Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Rice Bran for the Study
2.2. Animals and Diets
2.3. Animal Feeding Trial
2.4. Collection of Tissue Samples
2.5. Laboratory Arsenic Determination
2.6. Statistical Analyses
3. Results
3.1. Growth Performance and Behavior Observation
3.2. Fecal Arsenic Concentration
3.3. Hair Arsenic Concentration
3.4. Urinary Arsenic Concentration
3.5. Arsenic Concentrations of Internal Tissues
4. Discussion
4.1. Effect of Arsenic-Containing Rice Bran on Growth Performance of Pigs
4.2. Transportation and Distribution of Arsenic in Pig Body
4.3. Excretion of Arsenic from Pig Body
4.4. Human Health Implication
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
As | Arsenic |
ADG | average daily gain |
ADFI | average daily feed intake |
BW | body weight |
G:F | gain to feed ratio |
IARC | International Agency for Research on Cancer |
ICP-MS | Inductively Coupled Plasma—Mass Spectrometry |
NRC | National Research Council |
PDIFF | p-values for differences |
ppb | parts per billion |
ppm | parts per million |
References
- Lasky, T.; Sun, W.; Kadry, A.; Hoffman, M.K. Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken. Environ. Health Perspect. 2004, 112, 18–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, T. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure. Resour. Conserv. Recycl. 2005, 45, 356–367. [Google Scholar] [CrossRef]
- IARC; Working Group on the Evaluation of Carcinogenic Risks to Humans. Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents, 1st ed.; International Agency for Research on Cancer: Lyon, France, 2014; Volume 6, pp. 1–512. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294281/ (accessed on 20 July 2017).
- Lokuge, K.M.; Smith, W.; Caldwell, B.; Dear, K.; Milton, A.H. The effect of arsenic mitigation interventions on disease burden in Bangladesh. Environ. Health Perspect. 2004, 112, 1172–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, A.K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- Liao, N.; Seto, E.; Eskenazi, B.; Wang, M.; Li, Y.; Hua, J. A comprehensive review of arsenic exposure and risk from rice and a risk assessment among a cohort of adolescents in Kunming, China. Int. J. Environ. Res. Public Health 2018, 15, 2191. [Google Scholar] [CrossRef] [Green Version]
- Childs, N. Rice Outlook; USDA-ERS: Washington, DC, USA, 2012. [Google Scholar]
- Gul, K.; Yousuf, B.; Singh, A.K.; Singh, P.; Wani, A.A. Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioact. Carbohydr. Diet. Fibre 2015, 6, 24–30. [Google Scholar] [CrossRef]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A.; Miah, M.A.M. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.X.; Williams, P.N.; Carey, A.M.; Zhu, Y.G.; Deacon, C.; Raab, A.; Feldmann, J.; Islam, R.M.; Meharg, A.A. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 2008, 42, 7542–7546. [Google Scholar] [CrossRef]
- Sharma, R.; Srivastava, T.; Saxena, D. Studies on rice bran and its benefits-a review. Int. J. Eng. Res. Appl. 2005, 1, 107–112. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012; Volume 1, p. 420. [Google Scholar] [CrossRef] [Green Version]
- Calvert, C.; Parker, K.; Parker, J.; Sayre, R.N.; Saunders, R.M. Rice bran in swine rations. Calif. Agric. 1985, 39, 19–20. [Google Scholar]
- Farrell, D.J. Utilization of rice bran in diets for domestic fowl and ducklings. World’s Poult. Sci. J. 1994, 50, 115–131. [Google Scholar] [CrossRef]
- Kim, H.T.; Loftus, J.P.; Mann, S.; Wakshlag, J.J. Evaluation of arsenic, cadmium, lead and mercury contamination in over-the-counter available dry dog foods with different animal ingredients (red meat, poultry, and fish). Front. Vet. Sci. 2018, 5, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. Springer Plus 2015, 4, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gary, O. Article 7-Swine toxicoses. Iowa State Univ. Vet. 1966, 28, 127–135. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Berdanier, C.D. Advanced Nutrition: Micronutrients; CRC Press: Washington, DC, USA, 1998. [Google Scholar]
- Hill, G.M.; Spears, J.W. Trace and ultratrace elements in swine nutrition. In Swine Nutrition; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Roca Raton, FL, USA, 2001; pp. 229–261. [Google Scholar]
- Ledet, A.E.; Duncan, J.R.; Buck, W.B.; Ramsey, F.K. Clinical, toxicological, and pathological aspects of arsanilic acid poisoning in swine. Clin. Toxicol. 1973, 6, 439–457. [Google Scholar] [CrossRef] [Green Version]
- Stanogias, G.; Pearce, G.R. The digestion of fiber by pigs. 1. The effect of amount and type of fiber on apparent digestibility, nitrogen balance and rate of passage. Br. J. Nutr. 1985, 53, 513–530. [Google Scholar] [CrossRef]
- Fan, M.Z.; Sauer, W.C.; Li, S. Variability of apparent ileal amino acid digestibility in high-protein wheat samples for growing-finishing pigs. J. Anim. Feed Sci. 2001, 10, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, G.F.E.; Marcolla, C.S.; Machado, G.S.; Kessler, A.M.; Trevizan, L. Effect of full-fat rice bran on palatability and digestibility of diets supplemented with enzymes in adult dogs. J. Anim. Sci. 2014, 92, 4598–4606. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.A.; Overholt, M.F.; Dilger, A.C.; Boler, D.D.; Stein, H.H. Effects of full fat rice bran and defatted rice bran on growth performance and carcass characteristics of growing-finishing pigs. J. Anim. Sci. 2018, 96, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.X.; Liu, Z.Y.; Shi, M.; Li, P.; Zeng, Z.K.; Liu, L.; Huang, C.F.; Zhu, Z.P.; Li, D.F. Prediction of digestible and metabolizable energy content of rice bran fed to growing pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 654–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, C.; Sauer, W.C.; Cervantes, M.; Zhang, Y.; He, J.; Rademacher, M.; Htoo, J.K. Amino acid and energy digestibility in different sources of rice bran for growing pigs. Can. J. Anim. Sci. 2005, 85, 355–363. [Google Scholar] [CrossRef]
- de Campos, R.; Hierro, E.; Ordóńez, J.; Bertol, T.; de la Hoz, L. A note on partial replacement of maize with rice bran in the pig diet on meat and backfat fatty acids. J. Anim. Feed Sci. 2006, 15, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Warren, B.E.; Farrell, D.J. The nutritive value of full-fat and defatted Australian rice bran. II. Growth studies with chickens, rats and pigs. Anim. Feed Sci. Technol. 1990, 27, 229–246. [Google Scholar] [CrossRef]
- Chen, S.J.; Yan, X.J.; Chen, Z. Arsenic in tissues, organs, and cells. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Done, S.H.; Radostits, O.M. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats, and Horses; Elsevier Saunders: New York, NY, USA, 2007. [Google Scholar]
- Mandal, P. An insight of environmental contamination of arsenic on animal health. Emerg. Contam. 2017, 3, 17–22. [Google Scholar] [CrossRef]
- NRC. Arsenic: Medical and Biological Effects of Environmental Pollutants; The National Academies Press: Washington, DC, USA, 1977. [Google Scholar]
- López-Alonso, M.; Miranda, M.; Castillo, C.; Hernández, J.; García-Vaquero, M.; Benedito, J.L. Toxic and essential metals in liver, kidney and muscle of pigs at slaughter in Galicia, north-west Spain. Food Addit. Contam. 2007, 24, 943–954. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, G.; Cai, Y. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. J. Environ. Sci. 2016, 49, 59–73. [Google Scholar] [CrossRef]
- Ducoff, H.S.; Neal, W.B. Biological studies with arsenic; excretion and tissue localization. Proc. Soc. Exp. Biol. Med. 1948, 69, 548–554. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef]
- Olguín, A.; Jauge, P.; Cebrián, M.; Albores, A. Arsenic levels in blood, urine, hair and nails from a chronically exposed human population. Proc. West. Pharmacol. Soc. 1983, 26, 175–177. [Google Scholar] [PubMed]
- Katz, S.A. On the Use of Hair Analysis for Assessing Arsenic Intoxication. Int. J. Environ. Res. Public Health 2019, 16, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, T.; Dey, R.; Datta, B.; Patra, P.; Sarkar, S.; Chakraborty, A.; Bhar, M.; Majumdar, D. Effect of environmental exposure of Arsenicon cattle and poultry in Nadia district, West Bengal, India. Toxicol. Int. 2012, 19, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stýblo, M.; Drobná, Z.; Jaspers, I.; Lin, S.; Thomas, D.J. The role of biomethylation in toxicity and carcinogenicity of arsenic: A research update. Environ. Health Perspect. 2002, 110 (Suppl. 5), 767–771. [Google Scholar] [CrossRef] [Green Version]
- Vahter, M.; Marafante, E.; Lindgren, A.; Dencker, L. Tissue distribution and subcellular binding of arsenic in Marmoset monkeys after injection of 74As-Arsenite. Arch. Toxicol. 1982, 51, 65–77. [Google Scholar] [CrossRef]
- Drobná, Z.; Walton, F.S.; Harmon, A.W.; Thomas, D.J.; Stýblo, M. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes. Toxicol. Appl. Pharmacol. 2010, 245, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Zakharyan, R.; Wu, Y.; Bogdan, G.M.; Aposhian, H.V. Enzymic methylation of arsenic compounds: Assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem. Res. Toxicol. 1995, 8, 1029–1038. [Google Scholar] [CrossRef]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Cui, X.; Okayasu, R. Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats. Food. Chem. Toxicol. 2008, 46, 3646–3650. [Google Scholar] [CrossRef]
- Yamauchi, H.; Yamamura, Y. Dynamic change of inorganic arsenic and methyl arsenic compounds in human urine after oral intake as arsenic trioxide. Ind. Health 1979, 17, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Buchet, J.P.; Lauwerys, R.; Roles, H. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int. Arch. Occup. Environ. Heath 1981, 48, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.S.; Ryu, D.Y.; Choi, B.S.; Park, J.D. Urinary arsenic concentrations and their associated factors in Korean adults. Toxicol. Res. 2013, 29, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.S.; Choi, S.J.; Kim, D.W.; Huang, M.; Kim, N.Y.; Park, K.S.; Kim, C.Y.; Lee, H.M.; Yum, Y.N.; Han, E.S.; et al. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers. Arch. Environ. Contam. Toxicol. 2010, 58, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.H.; Cao, Y.; Zhu, Y.G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.M.O.; Grotto, D.; Batista, B.L.; Barbosa, F. Distribution of arsenic and oxidative stress in mice after rice ingestion. J. Trace Elem. Med. Biol. 2017, 44, 192–200. [Google Scholar] [CrossRef]
- Saifullah, S.D.; Naeem, A.; Iqbal, M.; Farooq, M.A.; Bibi, S.; Rengel, Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere 2018, 194, 171–188. [Google Scholar] [CrossRef]
Item | Diet 1 | ||
---|---|---|---|
Diet I | Diet II | Diet III | |
Ingredient | |||
Corn | 78.475 | 43.958 | 0.000 |
Rice bran 2 | 0.000 | 36.732 | 73.464 |
Soybean meal | 18.400 | 14.400 | 18.500 |
Poultry fat | 0.000 | 2.100 | 6.000 |
L-Lysine●HCl | 0.450 | 0.480 | 0.290 |
DL-Methionine | 0.060 | 0.065 | 0.050 |
L-Threonine | 0.120 | 0.170 | 0.100 |
L-Tryptophan | 0.030 | 0.030 | 0.001 |
L-Isoleucine | 0.000 | 0.040 | 0.000 |
L-Valine | 0.040 | 0.070 | 0.000 |
L-Cysteine●HCl, anhydrous | 0.060 | 0.090 | 0.080 |
Limestone | 0.850 | 1.200 | 1.200 |
Dicalcium phosphate | 1.200 | 0.350 | 0.000 |
Salt | 0.180 | 0.180 | 0.180 |
Mineral premix 3 | 0.070 | 0.070 | 0.070 |
Vitamin premix 3 | 0.065 | 0.065 | 0.065 |
Total | 100.000 | 100.000 | 100.000 |
Item | Diet 1 | ||
---|---|---|---|
Diet I | Diet II | Diet III | |
Calculated composition | |||
Net energy, kcal/kg | 2518 | 2508 | 2528 |
Total crude protein | 15.7 | 15.6 | 18.7 |
SID 2 crude protein | 13.2 | 8.0 | 9.5 |
SID lysine | 0.98 | 0.98 | 0.99 |
SID methionine + cystine | 0.56 | 0.55 | 0.56 |
SID threonine | 0.59 | 0.59 | 0.59 |
SID tryptophan | 0.17 | 0.17 | 0.17 |
SID arginine | 0.88 | 0.94 | 1.23 |
SID histidine | 0.36 | 0.34 | 0.40 |
SID leucine | 1.24 | 1.03 | 0.99 |
SID isoleucine | 0.53 | 0.51 | 0.54 |
SID valine | 0.64 | 0.64 | 0.66 |
SID phenylalanine + tyrosine | 1.05 | 0.97 | 1.12 |
Linoleic Acid | 1.62 | 2.05 | 2.69 |
Crude fiber | 2.22 | 4.19 | 6.24 |
Neutral detergent fiber | 9.76 | 15.43 | 20.69 |
Acid detergent fiber | 3.20 | 6.41 | 9.83 |
Total Ca | 0.66 | 0.66 | 0.66 |
STTD 3 P | 0.35 | 0.33 | 0.43 |
Arsenic, ppb | 0.00 | 306 | 612 |
Analyzed composition4 | |||
Dry matter | 88.2 | 90.3 | 92.2 |
Gross energy, kcal/kg | 3957 | 4729 | 5227 |
Crude protein | 15.1 | 15.5 | 18.2 |
Crude fat | 1.8 | 10.2 | 18.2 |
Crude fiber | 3.16 | 3.36 | 4.36 |
Ash | 4.83 | 6.99 | 9.46 |
Arsenic, ppb | 134 | 448 | 633 |
Item 2 | Diet 3 | p-Value 4 | ||
---|---|---|---|---|
Diet I | Diet II | Diet III | ||
Initial BW, kg | 26.2 ± 2.52 | 26.2 ± 1.96 | 26.5 ± 2.07 | 0.955 |
Final BW, kg | 72.0 a ± 5.50 | 68.0 a ± 5.33 | 55.9 b ± 8.81 | 0.001 |
ADG, kg/day | 1.09 a ± 0.08 | 0.99 a ± 0.09 | 0.69 b ± 0.18 | <0.0001 |
ADFI, kg/day | 2.29 a ± 0.23 | 2.14 a ± 0.17 | 1.73 b ± 0.23 | <0.0001 |
G:F ratio 5 | 0.47 ± 0.02 | 0.46 ± 0.02 | 0.40 ± 0.10 | 0.141 |
Tissue | Diet 2 | F-Stat 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
Diet I | Diet II | Diet III | II vs. I | III vs. I | III vs. II | ||
Blood | <10 | <10 | <10 | NA | NA | NA | NA |
Muscle | <10 | <10 | <10 | NA | NA | NA | NA |
Liver | <10 | 19.6 | 13.6 | 0.16 | 0.296 | 0.272 | 0.696 |
Kidney | <10 a | 21.0 b | 18.0 b | 1.40 | <0.001 | <0.001 | 0.249 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, S.F.; Hasan, M.S.; Yang, Z.; Stevens, A.W.; Brett, J.; Peng, Z. Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion. Int. J. Environ. Res. Public Health 2020, 17, 8530. https://doi.org/10.3390/ijerph17228530
Liao SF, Hasan MS, Yang Z, Stevens AW, Brett J, Peng Z. Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion. International Journal of Environmental Research and Public Health. 2020; 17(22):8530. https://doi.org/10.3390/ijerph17228530
Chicago/Turabian StyleLiao, Shengfa F., M. Shamimul Hasan, Zhongyue Yang, Andrew W. Stevens, James Brett, and Zhaohua Peng. 2020. "Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion" International Journal of Environmental Research and Public Health 17, no. 22: 8530. https://doi.org/10.3390/ijerph17228530
APA StyleLiao, S. F., Hasan, M. S., Yang, Z., Stevens, A. W., Brett, J., & Peng, Z. (2020). Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion. International Journal of Environmental Research and Public Health, 17(22), 8530. https://doi.org/10.3390/ijerph17228530