Regular Leisure-Time Physical Activity is Effective in Boosting Neurotrophic Factors and Alleviating Menopause Symptoms
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Questionnaire Test
2.3. Resistance and Aerobic Exercise Program
2.4. Blood Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maric-Bilkan, C.; Gilbert, E.L.; Ryan, M.J. Impact of ovarian function on cardiovascular health in women: Focus on hypertension. Int. J. Womens Health 2014, 6, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauley, J.A. Estrogen and bone health in men and women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.; Rymer, J. Symptoms of the menopause. Best. Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Gold, E.B.; Crawford, S.L.; Avis, N.E.; Crandall, C.J.; Mattesws, K.A.; Waetjen, L.E.; Lee, J.S.; Thurston, R.; Vuga, M.; Harlow, S.D. Factors related to age at natural menopause: Longitudinal analyses from Swan. Am. J. Epidemiol. 2013, 178, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.D.; Hwang, H.H.; Baek, S.R. The effects of leisure education based on the theory of planned behavior on the perception of personal health and generativity of the middle-aged women. Korean J. Physi. Educ. 2017, 56, 589–612. [Google Scholar] [CrossRef]
- Villaverde Gutiérrez, C.; Torres Luque, G.; Ábalos Medina, G.M.; Argente del Castillo, M.J.; Guisado, I.M.; Guisado Barrilao, R.; Ramírez Rodrigo, J. Influence of exercise on mood in postmenopausal women. J. Clin. Nurs. 2012, 21, 923–928. [Google Scholar] [CrossRef]
- Hiditch, J.R.; Lewis, J.; Peter, A.; van Maris, B.; Ross, A.; Franssen, E.; Guyatt, G.H.; Norton, P.G.; Dunn, E. A menopause-specific quality of life questionnaire: Development and psychometric properties. Maturitas 2008, 61, 107–121. [Google Scholar] [CrossRef]
- Obermeyer, C.M.; Ghorayeb, F.; Reynolds, R. Symptom reporting around the menopause in Beirut, Lebanon. Maturitas 1999, 33, 249–258. [Google Scholar] [CrossRef]
- Elavsky, S.; McAuley, E. Physical activity, symptoms, esteem, and life satisfaction during menopause. Maturitas 2005, 52, 374–385. [Google Scholar] [CrossRef]
- Grindler, N.M.; Fantoro, N.F. Menopause and exercise. Menopause 2015, 22, 1351–1358. [Google Scholar] [CrossRef]
- Skrzypulec, V.; Dabrowska, J.; Drosdzol, A. The influence of physical activity level on climacteric symptoms in menopausal women. Climacteric 2010, 13, 355–361. [Google Scholar] [CrossRef] [PubMed]
- De Azevedo Guimarães, A.C.; Baptista, A. Influence of habitual physical activity on the symptoms of climacterium/menopause and the quality of life of middle-aged women. Int. J. Womens Health 2011, 3, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.J.; Chee, W.; Im, E.O. Menopausal symptoms and physical activity in multiethnic groups of midlife women: A secondary analysis. J. Adv. Nurs. 2013, 69, 1953–1965. [Google Scholar] [CrossRef] [Green Version]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1997, 1, 385–401. [Google Scholar] [CrossRef]
- Park, S.Y. An Investigation on Suppressor Effect of Self-Focused Attention on Depression. Masters’ Thesis, Graduate School, Korea University, Seoul, Korea, 2013. Unpublished work. [Google Scholar]
- Cimprich, B.; Visovatti, M.; Ronis, D.L. The attentional function index—A self-report cognitive measure. Psychooncology 2011, 20, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Cimprich, B. Development of an intervention to restore attention in cancer patients. Cancer Nurs. 1993, 16, 83–92. [Google Scholar] [CrossRef]
- Sarrel, P.M. Evaluation and management of postmenopausal patients. Female Patient 1995, 20, 27–32. [Google Scholar]
- Jo, H.S.; Lee, K.J. A comparative study on climacteric symptoms of natural menopausal women and artificial menopausal women. J. Korean Acad. Nurs. 2001, 31, 692–702. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, J.P.; Wegner, J. Power weight training and the female athlete. Phys. Sportsmed. 1981, 9, 109–120. [Google Scholar] [CrossRef]
- Ekelund, U.; Ward, H.A.; Norat, T.; Luan, J.; May, A.M.; Weiderpass, E. Physical activity and all-cause mortality across leels of overall and abdominal adiposity in European men and women: The European Prospective Investigation into Cancer and Nutrition Study (EPIC). Am. J. Clin. Nutr. 2015, 101, 613–621. [Google Scholar] [CrossRef]
- Pedersen, B.K. The diseasome of physical inactivity-and the role of myokines in muscle-fat cross talk. J. Physiol. 2009, 587, 5559–5568. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.A.; Jensky, N.E.; Marshall, S.J.; Bertoni, A.G.; Cushman, M. Sedentary behavior and adiposity-associated inflammation: The Multi-Ethnic Study of Atherosclerosis. Am. J. Prev. Med. 2012, 42, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, G.N.; Matthews, C.E.; Dunstan, D.W.; Winkler, E.A.; Owen, N. Sedentary time and cardio-metabolic biomarkers in US adult: NHANES 2003-06. Eur. Heart J. 2011, 32, 590–597. [Google Scholar] [CrossRef]
- Derby, C.A.; Crawford, S.L.; Pasternak, R.C.; Sowers, M.; Sternfeld, B.; Matthews, K.A. Lipid changes druing the menopause transition in relation to age and weight the study of women’s health across the nation. Am. J. Epidemiol. 2009, 169, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Davisa, S.R.; Castelo-Brancob, C.; Chedrauic, P.; Lumsdend, M.A.; Nappie, R.E.; Shahf, D.; Villasecag, P. Understanding weight gain at menopause. Climacteric 2012, 15, 419–429. [Google Scholar] [CrossRef]
- Gold, E.B.; Block, G.; Crawford, S.; Lachance, L.; FitzGerald, G.; Miracle, H.; Sherman, S. Lifestyle and demographic factors in relation to vasomotor symptoms: Baseline results from the study of women’s health across the nation. Am. J. Epidemiol. 2004, 159, 1189–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Safi, Z.A.; Polotsky, A.J. Obesity and menopause. Best. Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 548–553. [Google Scholar] [CrossRef]
- Gold, E.B.; Colvin, A.; Avis, N.; Bromberger, J.; Greendale, G.A.; Poweel, L.; Sternfeld, B.; Matthews, K. Longitudinal analysis of the association between vasomotor symptoms and race/ethnicity across the menopausal transition: Study of women’s health across the nation. Am. J. Public Health 2006, 96, 1226–1235. [Google Scholar] [CrossRef]
- Koo, S.; Ahn, Y.; Lim, J.Y.; Cho, J.; Park, H.Y. Obesity associates with vasomotor symptoms in postmenopause but with physical symptoms in perimenopause: A cross-sectional study. BMC Womens Health 2017, 17, 126. [Google Scholar] [CrossRef]
- Green, A.N.; McGrath, R.; Martinez, V.; Taylor, K.; Paul, D.R.; Vella, C.A. Associations of objectively measured sedentary behavior, light activity, and markers of cardiometabolic health in young women. Eur. J. Appl. Physiol. 2014, 114, 907–919. [Google Scholar] [CrossRef]
- Knudsen, S.H.; Hansen, L.S.; Pedersen, M.; Dejgaard, T.; Hansen, J.; Hall, G.V.; Thomsen, C.; Solomon, T.P.; Pedersen, B.K.; Krogh-Madsen, R. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J. Appl. Physiol. 2012, 113, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J.; American Heart Association Council on Clinical Cardiology; et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, É.W.; Mullally, S.; Foley, C.; Warmington, S.A.; O’Mara, S.M.; Kelly, A.M. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 2011, 104, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [Green Version]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Tredns. Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Marosi, K.; Mattson, M.P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 2014, 25, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Sloane, B.F. Cathepsin B and cystatins: Evidence for a role in cancer progression. Semin. Cancer Biol. 1990, 1, 137–152. [Google Scholar]
- Tong, B.; Wan, B.; Wei, Z.; Zhao, P.; Dou, Y.; Lv, Z.; Xia, Y.; Dai, Y. Role of cathepsin B in regulating migration and invasion of fibroblast-like synoviocytes into inflamed tissue from patients with rheumatoid arthritis. Clin. Exp. Immunol. 2014, 177, 586–597. [Google Scholar] [CrossRef]
- Yang, W.E.; Ho, C.C.; Yang, S.F.; Lin, S.H.; Yeh, K.T.; Lin, C.W.; Chen, M.K. Cathepsin B expression and the correlation with clinical aspects of oral squamous cell carcinoma. PLoS ONE 2016, 11, e0152165. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.C.; Kim, J.; Kim, S.; Son, Y.H.; Lee, N.; Jung, S.H. The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO2max performance in healthy college men. Neurosci. Lett. 2012, 519, 78–83. [Google Scholar] [CrossRef]
- Castellano, V.; White, L.J. Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. J. Neurol. Sci. 2008, 269, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Pilc, A.; Majerczak, J.; Grandys, M.; Zapart-Bukowska, J.; Duda, K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 2008, 7, 119–132. [Google Scholar]
- Piccinni, A.; Veltri, A.; Costanzo, D.; Vanelli, F.; Franceschini, C.; Moroni, I.; Domenici, L.; Origlia, N.; Marazziti, D.; Akiskal, H.S.; et al. Decreased plasma levels of brain-derived neurotrophic factor (BDNF) during mixed episodes of bipolar disorder. J. Affect. Disord. 2015, 171, 167–170. [Google Scholar] [CrossRef]
- Heyman, E.; Gamelin, F.-X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; Di Marzo, V.; Meeusen, R. Intense exercise increases circulating endocannabinoid and BDNF levels in human—Possible implications for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Kenna, H.A.; Reynolds-May, M.; Stepanenko, A.; Ketter, T.A.; Hallmayer, J.; Rasgon, N.L. Blood levels of brain derived neurotrophic factor in women with bipolar disorder and healthy control women. J. Affect. Disord. 2014, 156, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.Y.; Becke, A.; Berron, D.; Becker, B.; Sah, N.; Benoni, C.; Janke, E.; Lubejko, S.T.; Greig, N.H.; Mattison, J.A.; et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016, 24, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox. Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, A.A.; Gulyaeva, N.V. Possible role of proteases in preconditioning of brain cells to pathological conditions. Biochemistry 2015, 80, 163–171. [Google Scholar] [CrossRef]
- Abrous, D.N.; Wojtowicz, J.M. Interaction between neurogenesis and hippocampal memory system: New vistas. Cold Spring Harb. Perspect. Biol. 2015, 7, a018952. [Google Scholar] [CrossRef] [Green Version]
- Duzel, E.; van Praag, H.; Sendtner, M. Can physical exercise in old age improve memory and hippocampal function? Brain 2016, 139, 662–673. [Google Scholar] [CrossRef]
- Aloe, L.; Rocco, M.L.; Balzamino, B.O.; Micera, A. Nerve growth factor: Role in growth, differentiation and controlling cancer cell development. J. Exp. Clin. Cancer Res. 2016, 35, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablochkova, A.; Backryd, E.; Kosek, E.; Mannerkorpi, K.; Ernberg, M.; Gerdle, B.; Ghafouri, B. Unaltered low nerve growth factor and high brain-derived neurotrophic factor levels in plasma from patients with fibromyalgia after a 15-week progressive resistance exercise. J. Rehabil. Med. 2019, 51, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, K.H.; Gold, S.M.; Witte, J.; Bartsch, K.; Lang, U.E.; Hellweg, R.; Reer, R.; Braumann, K.M.; Heesen, C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J. Neurol. Sci. 2004, 225, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Bansi, J.; Bloch, W.; Gamper, U.; Kesselring, J. Training in MS: Influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult. Scler. 2013, 19, 613–621. [Google Scholar] [CrossRef] [PubMed]
Variable | Contents | n | % |
---|---|---|---|
Age | 40–49 | 17 | 32.7 |
50–59 | 21 | 40.4 | |
60–69 | 14 | 26.9 | |
Education Level | Middle School | 3 | 5.8 |
High School | 32 | 61.5 | |
University | 17 | 32.7 | |
Monthly Household Income | Less than $3000 | 16 | 30.8 |
$3000 to less than $4000 | 17 | 32.7 | |
$4000 to less than $5000 | 8 | 15.4 | |
More than $5000 | 11 | 21.1 | |
Number of Family Members | 1 | 4 | 7.7 |
2 | 20 | 38.5 | |
More than 3 | 28 | 53.8 | |
Menopause | Non-menopausal | 18 | 34.6 |
Menopause | 34 | 65.4 | |
Total | 52 | 100.0 |
Exercise | Time | % RM | Intensity |
---|---|---|---|
Warm-up | 10 (min) | HRR 50% | 3 sets 250 kcal rest 60 s |
Squat | 40 (min) | 55–65% RM | |
Lunge | |||
Chest Press | |||
Vertical Fly | |||
Lat Pull Down | |||
Long Pull | |||
Crunch | |||
Cool-down | 10 (min) | HRR 50% |
0 Weeks | 6 Weeks | 12 Weeks | Post Hoc | ||
---|---|---|---|---|---|
Weight (kg) | PRM | 66.7 ± 12.99 * | 66.07 ± 11.99 | 64.92 ± 12.82 | |
POM | 60.66 ± 6.55 | 59.80 ± 6.31 | 59.80 ± 5.71 | ||
% Body Fat (%) | PRM | 37.34 ± 6.12 | 36.05 ± 5.99 | 34.75 ± 6.14 | A > C |
POM | 35.26 ± 5.27 | 33.86 ± 4.87 | 33.87 ± 4.50 | A > B,C | |
BMI (kg/m2) | PRM | 26.76 ± 4.57 | 26.58 ± 4.41 | 26.20 ± 4.87 | |
POM | 24.68 ± 2.54 | 24.30 ± 2.36 | 24.41 ± 2.26 |
0 Weeks | 6 Weeks | 12 Weeks | Post Hoc | ||
---|---|---|---|---|---|
Grip strength, left (kg) | PRM | 21.54 ± 1.75 | 22.48 ± 1.30 | 22.18 ± 1.51 | |
POM | 19.30 ± 1.23 | 21.96 ± 1.04 | 21.37 ± 0.92 | ||
Grip strength, right (kg) | PRM | 22.72 ± 2.28 | 23.49 ± 1.59 | 23.16 ± 2.09 | |
POM | 20.64 ± 1.34 | 23.04 ± 1.01 | 22.95 ± 0.90 | ||
Trunk forward flexion (cm) | PRM | 12.61 ± 1.98 * | 15.87 ± 1.57 * | 14.76 ± 1.99 * | |
POM | 17.47 ± 1.30 | 20.26 ± 1.19 | 19.94 ± 1.33 | ||
Sit-up (Frequency) | PRM | 16.46 ± 3.16 | 18.53 ± 3.40 | 23.46 ± 3.26 | |
POM | 10.85 ± 1.90 | 16.05 ± 2.36 | 18.05 ± 2.12 | ||
Standing broad jump (cm) | PRM | 130.38 ± 7.56 | 138.00 ± 6.67 * | 133.15 ± 7.38 | |
POM | 114.25 ± 4.89 | 118.85 ± 3.94 | 125.55 ± 5.21 | ||
Sidestep (Frequency) | PRM | 29.00 ± 1.29 | 32.61 ± 1.33 | 34.15 ± 1.48 | A < C |
POM | 28.65 ± 0.94 | 32.20 ± 0.64 | 33.75 ± 0.70 | A < B,C |
0 Weeks | 6 Weeks | 12 Weeks | Post Hoc | ||
---|---|---|---|---|---|
Depression | PRM | 11.07 ± 1.42 * | 10.15 ± 1.56 * | 10.23 ± 1.50 | |
POM | 15.05 ± 1.71 | 14.30 ± 1.89 | 13.65 ± 1.40 | ||
Perception | PRM | 3.51 ± 0.64 | 3.62 ± 0.63 | 3.55 ± 0.43 | |
POM | 3.44 ± 0.38 | 3.44 ± 0.39 | 3.50 ± 0.44 | ||
Climacterium | PRM | 7.46 ± 1.55 * | 7.69 ± 1.72 * | 6.15 ± 1.78 * | |
POM | 12.05 ± 1.64 | 12.15 ± 1.65 | 11.05 ± 1.36 |
0 Weeks | 6 Weeks | 12 Weeks | Post Hoc | ||
---|---|---|---|---|---|
NGF (pg/dL) | PRM | 200.43 ± 79.73 * | 207.26 ± 21.28 | 206.18 ± 12.16 | |
POM | 190.23 ± 5.59 | 199.83 ± 12.46 | 206.05 ± 12.29 | A < B,C | |
BDNF (pg/dL) | PRM | 294.99 ± 50.97 * | 349.11 ± 50.96 | 378.47 ± 48.63 | A < B,C |
POM | 206.00 ± 27.74 | 242.38 ± 36.41 | 280.68 ± 44.48 | A < B,C B < C | |
Cathepsin B (ng/dL) | PRM | 214.11 ± 87.77 * | 242.06 ± 79.73 | 262.35 ± 81.37 | A < C |
POM | 181.87 ± 55.59 | 211.89 ± 65.36 | 225.87 ± 67.08 | A < C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Kang, S. Regular Leisure-Time Physical Activity is Effective in Boosting Neurotrophic Factors and Alleviating Menopause Symptoms. Int. J. Environ. Res. Public Health 2020, 17, 8624. https://doi.org/10.3390/ijerph17228624
Kim B, Kang S. Regular Leisure-Time Physical Activity is Effective in Boosting Neurotrophic Factors and Alleviating Menopause Symptoms. International Journal of Environmental Research and Public Health. 2020; 17(22):8624. https://doi.org/10.3390/ijerph17228624
Chicago/Turabian StyleKim, Boram, and Sunghwun Kang. 2020. "Regular Leisure-Time Physical Activity is Effective in Boosting Neurotrophic Factors and Alleviating Menopause Symptoms" International Journal of Environmental Research and Public Health 17, no. 22: 8624. https://doi.org/10.3390/ijerph17228624
APA StyleKim, B., & Kang, S. (2020). Regular Leisure-Time Physical Activity is Effective in Boosting Neurotrophic Factors and Alleviating Menopause Symptoms. International Journal of Environmental Research and Public Health, 17(22), 8624. https://doi.org/10.3390/ijerph17228624