Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purchase of Samples
2.2. Chemicals
2.3. Sample Preparation and Instrumentation
2.3.1. Sample Preparation
2.3.2. Chemical Analysis
2.4. Exposure Estimation
2.4.1. Exposure Algorithms through Ingestion and Dermal Absorption
2.4.2. Deterministic Estimation
2.4.3. Probabilistic Estimation
3. Results
3.1. Occurrence of Phthalate Esters and DEHA
3.2. Estimated Exposure and Margin of Exposure (MOE)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takehisa, H.; Naoko, E.; Masahiko, S.; Katsuhide, T.; Moriuoki, O.; Keizoh, S.; Mutsuko, T.; Kenji, K.; Shin’ichiro, N.; Toshio, O. Release behavior of diethylhexyl phthalate from the polyvinyl-chloride tubing used for intravenous administration and the plasticized PVC membrane. Int. J. Pharm. 2005, 297, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kim, K.-T.; Choi, K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci. Total Environ. 2016, 547, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Li, Z.; Wang, H.; Liang, H. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Sci. Total Environ. 2018, 645, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hirata-Koizumi, M.; Ema, M. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul. Toxicol. Pharm. 2008, 50, 37–49. [Google Scholar] [CrossRef]
- Kamrin, M.A. Phthalate risks, phthalate regulation, and public health: A review. J. Toxicol. Environ. Health B 2009, 12, 157–174. [Google Scholar] [CrossRef]
- The European Commission. Commission regulation (EU) 2018/2005. Off. J. Eur. Union 2018, 61, 14–19. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Available online: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/phthalates (accessed on 18 November 2020).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/limiting-use-certain-phthalates-excipients-cder-regulated-products (accessed on 18 November 2020).
- Ministry of Trade, Industry and Energy of Republic of Korea. Available online: http://motie.go.kr/TPTXZ/motie/ms/nt/gosi/bbs/bbsView.do?bbs_seq_n=63555&bbs_cd_n=5 (accessed on 18 November 2020).
- Kawakami, T.; Isama, K.; Jinno, H. Skin transferability of phthalic acid ester plasticizers and other plasticizers using model polyvinyl chloride sheets. J. Environ. Sci. Health A 2020, 55, 1163–1172. [Google Scholar] [CrossRef]
- Oteef, M.D.Y.; Elhassan, M.S. Plastic toys and child care articles as a source of children exposure to phthalates and other plasticisers in Saudi Arabia. Int. J. Environ. Anal. Chem. 2020, 1–15. [Google Scholar] [CrossRef]
- Stringer, R.; Labunska, I.; Johnston, P.; Siddorn, J.; Stephenson, A. Concentrations of phthalate esters and identification of other additives in PVC children’s toys. Environ. Sci. Pollut. Res. 2000, 7, 27–36. [Google Scholar] [CrossRef]
- Bouma, K.; Schakel, D.J. Migration of phthalates from PVC toys into saliva simulant by dynamic extraction. Food Addit. Contam. 2002, 19, 602–610. [Google Scholar] [CrossRef]
- Ting, K.-C.; Gill, M.; Garbin, O. GC/MS screening method for phthalate esters in children’s toys. J. AOAC Int. 2009, 92, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, U.S.; Lalonde, P.J.; Chantal, P.D.; Subramanian, K.S. Analysis of diisononyl phthalate in PVC consumer products used by children. Int. J. Inj. Control Saf. 1999, 6, 223–234. [Google Scholar] [CrossRef]
- Xie, M.; Wu, Y.; Little, J.C.; Marr, L.C. Phthalates and alternative plasticizers and potential for contact exposure from children’s backpacks and toys. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Negev, M.; Berman, T.; Reicher, S.; Sadeh, M.; Ardi, R.; Shammai, Y. Concentrations of trace metals, phthalates, bisphenol A and flame-retardants in toys and other children’s products in Israel. Chemosphere 2018, 192, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Babich, M.A.; Bevington, C.; Dreyfus, M.A. Plasticizer migration from children’s toys, child care articles, art materials, and school supplies. Regul. Toxicol. Pharm. 2020, 111, 104574. [Google Scholar] [CrossRef]
- Xu, Y.; Cohen Hubal, E.A.; Clausen, P.A.; Little, J.C. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: A mechanistic analysis. Environ. Sci. Technol. 2009, 43, 2374–2380. [Google Scholar] [CrossRef]
- U.S. Consumer Product Safety Commission. Available online: https://www.cpsc.gov/s3fs-public/CPSC-CH-C1001-09.4_Standard_Operating_Procedure_for_Determination_of_phthalates.pdf?Uaxl4IlPOM6FkTpgas9fFKWLRsOCue0t (accessed on 18 November 2020).
- National Institute of Environmental Research of Republic of Korea. Available online: https://www.nier.go.kr/NIER/cop/bbs/selectNoLoginBoardArticle.do?menuNo=13001&bbsId=BBSMSTR_000000000031&nttId=27366&Command=READ (accessed on 18 November 2020).
- Giovanoulis, G.; Bui, T.; Xu, F.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Covaci, A.; Haug, L.S.; Cousins, A.P.; Magnér, J.; Cousins, I.T.; et al. Multi-pathway human exposure assessment of phthalate esters and DINCH. Environ. Int. 2018, 112, 115–126. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Available online: https://www.epa.gov/tsca-screening-tools/consumer-exposure-model-cem-version-21-users-guide (accessed on 18 November 2020).
- Thompson, K.M.; Burmaster, D.E.; Crouch, E.A.C. Monte Carlo techniques for quantitative uncertainty analysis in public health resk assessments. Risk Anal. 1992, 12, 53–63. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-volume-iii-part (accessed on 18 November 2020).
- National Institute of Environmental Research of Republic of Korea. Available online: https://ecolibrary.me.go.kr/nier/#/search/detail/5609057 (accessed on 18 November 2020).
- U.S. Environmental Protection Agency (EPA). Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=199243 (accessed on 18 November 2020).
- Lee, K.Y.; Shibutani, M.; Takagi, H.; Kato, N.; Takigami, S.; Uneyama, C.; Hirose, M. Diverse developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal exposure during the period from late gestation through lactation. Toxicology 2004, 203, 221–238. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=420 (accessed on 18 November 2020).
- Christiansen, S.; Scholze, M.; Dalgaard, M.; Vinggaard, A.M.; Axelstad, M.; Kortenkamp, A.; Hass, U. Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ. Health Persp. 2009, 117, 1839–1846. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Butterworth, K.R.; Gaunt, I.F.; Grasso, P.; Gangolli, S.D. Short-term oral toxicity study of diethyl phthalate in the rat. Food Cosmet. Toxicol. 1978, 16, 415–422. [Google Scholar] [CrossRef]
- Saillenfait, A.M.; Sabaté, J.-P.; Gallissot, F. Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reprod. Toxicol. 2008, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency (ECHA). Evaluation of New Scientific Evidence Concerning DINP and DIDP in Relation to Entry 52 of Annex ⅩⅤⅡ to REACH Regulation (EC) No 1907/2006. 2013. Available online: https://echa.europa.eu/documents/10162/31b4067e-de40-4044-93e8-9c9ff1960715 (accessed on 18 November 2020).
- Renwick, A.G. Data-derived safety factors for the evaluation of food additives and environmental contaminants. Food. Addit. Contam. 1993, 10, 275–305. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.M.; Greggs, B.; Goyak, K.O.; Landenberger, B.D.; Mason, A.M.; Howard, B.; Zaleski, R.T. A quantitative screening-level approach to incorporate chemical exposure and risk into alternative assessment evaluations. Integr. Environ. Assess. Manag. 2017, 13, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, E.D.S.; Reitano, E.M.; Chhabra, J.S.; Bergen, G.P.; Whyatt, R.M. A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 2011, 31, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Nehring, A.; Bury, D.; Ringbeck, B.; Kling, H.-W.; Otter, R.; Weiss, T.; Brüning, T.; Koch, H.M. Metabolism and urinary excretion kinetics of di(2-ethylhexyl) adipate (DEHA) in four human volunteers after a single oral dose. Toxicol. Lett. 2020, 321, 95–102. [Google Scholar] [CrossRef]
- Chang, J.-W.; Lee, C.-C.; Pan, W.-H.; Chou, W.-C.; Huang, H.-B.; Chiang, H.-C.; Huang, P.-C. Estimated Daily Intake and Cumulative Risk Assessment of Phthalates in the General Taiwanese after the 2011 DEHP Food Scandal. Sci. Rep. 2017, 7, 45009. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Lioy, P.J.; Hauser, R.; Gennings, C.; Koch, H.M.; Mirkes, P.E.; Schwetz, B.A.; Kortenkamp, A. Assessment of phthalates/phthalate alternatives in children’s toys and childcare articles: Review of the report including conclusions and recommendation of the Chronic Hazard Advisory Panel of the Consumer Product Safety Commission. J. Expo. Sci. Environ. Epid. 2015, 25, 343–353. [Google Scholar] [CrossRef]
- Kim., S.; Kang, S.; Lee, G.; Lee, S.; Jo, A.; Kwak, K.; Kim, D.; Koh, D.; Kho, Y.L.; Kim, S.; et al. Urinary phthalate metabolites among elementary school children of Korea: Sources, risks, and their associaton with oxidative stress marker. Sci. Total Environ. 2014, 472, 49–55. [Google Scholar] [CrossRef]
- Guo, Y.; Alomirah, H.; Cho, H.-S.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Kannan, K. Occurrence of phthalate metabolites in human urine from several asian countries. Environ. Sci. Technol. 2011, 45, 3138–3144. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Zhang, Y.; Weschler, C.J. Predicting dermal absorption of gas-phase chemicals: Transient model development, evaluation, and application. Indoor Air 2014, 24, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Kang, Y.; Chen, J.; Li, A.; Chen, W.; Li, Z.; He, L.; Zhang, Q.; Luo, J.; Zeng, L. Dermal bioaccessibility of plasticizers in indoor dust and clothing. Sci. Total Environ. 2019, 672, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Letinski, D.J.; Connelly, M.J., Jr.; Peterson, D.R.; Parkerton, T.F. Slow-stir water solubility measurements of selected alcohols and diesters. Chemosphere 2002, 48, 257–265. [Google Scholar] [CrossRef]
Category | Number of Products | Sub-Category of Products (Total Number of Samples) | Number of Products in Which Chemicals Were Above Detection Limits | ||
---|---|---|---|---|---|
Chemical | Number | ||||
Accessories | 605 | Clothes (116), jewelry (240), mobile accessories (85), household stuffs (82), DIY tools (82) | DBP | 6 | |
DEHA | 15 | ||||
DEHP | 51 | ||||
DINP | 29 | ||||
Mat | 110 | Non-slip mat (11), play mat (99) | DBP | 1 | |
DEHP | 6 | ||||
DINP | 1 | ||||
Shoes | 176 | Roller shoes (25), sandals (36), summer shoes (59), indoor shoes (42), shower sandals (14) | DBP | 36 | |
DEHP | 30 | ||||
DINP | 29 | ||||
Stationery | 785 | Beauty and personal care (10), kitchen stuffs (41), office products (552), painting and drawing supplies (82), tools and furniture (100) | DBP | 11 | |
DEHA | 6 | ||||
DEHP | 126 | ||||
DIBP | 1 | ||||
DINP | 54 | ||||
Toilet | 38 | Potty toilet (38) | DEHP | 5 | |
DINP | 9 | ||||
Toy | 1631 | Gift and party goods (168), play figures (780), shape and size of certain toys (75), arts and crafts (537), preschool Games (11), aquatic toys (37), other infant toys (23) | DBP | 12 | |
DEHA | 9 | ||||
DEHP | 46 | ||||
DEP | 10 | ||||
DIBP | 13 | ||||
DINP | 19 | ||||
Sum | 3345 | - |
Parameter | Description [Units] |
---|---|
a | Constant [-] |
AT | Averaging time [d] |
BW | Body weight [kg] |
CA | Contact area of mouthing [cm2] |
Cart | Chemical concentration in article [mg cm−3] |
x | Ratio of the evaporation rate from the SC surface to the dermal absorption rate through the SC [-] |
D | Solid phase diffusion coefficient [m2 h−1] |
Dmouthing | Duration of mouthing [min h−1] |
Dur | Duration of article contact [min] |
ED | Exposure duration [d] |
FA | Fraction absorbed [-] |
h | Gas phase mass transfer coefficient [m h−1] |
hsc | Stratum corneum (SC) thickness (assumed to be 15 μm) |
Kp | Permeability coefficient for chemical transport through the SC from an aqueous vehicle [cm h−1] |
l | Average distance a diffusing molecule travels per contact [cm] |
MR | Migration rate of chemical from article to saliva [mg cm−2 h−1] |
MW | Molecular weight [mg mmol−1] |
pvap | Vapor pressure [Torr] |
R | Real gas constant [62.37 mL Torr K−1 mmol−1) |
SA/BW | Surface area to body weight ratio [cm2 kg−1] |
Sw | Water solubility [mg mL−1] |
T | Temperature [K] |
tlag | Lag time for chemical transport through the SC [h] |
Category | Chemical | Reference Dose (mg kg−1 d−1) | Exposure Range (mg kg−1 d−1) | MOE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ingestion | Dermal | Total | ||||||||
Max | Min | Max | Min | Max | Min | Max | Min | |||
Accessories | DBP | 2 1 | 5.0 × 10−3 | 5.0 × 10−3 | 1.9 × 10−2 | 5.5 × 10−4 | 2.4 × 10−2 | 5.5 × 10−3 | 8.2 × 101 | 3.6 × 102 |
DEHA | 170 2 | 5.0 × 10−3 | 5.0 × 10−3 | 2.0 × 10−4 | 3.5 × 10−6 | 5.2 × 10−3 | 5.0 × 10−3 | 3.3 × 104 | 3.4 × 104 | |
DEHP | 3 3 | 5.0 × 10−1 | 5.0 × 10−3 | 2.0 × 10−2 | 8.6 × 10−6 | 5.1 × 10−1 | 5.0 × 10−3 | 5.8 × 100 | 6.1 × 102 | |
DINP | 15 6 | 5.0 × 10−1 | 5.0 × 10−3 | 7.6 × 10−4 | 4.9 × 10−7 | 5.0 × 10−1 | 5.0 × 10−3 | 3.0 × 101 | 3.0 × 103 | |
Mat | DBP | 2 1 | 5.5 × 10−4 | 5.5 × 10−4 | 5.5 × 10−4 | 5.5 × 10−4 | 3.6 × 103 | 3.6 × 103 | ||
DEHP | 3 3 | 1.7 × 10−2 | 8.6 × 10−6 | 1.7 × 10−2 | 8.6 × 10−6 | 1.7 × 102 | 3.5 × 105 | |||
DINP | 15 6 | 2.9 × 10−6 | 2.9 × 10−6 | 2.9 × 10−6 | 2.9 × 10−6 | 5.1 × 106 | 5.1 × 106 | |||
Shoes | DBP | 2 1 | 1.8 × 100 | 5.5 × 10−4 | 1.8 × 100 | 5.5 × 10−4 | 1.1 × 100 | 3.6 × 103 | ||
DEHP | 3 3 | 3.4 × 10−2 | 8.6 × 10−6 | 3.4 × 10−2 | 8.6 × 10−6 | 8.9 × 101 | 3.5 × 105 | |||
DINP | 15 6 | 7.0 × 10−4 | 4.9 × 10−7 | 7.0 × 10−4 | 4.9 × 10−7 | 2.1 × 104 | 3.1 × 107 | |||
Stationery | DBP | 2 1 | 5.0 × 10−3 | 5.0 × 10−3 | 8.8 × 10−3 | 5.5 × 10−4 | 1.4 × 10−2 | 5.5 × 10−3 | 1.5 × 102 | 3.6 × 102 |
DEHA | 170 2 | 5.0 × 10−3 | 5.0 × 10−3 | 6.9 × 10−5 | 3.5 × 10−6 | 5.0 × 10−3 | 5.0 × 10−3 | 3.4 × 104 | 3.4 × 104 | |
DEHP | 3 3 | 5.0 × 10−1 | 5.0 × 10−3 | 2.9 × 10−2 | 8.6 × 10−6 | 5.2 × 10−1 | 5.0 × 10−3 | 5.7 × 100 | 6.1 × 102 | |
DIBP | 125 5 | 5.0 × 10−3 | 5.0 × 10−3 | 1.2 × 10−5 | 1.2 × 10−5 | 5.0 × 10−1 | 5.0 × 10−1 | 2.5 × 102 | 2.5 × 102 | |
DINP | 15 6 | 5.0 × 10−1 | 5.0 × 10−3 | 2.0 × 10−3 | 4.9 × 10−7 | 5.0 × 10−1 | 5.0 × 10−3 | 3.0 × 101 | 3.0 × 103 | |
Toilet | DEHP | 3 3 | 7.3 × 10−3 | 2.8 × 10−3 | 7.3 × 10−3 | 2.8 × 10−3 | 4.1 × 102 | 1.1 × 103 | ||
DINP | 15 6 | 2.4 × 10−4 | 1.5 × 10−6 | 2.4 × 10−4 | 1.5 × 10−6 | 6.3 × 104 | 1.0 × 107 | |||
Toy | DBP | 2 1 | 5.0 × 10−1 | 5.0 × 10−3 | 4.4 × 10−1 | 1.1 × 10−3 | 9.4 × 10−1 | 6.0 × 10−3 | 2.1 × 100 | 3.3 × 102 |
DEHA | 170 2 | 5.0 × 10−3 | 5.0 × 10−3 | 2.8 × 10−5 | 6.9 × 10−6 | 5.0 × 10−3 | 5.0 × 10−3 | 3.4 × 104 | 3.4 × 104 | |
DEHP | 3 3 | 5.0 × 10−1 | 5.0 × 10−3 | 2.4 × 10−2 | 8.6 × 10−6 | 5.2 × 10−1 | 5.0 × 10−3 | 5.8 × 100 | 6.1 × 102 | |
DEP | 750 4 | 5.0 × 10−3 | 5.0 × 10−3 | 8.7 × 10−2 | 1.9 × 10−3 | 9.2 × 10−2 | 6.8 × 10−3 | 8.2 × 103 | 1.1 × 105 | |
DIBP | 125 5 | 5.0 × 10−1 | 5.0 × 10−3 | 3.3 × 10−2 | 2.5 × 10−5 | 5.3 × 10−1 | 5.0 × 10−3 | 2.4 × 102 | 2.5 × 104 | |
DINP | 15 6 | 5.0 × 10−1 | 5.0 × 10−3 | 2.3 × 10−4 | 1.5 × 10−6 | 5.0 × 10−1 | 5.0 × 10−3 | 3.0 × 101 | 3.0 × 103 |
Chemical | Age Group | Exposure Range (mg kg−1 d−1) | MOE | ||||||
---|---|---|---|---|---|---|---|---|---|
Ingestion | Dermal | Total | |||||||
Median | 95% | Median | 95% | Median | 95% | Median | 95% | ||
DBP | 0–2 years | 1.5 × 10−2 | 9.6 × 10−2 | 8.2 × 10−3 | 1.2 × 10−1 | 3.2 × 10−2 | 1.9 × 10−1 | 6.2 × 101 | 1.1 × 101 |
3–12 years | 2.2 × 10−3 | 1.5 × 10−2 | 8.9 × 10−3 | 1.6 × 10−1 | 1.4 × 10−2 | 1.7 × 10−1 | 1.5 × 102 | 1.2 × 101 | |
DEHA | 0–2 years | 1.6 × 10−2 | 9.1 × 10−2 | 1.9 × 10−6 | 1.8 × 10−5 | 1.6 × 10−2 | 9.1 × 10−2 | 1.1 × 104 | 1.9 × 103 |
3–12 years | 2.3 × 10−3 | 1.5 × 10−2 | 9.1 × 10−7 | 9.8 × 10−6 | 2.3 × 10−3 | 1.5 × 10−2 | 7.5 × 104 | 1.2 × 104 | |
DEHP | 0–2 years | 2.0 × 10−2 | 4.2 × 10−1 | 3.0 × 10−4 | 3.0 × 10−3 | 2.1 × 10−2 | 4.2 × 10−1 | 1.4 × 102 | 7.2 × 100 |
3–12 years | 3.8 × 10−3 | 7.2 × 10−2 | 2.2 × 10−4 | 2.9 × 10−3 | 4.7 × 10−3 | 7.5 × 10−2 | 6.4 × 102 | 4.0 × 101 | |
DEP | 0–2 years | 1.6 × 10−2 | 9.1 × 10−2 | 5.6 × 10−4 | 1.3 × 10−3 | 1.6 × 10−2 | 9.2 × 10−2 | 2.9 × 105 | 4.9 × 104 |
3–12 years | 2.3 × 10−3 | 1.5 × 10−2 | 2.6 × 10−4 | 1.0 × 10−3 | 2.6 × 10−3 | 1.5 × 10−2 | 4.8 × 104 | 7.4 × 103 | |
DIBP | 0–2 years | 1.5 × 10−2 | 1.0 × 10−1 | 9.4 × 10−6 | 8.1 × 10−5 | 1.6 × 10−2 | 1.0 × 10−1 | 8.1 × 103 | 1.2 × 103 |
3–12 years | 2.3 × 10−3 | 1.5 × 10−2 | 3.7 × 10−6 | 1.9 × 10−5 | 2.3 × 10−3 | 1.5 × 10−2 | 5.5 × 104 | 8.3 × 103 | |
DINP | 0–2 years | 1.7 × 10−2 | 3.8 × 10−1 | 3.1 × 10−6 | 4.4 × 10−5 | 1.7 × 10−2 | 3.8 × 10−1 | 8.8 × 102 | 3.9 × 101 |
3–12 years | 2.6 × 10−3 | 6.7 × 10−2 | 2.1 × 10−6 | 3.3 × 10−5 | 2.6 × 10−3 | 6.7 × 10−2 | 5.8 × 103 | 2.2 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.Y.; Chun, S.-H.; Jung, Y.; Mohamed, D.F.M.S.; Kim, H.-S.; Kang, D.-Y.; An, J.-W.; Park, S.-Y.; Kwon, H.-W.; Kwon, J.-H. Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate. Int. J. Environ. Res. Public Health 2020, 17, 8582. https://doi.org/10.3390/ijerph17228582
Kim DY, Chun S-H, Jung Y, Mohamed DFMS, Kim H-S, Kang D-Y, An J-W, Park S-Y, Kwon H-W, Kwon J-H. Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate. International Journal of Environmental Research and Public Health. 2020; 17(22):8582. https://doi.org/10.3390/ijerph17228582
Chicago/Turabian StyleKim, Du Yung, Sa-Ho Chun, Yerin Jung, Dana Fahad Mohamed Salman Mohamed, Hae-Soo Kim, Da-Young Kang, Jeong-Won An, Seong-Yeol Park, Hyun-Wook Kwon, and Jung-Hwan Kwon. 2020. "Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate" International Journal of Environmental Research and Public Health 17, no. 22: 8582. https://doi.org/10.3390/ijerph17228582
APA StyleKim, D. Y., Chun, S. -H., Jung, Y., Mohamed, D. F. M. S., Kim, H. -S., Kang, D. -Y., An, J. -W., Park, S. -Y., Kwon, H. -W., & Kwon, J. -H. (2020). Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate. International Journal of Environmental Research and Public Health, 17(22), 8582. https://doi.org/10.3390/ijerph17228582