lenthe, F.J.; Steyn, N.P. Obesity: Does it occur in African children in a rural community in South Africa? Int. J. Epidemiol. 1999, 28, 287–292. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, X.; Shen, Y.; Xu, Y.; Xiong, Q.; Zhang, X.; Xiao, Y.; Bao, Y. and Jia, W. Neck circumference as an effective measure for identifying cardio-metabolic syndrome: A comparison with waist circumference. Endocrine 2017, 55, 822–830. [Google Scholar] [CrossRef]
- Patil, C.; Deshmukh, J.; Yadav, S.; Patil, S.; Sheikh, A. Neck circumference: A novel anthropometric tool for screening obesity in adults. Int. J. Collab. Res. Intern. Med. Public Health 2017, 9, 711–720. [Google Scholar]
- Must, A.; Spadano, J.; Coakley, E.H.; Field, A.E.; Colditz, G.; Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 1999, 282, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Monyeki, K.D.; Kemper, H.C.G.; Makgae, P.J. The association of fat patterning with blood pressure in rural South African children: The Ellisras Longitudinal Growth and Health Study. Int. J. Epidemiol. 2006, 35, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Sesso, H.D.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Gaziano, J.M.; Manson, J.E.; Glynn, R.J. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 2000, 36, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Monyeki, K.D.; Toriola, A.L.; Ridder, J.D.; Kemper, H.C.G.; Steyn, N.P.; Nthangeni, M.E.; Twisk, J.W.R.; Lenthe, F.V. Stability of somatotypes in 4 to 10-year-old rural South African girls. Ann. Hum. Biol. 2002, 29, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Monyeki, M.A.; Kemper, H.C.G.; Twisk, J.W.R.; Monyeki, K.D.; Toriola, A.L. Anthropometric indicators of nutritional status and physical fitness of Ellisras rural primary school children, South Africa. Med. Sport. 2003, 7, E93–E104. [Google Scholar]
- Pladevall, M.; Singal, B.; Williams, L.K.; Brotons, C.; Guyer, H.; Sadurni, J.; Falces, C.; Serrano-Rios, M.; Gabriel, R.; Shaw, J.E.; et al. A single factor underlies the metabolic syndrome: A confirmatory factor analysis. Diabetes Care 2006, 29, 113–122. [Google Scholar] [CrossRef]
- Kenny, D.A. Multiple Latent Variable Models: Confirmatory Factor Analysis. Available online: http://davidakenny.net/cm/mfactor.htm (accessed on 2 January 2020).
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 2009, 6, 1–55. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Gómez-Marcos, M.A.; Patino-Alonso, M.C.; Recio-Rodríguez, J.I.; Antón-Alvarez, J.; Cabrejas-Sánchez, A.; Fernandez-Alonso, C.; Rubio-Galán, J.; Arce, V.; García-Ortiz, L. Confirmatory factor analysis to assess the measure of adiposity that best fits the diagnosis of metabolic syndrome and relationship to physical activity in adults. Eur. J. Nutr. 2013, 52, 1451–1459. [Google Scholar] [CrossRef]
- Hoebel, S.; Malan, L.; Botha, J.; Swanepoel, M. Optimizing waist circumference cut-points for the metabolic syndrome in a South African cohort at 3-year follow-up: The SABPA prospective cohort. Endocrine 2014, 47, 959–961. [Google Scholar] [CrossRef]
- Laakso, M.; Matilainen, V.; Keinänen-Kiukaanniemi, S. Association of neck circumference with insulin resistance-related factors. Int. J. Obes. 2002, 26, 873–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Deng, J.; He, L.P.; Ling, W.H.; Su, Y.X.; Chen, Y.M. Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Howley, E.T. Exercise Physiology: Theory and Application to Fitness and Performance; McGraw-Hill Education: New York, NY, USA, 2007; pp. 303–308. [Google Scholar]
- Bays, H.; Abate, N.; Chandalia, M. Adiposopathy: Sick fat causes high blood sugar, high blood pressure and dyslipidemia. Future Cardiol. 2005, 1, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Jocken, J.W.; Langin, D.; Smit, E.; Saris, W.H.; Valle, C.; Hul, G.B.; Holm, C.; Arner, P.; Blaak, E.E. Adipose triglyceride lipase” hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J. Clin. Endocrinol. Metab. 2007, 92, 2292–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, C.C.; da Costa, E.D.; Roriz, A.K.C.; Ramos, L.B.; Neto, M.G. Predictors of Metabolic Syndrome in the Elderly: A Review. Int. J. Cardiovasc. Sci. 2017, 30, 343–353. [Google Scholar] [CrossRef]
Variable | Total (n = 593) Mean (SD) | Male (n = 289) Mean (SD) | Female (n = 304) Mean (SD) | p-Value |
---|---|---|---|---|
Age (years) | 25.0 (1.95) | 25.0 (1.92) | 25.0 (1.97) | 0.142 |
DBP (mm/Hg) | 1.84 (0.06) | 1.85 (0.06) | 1.84 (0.06) | 0.013 * |
SBP (mm/Hg) | 2.08 (0.05) | 2.10 (0.04) | 2.06 (0.04) | <0.001 ** |
MAP (mm/Hg) | 1.93 (0.05) | 1.95 (0.05) | 1.92 (0.5) | <0.001 ** |
FBG (mg/dL) | 0.73 (0.7) | 5.45 (0.87) | 5.52 (0.92) | 0.371 |
NC (cm) | 33.45 (3.00) | 35.2 (42.44) | 31.75 (2.44) | <0.001 ** |
BMI (kg/m2) | 1.36 (0.93) | 1.32 (0.64) | 1.40 (0.10) | <0.001 ** |
WC (cm) | 1.89 (0.07) | 1.87 (0.05) | 1.91 (0.08) | <0.001 ** |
WHtR (cm) | 0.46 (0.08) | 1.04 (0.60) | 0.95 (0.51) | <0.001 ** |
HDL-C (mg/dL) | 0.43 (0.12) | 0.64 (0.12) | 0.02 (0.19) | <0.001 ** |
TG (mg/dL) | 0.99 (0.55) | 0.43 (0.05) | 0.50 (0.09) | <0.001 ** |
Variables | MAP mm/Hg | FBG (mg/L) | NC (cm) | BMI (kg/m2) | WC (cm) | WHtR (cm) | HDL-C (mg/L) |
---|---|---|---|---|---|---|---|
MAP (mm/Hg) | 1 | ||||||
FBG (mg/L) | 0.115 ** | 1 | |||||
NC (cm) | 0.317 ** | 0.018 | 1 | ||||
BMI (kg/m2) | 0.086 * | 0.046 | 0.182 * | 1 | |||
WC (cm) | 0.106 ** | 0.048 | 0.283 ** | 0.870 ** | 1 | ||
WHtR (cm) | 0.019 * | 0.053 | 0.101 * | 0.895 ** | 0.954 ** | 1 | |
HDL-C (mg/L) | 0.125 ** | −0.096 | 0.013 | −0.146 ** | −0.107 ** | −0.129 ** | 1 |
Model of Fit Index for Males | Model of Fit Index for Females | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor Models | Estimates | Chi-Square (df) | CFI | TLI | RMSEA (CI) p-Value | AIC | Factor Models | Estimates | Chi-Square (df) | CFI | TLI | RMSEA (CI) p-Value | AIC |
MAP | 0.5273 | Chi-square = 0.12 Df = 2 p-value = 0.9418 | 1.000 | 1.112 | 0.000 (0.000; 0.023) 0.971 | −453.084 | MAP | 1.0000 | Chi-square = 3.84 Df = 2 p-value = 0.1463 | 0.90 | 0.71 | 0.050 (0.000; 0.138) 0.352 | −429.21 |
FBG | 0.2227 | FBG | 0.1578 | ||||||||||
TG | 0.4786 | TG | 0.0952 | ||||||||||
NC | 0.4920 | NC | 0.1739 | ||||||||||
MAP | 0.4170 | Chi-square = 1.05 Df = 2 p-value = 0.5905 | 1.000 | 1.056 | 120.000 (0.000; 0.097) 0.764 | −2555.232 | MAP | 0.4787 | Chi-square = 10.87 Df = 2 p-value = 0.0044 | 0.757 | 0.270 | 0.121 (0.058; 0.195) 0.035 | −2373.84 |
FBG | 0.2033 | FBG | 0.0949 | ||||||||||
TG | 0.6015 | TG | 0.2507 | ||||||||||
BMI | 0.4760 | BMI | 0.5534 | ||||||||||
MAP | 0.4208 | Chi-square= 1.14 Df = 2 p-value = 0.5652 | 1.000 | 1.051 | 0.000 (0.000; 0.099) 0.747 | −2680.055 | MAP | 0.3543 | Chi-square= 11.36 Df = 2 p-value = 0.0034 | 0.696 | 0.089 | 0.124 (0.061; 0.198) 0.029 | −2549.747 |
FBG | 0.2254 | FBG | 0.0333 | ||||||||||
TG | 0.5824 | TG | 0.2938 | ||||||||||
WC | 0.4841 | WC | 0.6022 | ||||||||||
MAP | 0.4171 | Chi-square= 1.32 Df = 2 p-value = 0.5178 | 1.000 | 1.046 | 0.000 (0.000; 0.103) 0.712 | −2661.463 | MAP | 0.3055 | Chi-square = 11.32 Df = 2 p-value = 0.0035 | 0.657 | 0.028 | 0.124 (0.061; 0.198) 0.030 | −2533.703 |
FBG | 0.2245 | FBG | 0.0188 | ||||||||||
TG | 0.5870 | TG | 0.3261 | ||||||||||
WHtR | 0.4312 | WHtR | 0.5746 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seloka, M.A.; Matshipi, M.; Mphekgwana, P.M.; Monyeki, K.D. Obesity Indices to Use for Identifying Metabolic Syndrome among Rural Adults in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 8321. https://doi.org/10.3390/ijerph17228321
Seloka MA, Matshipi M, Mphekgwana PM, Monyeki KD. Obesity Indices to Use for Identifying Metabolic Syndrome among Rural Adults in South Africa. International Journal of Environmental Research and Public Health. 2020; 17(22):8321. https://doi.org/10.3390/ijerph17228321
Chicago/Turabian StyleSeloka, Mohlago A., Moloko Matshipi, Peter M. Mphekgwana, and Kotsedi D. Monyeki. 2020. "Obesity Indices to Use for Identifying Metabolic Syndrome among Rural Adults in South Africa" International Journal of Environmental Research and Public Health 17, no. 22: 8321. https://doi.org/10.3390/ijerph17228321
APA StyleSeloka, M. A., Matshipi, M., Mphekgwana, P. M., & Monyeki, K. D. (2020). Obesity Indices to Use for Identifying Metabolic Syndrome among Rural Adults in South Africa. International Journal of Environmental Research and Public Health, 17(22), 8321. https://doi.org/10.3390/ijerph17228321