Children’s Internet Use Profiles in Relation to Behavioral Problems in Lithuania, Latvia, and Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Time Spent Online
2.3.2. Frequency of Online Activities
2.3.3. Knowledge of How to Do Things Online
2.3.4. Children’s Emotional and Behavioral Problems
2.3.5. Compulsive Internet Use
2.3.6. Socioeconomic Status
2.4. Data Analysis
3. Results
3.1. Identification of the Latent Classes Based on Internet Use—Frequency, Knowledge, and Time
3.2. Relationships between Internet Use Profiles and Children’s Emotional and Behavioral Problems
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holloway, D.; Green, L.; Livingstone, S. Zero to Eight: Young Children and Their Internet Use. Available online: http://www.eukidsonline.net/ (accessed on 19 September 2020).
- Anderson, E.L.; Steen, E.; Stavropoulos, V. Internet use and problematic Internet use: A systematic review of longitudinal research trends in adolescence and emergent adulthood. Int. J. Adolesc. Youth 2017, 22, 430–454. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.; George, M.; Russell, M.; Odgers, C. Young adolescents’ digital technology use and mental health symptoms: Little evidence of longitudinal or daily linkages. Clin. Psychol. Sci. J. Assoc. Psychol. Sci. 2019, 7, 1416–1433. [Google Scholar] [CrossRef]
- Ito, M.; Horst, H.; Bittanti, M.; Boyd, D.; Herr-Stephenson, B.; Lange, P.; Pascoe, C.J.; Robinson, L.; Baumer, S.; Cody, R.; et al. Living and Learning with New Media: Summary of Findings from the Digital Youth Project; The MIT Press: Cambridge, MA, USA, 2008; ISBN 978-0-262-51365-4. [Google Scholar]
- Best, P.; Manktelow, R.; Taylor, B. Online communication, social media and adolescent wellbeing: A systematic narrative review. Child. Youth Serv. Rev. 2014, 41, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.A.; von Eye, A.; Biocca, F.A.; Barbatsis, G.; Zhao, Y.; Fitzgerald, H.E. Does home internet use influence the academic performance of low-income children? Dev. Psychol. 2006, 42, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.; Code, J.; Zaparyniuk, N. Online behavior and cognitive development. In Proceeding of the World Conference on Educational Multimedia, Hypermedia & Telecommunications 2007; AACE: Norfolk, VA, USA, 2007; pp. 3279–3288. [Google Scholar]
- Subrahmanyam, K.; Kraut, R.E.; Greenfield, P.M.; Gross, E.F. The impact of home computer use on children’s activities and development. Future Child. 2000, 10, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Hong, K.-E.M.; Park, E.J.; Ha, K.S.; Yoo, H.J. The association between problematic internet use and depression, suicidal ideation and bipolar disorder symptoms in Korean adolescents. Aust. N. Z. J. Psychiatry 2012, 47, 153–159. [Google Scholar] [CrossRef]
- Pontes, H.M.; Griffiths, M.D.; Patrão, I.M. Internet addiction and loneliness among children and adolescents in the education setting: An empirical pilot study. Aloma Rev. Psicol. Ciènc. Educ. Esport 2014, 32, 91–98. [Google Scholar]
- Rikkers, W.; Lawrence, D.; Hafekost, J.; Zubrick, S.R. Internet use and electronic gaming by children and adolescents with emotional and behavioural problems in Australia—Results from the second Child and Adolescent Survey of Mental Health and Wellbeing. BMC Public Health 2016, 16, 399. [Google Scholar] [CrossRef] [Green Version]
- Hart, B. A natural history of early language experience. Top. Early Child. Spec. Educ. 2000, 20, 28–32. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T.; Hutton, J.S. Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatr. 2018, 107, 685–693. [Google Scholar] [CrossRef]
- Saunders, T.J.; Vallance, J.K. Screen time and health indicators among children and youth: Current evidence, limitations and future directions. Appl. Health Econ. Health Policy 2017, 15, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kirschner, P.A.; Karpinski, A.C. A meta-analysis of the relationship of academic performance and Social Network Site use among adolescents and young adults. Comput. Hum. Behav. 2017, 77, 148–157. [Google Scholar] [CrossRef]
- Walsh, J.J.; Barnes, J.D.; Tremblay, M.S.; Chaput, J.-P. Associations between duration and type of electronic screen use and cognition in US children. Comput. Hum. Behav. 2020, 108, 106312. [Google Scholar] [CrossRef]
- Männikkö, N.; Ruotsalainen, H.; Miettunen, J.; Pontes, H.M.; Kääriäinen, M. Problematic gaming behaviour and health-related outcomes: A systematic review and meta-analysis. J. Health Psychol. 2020, 25, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, C.J.; Olson, C.K. Video game violence use among “vulnerable” populations: The impact of violent games on delinquency and bullying among children with clinically elevated depression or attention deficit symptoms. J. Youth Adolesc. 2014, 43, 127–136. [Google Scholar] [CrossRef]
- Meerkerk, G.-J.; Van Den Eijnden, R.J.J.M.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some psychometric properties. Cyberpsychol. Behav. 2009, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kaess, M.; Durkee, T.; Brunner, R.; Carli, V.; Parzer, P.; Wasserman, C.; Sarchiapone, M.; Hoven, C.; Apter, A.; Balazs, J.; et al. Pathological Internet use among European adolescents: Psychopathology and self-destructive behaviours. Eur. Child Adolesc. Psychiatry 2014, 23, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Ciarrochi, J.; Parker, P.; Sahdra, B.; Marshall, S.; Jackson, C.; Gloster, A.T.; Heaven, P. The development of compulsive internet use and mental health: A four-year study of adolescence. Dev. Psychol. 2016, 52, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Blinka, L.; Škařupová, K.; Ševčíková, A.; Wölfling, K.; Müller, K.W.; Dreier, M. Excessive internet use in European adolescents: What determines differences in severity? Int. J. Public Health 2015, 60, 249–256. [Google Scholar] [CrossRef]
- Gamito, P.S.; Morais, D.G.; Oliveira, J.G.; Brito, R.; Rosa, P.J.; de Matos, M.G. Frequency is not enough: Patterns of use associated with risk of Internet addiction in Portuguese adolescents. Comput. Hum. Behav. 2016, 58, 471–478. [Google Scholar] [CrossRef]
- Kalmus, V.; Siibak, A.; Blinka, L. Internet and child well-being. In Handbook of Child Well-Being. Theories, Methods and Policies in Global Perspective; Springer: Dordrecht, The Netherlands, 2014; pp. 2093–2133. [Google Scholar]
- Livingstone, S.; Helsper, E. Balancing opportunities and risks in teenagers’ use of the internet: The role of online skills and internet self-efficacy. New Media Soc. 2010, 12, 309–329. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, S.; Haddon, L. Risky experiences for children online: Charting European research on children and the Internet. Child. Soc. 2008, 22, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Hofstede, G. Compare Countries. Hofstede Insights. 2020. Available online: https://www.hofstede-insights.com/product/compare-countries/ (accessed on 1 July 2020).
- Statistics Latvia. 2018. Available online: https://www.csb.gov.lv/en/statistics/statistics-by-theme/economy/gdp/search-in-theme/298-latvia-statistics-brief-2018 (accessed on 1 September 2020).
- Lithuanian Official Statistics Portal ICT Use in Households. 2018. Available online: https://osp.stat.gov.lt/en/statistiniu-rodikliu-analize#/ (accessed on 1 September 2020).
- National Development Council Digital Divide Report. 2005. Available online: https://ws.ndc.gov.tw/001/administrator/11/relfile/5813/6909/16.pdf (accessed on 3 September 2020).
- National Development Council Individual Household Digital Opportunity Survey in Taiwan. 2018. Available online: https://ws.ndc.gov.tw/001/administrator/11/relfile/5813/32110/078c2deb-b441-4c77-a033-d1543d40de2e.pdf (accessed on 3 September 2020).
- Infocomm Media Development Authority Annual Survey on Infocomm Usage in Households and by Individuals. 2018. Available online: https://www.imda.gov.sg/-/media/Imda/Files/Industry-Development/Fact-and-Figures/Infocomm-usage-HI/Annual-Survey-on-Infocomm-Usage-by-Households-and-Individuals-Report-2018.pdf (accessed on 1 September 2020).
- Goodman, R. The Strengths and Difficulties Questionnaire: A research note. J. Child Psychol. Psychiatry 1997, 38, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E.; Adler, N.; Kawachi, I.; Frazier, L.; Huang, B.; Colditz, G. Adolescents’ perceptions of social status: Development and evaluation of a new indicator. Pediatrics 2001, 108, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvonen, S.; Rahkonen, O. Subjective social status and health in young people. Sociol. Health Illn. 2011, 33, 372–383. [Google Scholar] [CrossRef] [Green Version]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2015. [Google Scholar]
- Hansen, W.B.; Tobler, N.S.; Graham, J.W. Attrition in substance abuse prevention research: A meta-analysis of 85 longitudinally followed cohorts. Eval. Rev. 1990, 14, 677–685. [Google Scholar] [CrossRef]
- Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [Google Scholar] [CrossRef]
- Oberski, D.L. Mixture models: Latent profile and latent class analysis. Mod. Stat. Methods HCI 2016, 275–287. [Google Scholar] [CrossRef]
- Muthén, B. Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychol. Methods 2003, 8, 369–377, discussion 384–393. [Google Scholar] [CrossRef] [Green Version]
- Nylund-Gibson, K.; Grimm, R.P.; Masyn, K.E. Prediction from Latent Classes: A Demonstration of Different Approaches to Include Distal Outcomes in Mixture Models. Struct. Equ. Model. 2019, 26, 967–985. [Google Scholar] [CrossRef]
- Pavlov, G.; Shi, D.; Maydeu-Olivares, A. Chi-square Difference Tests for Comparing Nested Models: An Evaluation with Non-normal Data. Struct. Equ. Model. 2020. [Google Scholar] [CrossRef]
- Sanders, C.E.; Field, T.M.; Diego, M.; Kaplan, M. The relationship of Internet use to depression and social isolation among adolescents. Adolescence 2000, 35, 237–242. [Google Scholar] [PubMed]
- Yang, Y.; Qi, Y.; Cui, Y.; Li, B.; Zhang, Z.; Zhou, Y.; Chen, X.; Zhu, D.; He, F.; Zheng, Y. Emotional and behavioral problems, social competence and risk factors in 6-16-year-old students in Beijing, China. PLoS ONE 2019, 14, e0223970. [Google Scholar] [CrossRef]
- Langeveld, J.H.; Gundersen, K.K.; Svartdal, F. Social competence as a mediating factor in reduction of behavioral problems. Scand. J. Educ. Res. 2012, 56, 381–399. [Google Scholar] [CrossRef] [Green Version]
- McClelland, M.M.; Morrison, F.J. The emergence of learning-related social skills in preschool children. Early Child. Res. Q. 2003, 18, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.A.; Gentile, D.A.; Buckley, K.E. Violent Video Game Effects on Children and Adolescents: Theory, Research, and Public Policy; Oxford University Press: Oxford, UK, 2007; ISBN 978-0-19-989339-3. [Google Scholar]
- Bushman, B.J.; Anderson, C.A. Comfortably numb: Desensitizing effects of violent media on helping others. Psychol. Sci. 2009, 20, 273–277. [Google Scholar] [CrossRef]
- Bessière, K.; Pressman, S.; Kiesler, S.; Kraut, R. Effects of Internet use on health and depression: A longitudinal study. J. Med. Internet Res. 2010, 12, e6. [Google Scholar] [CrossRef]
- Tzavela, E.C.; Karakitsou, C.; Dreier, M.; Mavromati, F.; Wölfling, K.; Halapi, E.; Macarie, G.; Wójcik, S.; Veldhuis, L.; Tsitsika, A.K. Processes discriminating adaptive and maladaptive Internet use among European adolescents highly engaged online. J. Adolesc. 2015, 40, 34–47. [Google Scholar] [CrossRef]
- Costa, R.M.; Patrão, I.; Machado, M. Problematic internet use and feelings of loneliness. Int. J. Psychiatry Clin. Pract. 2019, 23, 160–162. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulos, V.; Gomez, R.; Steen, E.; Beard, C.; Liew, L.; Griffiths, M.D. The longitudinal association between anxiety and Internet addiction in adolescence: The moderating effect of classroom extraversion. J. Behav. Addict. 2017, 6, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subrahmanyam, K.; Lin, G. Adolescents on the net: Internet use and well-being. Adolescence 2007, 42, 659–677. [Google Scholar] [PubMed]
- Rescorla, L.; Achenbach, T.; Ivanova, M.Y.; Dumenci, L.; Almqvist, F.; Bilenberg, N.; Bird, H.; Chen, W.; Dobrean, A.; Döpfner, M.; et al. Behavioral and emotional problems reported by parents of children ages 6 to 16 in 31 societies. J. Emot. Behav. Disord. 2007, 15, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.M.; van Beijsterveldt, T.C.E.M.; Huppertz, C.; Bartels, M.; Boomsma, D.I. Heritability of compulsive Internet use in adolescents. Addict. Biol. 2016, 21, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Dhir, A.; Chen, S.; Nieminen, M. Psychometric Validation of the Compulsive Internet Use Scale: Relationship with adolescents’ demographics, ICT accessibility, and problematic ICT use. Soc. Sci. Comput. Rev. 2015. [Google Scholar] [CrossRef]
- Mak, K.-K.; Lai, C.-M.; Watanabe, H.; Kim, D.-I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.C.M.; Aum, N.-R.; Cheng, C. Epidemiology of Internet behaviors and addiction among adolescents in six Asian countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Peter, J. The differential susceptibility to media effects model. J. Commun. 2013, 63, 221–243. [Google Scholar] [CrossRef]
Category | Latvia | Lithuania | Taiwan |
---|---|---|---|
Number of Participants (%) | Number of Participants (%) | Number of Participants (%) | |
Gender | |||
Boys | 140 (52.0) | 144 (47.4) | 140 (46.1) |
Girls | 127 (47.2) | 153 (50.3) | 164 (53.6) |
Age | |||
8 | 120 (44.6) | 138 (45.4) | 38 (12.5) |
9 | 126 (46.8) | 129 (42.4) | 144 (47.4) |
10 | 13 (4.9) | 5 (1.7) | 117 (38.5) |
Parents’ marital status | |||
Married | 158 (58.7) | 242 (80.3) | 278 (91.4) |
Lives with a partner | 58 (21.6) | 15 (5.0) | 3 (1.0) |
Divorced | 31 (11.5) | 8 (2.7) | 18 (6.0) |
Other | 9 (3.4) | 25 (8.2) | 4 (1.3) |
Employment status | |||
Working full time | 211 (78.4) | 236 (77.6) | 193 (63.5) |
Working part time | 13 (4.8) | 23 (7.6) | 32 (10.5) |
Childcare leave | 19 (7.1) | 20 (6.6) | 1 (0.3) |
Unemployed | 17 (6.3) | 7 (2.3) | 67 (22.0) |
Other | 5 (1.9) | 7 (2.3) | 10 (3.3) |
Variables | Latvia | Lithuania | Taiwan |
---|---|---|---|
Time spent on the Internet | |||
Working days, mean (SD) | 2.85 (1.81) | 2.47 (1.82) | 1.93 (1.56) |
Weekends, mean (SD) | 4.08 (2.20) | 3.39 (2.28) | 3.38 (2.41) |
Frequency of online activities | |||
Scale, mean (SD) | 2.55 (0.73) | 2.36 (0.71) | 1.98 (0.59) |
Cronbach’s alpha | 0.80 | 0.77 | 0.80 |
Knowledge | |||
Scale, mean (SD) | 1.93 (0.51) | 1.80 (0.56) | 1.71 (0.54) |
Cronbach’s alpha | 0.86 | 0.88 | 0.91 |
Children’s emotional and behavioral problems | |||
Scale, mean (SD) | |||
Conduct problems | 5.89 (1.53) | 5.71 (1.23) | 5.51 (1.49) |
Hyperactivity/inattention | |||
Emotional symptoms | 7.22 (1.82) | 7.19 (1.87) | 6.86 (1.78) |
Peer problems | |||
Prosocial behavior | 12.94 (1.89) | 12.83 (1.80) | 12.26 (1.92) |
Cronbach’s alpha | |||
Conduct problems | 0.58 | 0.53 | 0.55 |
Hyperactivity/inattention | 0.70 | 0.66 | 0.70 |
Emotional symptoms | 0.61 | 0.65 | 0.65 |
Peer problems | 0.49 | 0.36 | 0.56 |
Prosocial behavior | 0.69 | 0.66 | 0.71 |
Compulsive Internet use | |||
Scale, mean (SD) | 2.55 (0.68) | 2.43 (0.74) | 1.89 (0.67) |
Cronbach’s alpha | 0.90 | 0.93 | 0.90 |
Number of Latent Classes | Number of Parameters | Log-Likelihood | BIC | SSABIC | AIC | LMR Adj. LRT | Entropy |
---|---|---|---|---|---|---|---|
1 class | 6 | −3524.56 | 7089.58 | 7070.53 | 7061.12 | - | - |
2 classes | 12 | −3290.05 | 6660.91 | 6620.80 | 6604.11 | 391.80 p = 0.07 | 0.81 |
3 classes | 18 | −3211.28 | 6543.77 | 6486.61 | 6458.57 | 153.74 p = 0.01 | 0.68 |
4 classes | 24 | −3151.83 | 6465.26 | 6385.04 | 6351.66 | 95.41 p = 0.001 | 0.75 |
5 classes | 30 | −3102.94 | 6407.88 | 6312.61 | 6265.88 | 116.04 p = 0.08 | 0.75 |
Class | Latvia, N (%) | Lithuania, N (%) | Taiwan, N (%) |
---|---|---|---|
Low Knowledge and Low Internet Use | 100 (37.2) | 162 (59.1) | 210 (69.1) |
Average Knowledge and Average Internet Use | 107 (39.8) | 68 (24.8) | 52 (17.1) |
Low Knowledge and High Time Online | 44 (16.4) | 29 (10.6) | 32 (10.5) |
High Knowledge and High Internet Use | 18 (6.7) | 15 (5.5) | 10 (3.3) |
Class | Girls, N (%) | Boys, N (%) |
---|---|---|
Low Knowledge and Low Internet Use | 232 (56.7) | 214 (49.8) |
Average Knowledge and Average Internet Use | 92 (22.5) | 107 (24.9) |
Low Knowledge and High Time Online | 58 (14.2) | 61 (14.2) |
High Knowledge and High Internet Use | 27 (6.6) | 48 (11.2) |
Distal Outcome/Fit Indices | Emotional Symptoms | Hyperactivity/Inattention | Conduct Problems | Peer Problems | Prosocial Behavior | Compulsive Internet Use |
---|---|---|---|---|---|---|
Log-likelihood | −4878.81 | −4953.02 | −4662.67 | −4825.29 | −4908.63 | −4024.21 |
BIC | 9953.77 | 10,102.19 | 9521.50 | 9846.40 | 10,013.42 | 8243.73 |
SSABIC | 9861.68 | 10,010.09 | 9429.40 | 9754.64 | 9921.32 | 8151.63 |
AIC | 9815.62 | 9964.04 | 9383.35 | 9708.59 | 9875.26 | 8106.42 |
Entropy | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.75 |
Number of parameters | 29 | 29 | 29 | 29 | 29 | 29 |
Distal Outcomes | Low Knowledge and Low Internet Use Class | Average Knowledge and Average Internet Use Class | Low Knowledge and High Time Online Class | High Knowledge and High Internet Use Class |
---|---|---|---|---|
Emotional symptoms | 3.85 | 3.84 | 4.04 | 4.06 |
Hyperactivity/inattention | 2.87 a | 3.10 | 3.15 b | 3.18 b |
Conduct problems | 3.89 a | 4.15 | 4.23 b | 4.27 b |
Peer problems | 3.46 | 3.53 | 3.60 | 3.40 |
Prosocial behavior | 6.65 | 6.75 | 6.81 | 6.83 |
Compulsive Internet use | 1.78 a | 2.57 b | 2.63 b | 4.29 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakalniškienė, V.; Jusienė, R.; Sebre, S.B.; Chun-Li Wu, J.; Laurinaitytė, I. Children’s Internet Use Profiles in Relation to Behavioral Problems in Lithuania, Latvia, and Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 8490. https://doi.org/10.3390/ijerph17228490
Pakalniškienė V, Jusienė R, Sebre SB, Chun-Li Wu J, Laurinaitytė I. Children’s Internet Use Profiles in Relation to Behavioral Problems in Lithuania, Latvia, and Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(22):8490. https://doi.org/10.3390/ijerph17228490
Chicago/Turabian StylePakalniškienė, Vilmantė, Roma Jusienė, Sandra B. Sebre, Jennifer Chun-Li Wu, and Ilona Laurinaitytė. 2020. "Children’s Internet Use Profiles in Relation to Behavioral Problems in Lithuania, Latvia, and Taiwan" International Journal of Environmental Research and Public Health 17, no. 22: 8490. https://doi.org/10.3390/ijerph17228490
APA StylePakalniškienė, V., Jusienė, R., Sebre, S. B., Chun-Li Wu, J., & Laurinaitytė, I. (2020). Children’s Internet Use Profiles in Relation to Behavioral Problems in Lithuania, Latvia, and Taiwan. International Journal of Environmental Research and Public Health, 17(22), 8490. https://doi.org/10.3390/ijerph17228490