Risk Perception of COVID−19 Community Transmission among the Spanish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Selection
2.2. Data Collection
2.3. Variables
2.4. Analysis
2.5. Ethical Aspects
3. Results
4. Discussion
4.1. Influence of Socio-Demographic Variables on Risk Perception
4.2. Relationship of the Perception of the Risk of Infection with Contact with COVID-19 and Affect Level
4.3. Correlation between the Perceived State of Health and Perceived Risk of Infection
4.4. Limitations
5. Conclusions
Applicability of the Results and Future Lines of Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Leppin, A.L.; Gionfriddo, M.R.; Kessler, M.; Brito, J.P.; Mair, F.S.; Gallacher, K.; Wang, Z.; Erwin, P.J.; Sylvester, T.; Boehmer, K.; et al. Preventing 30-Day Hospital Readmissions. JAMA Int. Med. 2014, 174, 1095. [Google Scholar] [CrossRef]
- Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 pandemic—A focused review for clinicians. Clin. Microbiol. Infect. 2020, 26, 842–847. [Google Scholar] [CrossRef]
- Tolksdorf, K.; Buda, S.; Schuler, E.; Wieler, L.H.; Haas, W. Influenza-associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19). Eurosurveillance 2020, 25, 2000258. [Google Scholar] [CrossRef]
- Kowalik, M.M.; Trzonkowski, P.; Łasińska-Kowara, M.; Mital, A.; Smiatacz, T.; Jaguszewski, M. COVID-19—Toward a comprehensive understanding of the disease. Cardiol. J. 2020, 27, 99–114. [Google Scholar] [CrossRef]
- He, F.; Deng, Y.; Li, W. Coronavirus disease 2019: What we know? J. Med. Virol. 2020, 92, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Yang, H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 2020, 92, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Lednicky, J.A.; Lauzardo, M.; Hugh Fan, Z.; Jutla, A.; Tilly, T.B.; Gangwar, M.; Usmani, M.; Shankar, S.N.; Mohamed, K.; Eiguren-Fernandez, A.; et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 2020, 100, 476–482. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Santamaria, J.; Hortal, J. Chasing the ghost of infection past: Identifying thresholds of change during the COVID-19 infection in Spain. BMJ Yale 2020, 1–19. [Google Scholar] [CrossRef]
- Ceylan, Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci. Total Environ. 2020, 729, 138817. [Google Scholar] [CrossRef]
- Tobías, A. Evaluation of the lockdowns for the SARS-CoV-2 epidemic in Italy and Spain after one month follow up. Sci. Total Environ. 2020, 725, 138539. [Google Scholar] [CrossRef]
- Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Huang, L.Y.; Hultgren, A.; Krasovich, E.; et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 2020, 584, 262–267. [Google Scholar] [CrossRef]
- Signorelli, C.; Scognamiglio, T.; Odone, A. COVID-19 in Italy: Impact of containment measures and prevalence estimates of infection in the general population. Acta Biomed. 2020, 91, 175–179. [Google Scholar]
- Ministerio de la Presidencia R con las C y MD. Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. Diario La Ley 2020, 67. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2020-3692 (accessed on 1 December 2020).
- Lohiniva, A.-L.; Sane, J.; Sibenberg, K.; Puumalainen, T.; Salminen, M. Understanding coronavirus disease (COVID-19) risk perceptions among the public to enhance risk communication efforts: A practical approach for outbreaks, Finland, February 2020. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.L.; Toan-Luu, D.H. The COVID-19 risk perception: A survey on socioeconomics and media attention. Econ. Bull. 2020, 40, 758–764. [Google Scholar]
- Malecki, K.M.C.; Keating, J.A.; Safdar, N. Crisis Communication and Public Perception of COVID-19 Risk in the Era of Social Media. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Brewer, N.T.; Weinstein, N.D.; Cuite, C.L.; Herrington, J.E. Risk perceptions and their relation to risk behavior. Ann. Behav. Med. 2004, 27, 125–130. [Google Scholar] [CrossRef]
- Ding, Y.; Du, X.; Li, Q.; Zhang, M.; Zhang, Q.; Tan, X.; Liu, Q. Risk perception of coronavirus disease 2019 (COVID-19) and its related factors among college students in China during quarantine. PLoS ONE 2020, 15, e0237626. [Google Scholar] [CrossRef]
- Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk perceptions of COVID-19 around the world. J. Risk Res. 2020, 1–13. [Google Scholar] [CrossRef]
- Irigoyen-Camacho, M.E.; Velazquez-Alva, M.C.; Zepeda-Zepeda, M.A.; Cabrer-Rosales, M.F.; Lazarevich, I.; Castano-Seiquer, A. Effect of Income Level and Perception of Susceptibility and Severity of COVID-19 on Stay-at-Home Preventive Behavior in a Group of Older Adults in Mexico City. Int. J. Environ. Res. Public Health 2020, 17, 7418. [Google Scholar] [CrossRef]
- Atchison, C.; Bowman, L.; Vriten, C.; Redd, R.; Pristera, P.; Eaton, J.W.; Ward, H. Perceptions and behavioural responses of the general public during the COVID-19 pandemic: A cross-sectional survey of UK Adults. BMJ Yale 2020. [Google Scholar] [CrossRef] [Green Version]
- Barber, S.J.; Kim, H. COVID-19 Worries and Behavior Changes in Older and Younger Men and Women. J. Gerontol. Ser. B 2020. [Google Scholar] [CrossRef]
- Xu, J.; Peng, Z. People at Risk of Influenza Pandemics: The Evolution of Perception and Behavior. PLoS ONE 2015, 10, e0144868. [Google Scholar] [CrossRef]
- Ferrer, R.A.; Klein, W.M.P.; Persoskie, A.; Avishai-Yitshak, A.; Sheeran, P. The Tripartite Model of Risk Perception (TRIRISK): Distinguishing Deliberative, Affective, and Experiential Components of Perceived Risk. Ann. Behav. Med. 2016, 50, 653–663. [Google Scholar] [CrossRef]
- Wilson, R.S.; Zwickle, A.; Walpole, H. Developing a Broadly Applicable Measure of Risk Perception. Risk Anal. 2019, 39, 777–791. [Google Scholar] [CrossRef]
- Wise, T.; Zbozinek, T.D.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States. R. Soc. Open Sci. 2020, 7, 200742. [Google Scholar] [CrossRef]
- Wang, W.; Rothschild, D.; Goel, S.; Gelman, A. Forecasting elections with non-representative polls. Int. J. Forecast. 2015, 31, 980–991. [Google Scholar] [CrossRef] [Green Version]
- Bueno, E.; Zarraga, A.; Iztueta, A. Ajuste de Muestras con Información Auxiliar, 9801, Vitoria-Gasteiz. Available online: https://www.eustat.eus/document/datos/ct_01_c.pdf (accessed on 20 January 2019).
- Rosenthal, R.; DiMatteo, M.R.R. Meta-Analysis: Recent Developments in Quantitative Methods for Literature Reviews. Annu. Rev. Psychol. 2001, 52, 59–82. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Psychom 2014, 2. [Google Scholar] [CrossRef]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Barr, M.; Raphael, B.; Taylor, M.; Stevens, G.; Jorm, L.; Giffin, M.; Lujic, S. Pandemic influenza in Australia: Using telephone surveys to measure perceptions of threat and willingness to comply. BMC Infect. Dis. 2008, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Niepel, C.; Kranz, D.; Borgonovi, F.; Emslander, V.; Greiff, S. The coronavirus (COVID-19) fatality risk perception of US adult residents in March and April 2020. Br. J. Health Psychol. 2020, 25, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Samadipour, E.; Ghardashi, F.; Aghaei, N. Evaluation of Risk Perception of Covid-19 Disease: A Community-based Participatory Study. Disaster Med. Public Health Prep. 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, S.; Rahn, M.; Schmidt, S. Social Distancing and Stigma: Association Between Compliance with Behavioral Recommendations, Risk Perception, and Stigmatizing Attitudes During the COVID-19 Outbreak. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef]
- Bish, A.; Michie, S. Demographic and attitudinal determinants of protective behaviours during a pandemic: A review. Br. J. Health Psychol. 2010, 15, 797–824. [Google Scholar] [CrossRef] [Green Version]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef]
- Wenham, C.; Smith, J.; Morgan, R. COVID-19: The gendered impacts of the outbreak. Lancet 2020, 395, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Del Río Lozano, M.; García Calvente, M.d.M. Cuidados y abordaje de la pandemia de COVID-19 con enfoque de género. Gac. Sanit. 2020. [Google Scholar] [CrossRef]
- Gutiérrez Rodríguez, J.; Montero Muñoz, J.; Jiménez, M.F.; Garcia-Prendes, C.G.; Rivera, M.M.; Armas, L.G. Variables asociadas con mortalidad en una población de pacientes mayores de 80 años y con algún grado de dependencia funcional, hospitalizados por COVID-19 en un Servicio de Geriatría. Rev. Esp. Geriatr. Gerontol. 2020. [Google Scholar] [CrossRef]
- He, S.; Chen, S.; Kong, L.; Liu, W. Analysis of Risk Perceptions and Related Factors Concerning COVID-19 Epidemic in Chongqing, China. J. Commun. Health 2020. [Google Scholar] [CrossRef]
- Ruiz-Frutos, C.; Ortega-Moreno, M.; Allande-Cussó, R.; Dominguez-Salas, S.; Dias, A.; Gomez-Salgado, J. Health-related factors of psychological distress during the COVID-19 pandemic among non-health workers in Spain. Saf. Sci. 2021, 133, 104996. [Google Scholar] [CrossRef]
- Abdel Wahed, W.Y.; Hefzy, E.M.; Ahmed, M.I.; Hamed, N.S. Assessment of Knowledge, Attitudes, and Perception of Health Care Workers Regarding COVID-19, A Cross-Sectional Study from Egypt. J. Commun. Health 2020. [Google Scholar] [CrossRef]
- Cabarkapa, S.; Nadjidai, S.E.; Murgier, J.; Ng, C.H. The psychological impact of COVID-19 and other viral epidemics on frontline healthcare workers and ways to address it: A rapid systematic review. Brain Behav. Immun. Health 2020, 8, 100144. [Google Scholar] [CrossRef]
- Peres, D.; Monteiro, J.; Almeida, M.A.; Ladeira, R. Risk perception of COVID-19 among Portuguese healthcare professionals and the general population. J. Hosp. Infect. 2020, 105, 434–437. [Google Scholar] [CrossRef]
- Man, M.A.; Toma, C.; Motoc, N.S.; Necrelescu, O.L.; Bondor, C.I.; Chis, A.F.; Lesan, A.; Pop, C.M.; Todea, D.A.; Dantes, E.; et al. Disease Perception and Coping with Emotional Distress During COVID-19 Pandemic: A Survey Among Medical Staff. Int. J. Environ. Res. Public Health 2020, 17, 4899. [Google Scholar] [CrossRef]
- Szabo, A.; Ábel, K.; Boros, S. Attitudes toward COVID-19 and stress levels in Hungary: Effects of age, perceived health status, and gender. Psychol. Trauma Theory Res. Pract. Policy 2020, 12, 572–575. [Google Scholar] [CrossRef]
- Lange, S.J.; Ritchey, M.D.; Goodman, A.B.; Dias, T.; Twentyman, E.; Fuld, J.; Schieve, L.A.; Imperatore, G.; Benoit, S.R.; Kite-Powell, A.; et al. Potential Indirect Effects of the COVID-19 Pandemic on Use of Emergency Departments for Acute Life-Threatening Conditions—United States, January–May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 795–800. [Google Scholar] [CrossRef]
- Romaguera, R.; Ribera, A.; Güell-Viaplana, F.; Tomas-Querol, C.; Munoz-Camacho, J.F.; Agudelo, V. Decrease in ST-segment elevation myocardial infarction admissions in Catalonia during the COVID-19 pandemic. Rev. Esp. Cardiol. (Engl. Ed.) 2020, 73, 778–780. [Google Scholar] [CrossRef]
- Naccarato, M.; Scali, I.; Olivo, S.; Ajvcevic, M.; Stella, A.B.; Furlanis, G.; Lugnan, C.; Caruso, P.; Peratoner, A.; Cominotto, F.; et al. Has COVID-19 played an unexpected “stroke” on the chain of survival? J. Neurol. Sci. 2020, 414, 116889. [Google Scholar] [CrossRef]
- Guan, W.; Liang, W.; Zhao, Y.; Liang, H.; Chen, Z.; Li, Y.; Liu, X.; Chen, R.; Tang, C.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef]
- Baldassarre, A.; Giorgi, G.; Alessio, F.; Lulli, L.G.; Arcangeli, G.; Mucci, N. Stigma and Discrimination (SAD) at the Time of the SARS-CoV-2 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6341. [Google Scholar] [CrossRef]
- Sauer, K.S.; Jungmann, S.M.; Witthöft, M. Emotional and Behavioral Consequences of the COVID-19 Pandemic: The Role of Health Anxiety, Intolerance of Uncertainty, and Distress (In)Tolerance. Int. J. Environ. Res. Public Health 2020, 17, 7241. [Google Scholar] [CrossRef]
- PAHO. Ten Threats to Global Health in 2019. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=14916:ten-threats-to-global-health-in-2019&Itemid=135&lang=es (accessed on 20 January 2019).
- Cori, L.; Bianchi, F.; Cadum, E.; Anthonj, C. Risk Perception and COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3114. [Google Scholar] [CrossRef]
Age Groups | Men | Women | Total |
---|---|---|---|
Up to 30 years | 2.8101 | 0.8942 | 1.3703 |
31 to 64 years | 1.2379 | 0.5315 | 0.7424 |
More than 64 years | 2.6100 | 3.8917 | 3.2073 |
Total | 1.5635 | 0.7468 | 1.0000 |
Perception of the Risk of Infection | N | % |
---|---|---|
Low | 7481 | 46.2 |
Medium | 5408 | 33.4 |
High | 3312 | 20.4 |
Age | ||
Up to 30 | 2651 | 16.4 |
31−64 | 9700 | 59.9 |
65 and over | 3850 | 23.8 |
Gender | ||
Female | 8348 | 51.5 |
Male | 7853 | 48.5 |
Level of studies | ||
Primary | 1575 | 9.7 |
Secondary | 5499 | 33.9 |
University graduates | 9126 | 56.3 |
Working population | ||
No | 4983 | 30.8 |
Yes | 69.2 | |
Marital status | ||
Single | 4726 | 29.2 |
Separated/Divorced | 1544 | 9.5 |
Married/Cohabiting | 9376 | 57.9 |
Widowed | 555 | 3.4 |
Where they work | ||
Working from home | 6272 | 48.0 |
Working outside the home | 6802 | 52.0 |
Income: quartiles | ||
First quartile | 2519 | 16.5 |
Second quartile | 5405 | 35.3 |
Third quartile | 5729 | 37.4 |
Fourth quartile | 1655 | 10.8 |
Who they live with | ||
Living alone | 2047 | 12.6 |
Living with others | 87.4 | |
Health status during confinement | ||
Good/Very good | 76.2 | |
Average | 3383 | 20.9 |
Poor/Very poor | 464 | 2.9 |
Protective measures | ||
Adequate | 71.9 | |
Inadequate | 4558 | 28.1 |
You or relative work in healthcare A family member works in healthcare | ||
No | 76.6 | |
Yes | 3797 | 23.4 |
A member of the household is infected | ||
No | 96.4 | |
Yes | 579 | 3.6 |
How they get information | ||
Press/Radio/TV | 68.2 | |
Social networks/WhatsApp | 1521 | 9.4 |
Official media/Scientific documents | 3630 | 22.4 |
Low | Medium | High | Pearson Chi-Square | p Value | Size Effect dCohen | |
---|---|---|---|---|---|---|
Gender (N = 16,201) | ||||||
Male | 3933 (50.1) | 2520 (32.1) | 1400 (17.8) | |||
Female | 3548 (42.5) | 5408 (33.4) | 3312 (20.4) | 108.98 | <0.001 | 0.165 |
Age (N = 16,201) | ||||||
Up to 30 | 1363 (51.4) | 782 (29.5) | 506 (19.1) | |||
31−64 | 4107 (42.3) | 3450 (35.6) | 2143 (22.1) | |||
65 and over | 2011 (52.5) | 1175 (30.5) | 664 (17.2) | 147.09 | <0.001 | 0.191 |
Education level (N = 16,201) | ||||||
Primary | 629 (39.9) | 573 (36.4) | 374 (23.7) | |||
Secondary | 2580 (46.9) | 1874 (34.1) | 1045 (19.0) | |||
University graduates | 4271 (46.8) | 2962 (32.5) | 1893 (20.7) | 36.45 | <0.001 | 0.095 |
Affect (N = 13,813) | ||||||
None | 2556 (56.5) | 1364 (30.2) | 601 (13.3) | |||
Low | 1746 (45.9) | 1273 (33.4) | 787 (20.7) | |||
Medium | 1482 (42.5) | 1191 (34.1) | 818 (23.4) | |||
High | 624 (41.2) | 490 (32.3) | 402 (26.5) | |||
Maximum | 136 (30.6) | 148 (33.3) | 160 (36.0) | 360.88 | <0.001 | 0.328 |
Marital status (N = 16,201) | ||||||
Single | 2260 (47.8) | 1503 (31.8) | 963 (20.4) | |||
Separated/Divorced | 726 (47.0) | 504 (32.6) | 314 (20.3) | |||
Married/Cohabiting | 4217 (45.0) | 3256 (34.7) | 1903 (20.3) | |||
Widowed | 278 (50.1) | 145 (26.1) | 132 (23.8) | 28.53 | <0.001 | 0.084 |
Working population (N = 16,194) | ||||||
Non-working pop. | 2736 (54.9) | 1493 (30.0) | 755 (15.1) | |||
Working pop. | 4744 (42.3) | 3913 (34.9) | 2554 (22.8) | 241.89 | <0.001 | 0.246 |
Place of work (N = 14,187) | ||||||
At home | 3341 (53.3) | 2158 (34.4) | 773 (12.3) | |||
Outside the home | 2364 (34.8) | 2354 (34.6) | 2083 (30.6) | 756.53 | <0.001 | 0.475 |
Economic situation (Impact on income) (N = 16,201) | ||||||
Good | 3731 (49.0) | 2332 (30.6) | 1550 (20.4) | |||
Average | 2933 (43.8) | 2368 (35.4) | 1393 (20.8) | |||
Poor | 817 (43.1) | 708 (37.4) | 369 (19.5) | 60.70 | <0.001 | 0.123 |
Household income (N = 15,345) | ||||||
1st quartile | 1244 (49.4) | 820 (32.6) | 455 (18.1) | |||
2nd quartile | 2338 (43.2) | 1906 (35.3) | 1162 (21.5) | |||
3rd quartile | 2618 (45.7) | 1888 (33.0) | 1223 (21.3) | |||
4th quartile | 791 (47.8) | 494 (29.8) | 370 (22.4) | 41.68 | <0.001 | 0.104 |
Who they live with (N = 16,201) | ||||||
Living alone | 967 (47.2) | 634 (31.0) | 446 (21.8) | |||
Living with other(s) | 6513 (46.0) | 4774 (33.7) | 2867 (20.3) | 6.70 | 0.035 | 0.041 |
Health (N = 16,190) | ||||||
Good/Very good | 6192 (50.2) | 4027 (32.6) | 2125 (17.2) | |||
Average | 1169 (34.6) | 1248 (36.9) | 966 (28.6) | |||
Poor/Very poor | 117 (25.2) | 132 (28.4) | 215 (46.3) | 527.86 | <0.001 | 0.367 |
Protective measures used (N = 16,201) | ||||||
Adequate | 5012 (43.0) | 3927 (33.7) | 2704 (23.2) | |||
Inadequate | 2469 (54.2) | 1481 (32.5) | 609 (13.4) | 245.04 | <0.001 | 0.248 |
You or relative work in healthcare Family member works in healthcare (N = 16,201) | ||||||
No | 6375 (51.4) | 4274 (34.5) | 1755 (14.1) | |||
Yes | 1105 (29.1) | 1134 (29.9) | 1558 (41.0) | 1358.72 | <0.001 | 0.605 |
Household member infected (N = 16,201) | ||||||
No | 7334 (46.9) | 5241 (33.6) | 3046 (19.5) | |||
Yes | 146 (25.3) | 166 (28.7) | 266 (46.0) | 252.43 | <0.001 | 0.252 |
Where they get information (N = 16,201) | ||||||
Press/Radio/TV | 5263 (47.6) | 3788 (34.3) | 1998 (18.1) | |||
Social networks/WhatsApp | 741 (48.7) | 464 (30.5) | 316 (20.8) | |||
Official media/Scientific documents | 1477 (40.7) | 1156 (31.8) | 998 (27.5) | 236.99 | <0.001 | 0.244 |
Classification | Predicted | |||
---|---|---|---|---|
Observed | Low | Medium | High | Percent Correct |
Low | 4090 | 484 | 401 | 82.2% |
Medium | 2558 | 562 | 618 | 15.0% |
High | 897 | 326 | 1176 | 49.0% |
Overall Percentage | 67.9% | 12.3% | 19.8% | 52.4% |
Risk of Infection: Medium | B | Std. Error | Wald | Sig. | OR | 95% CI for OR | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Intercept | −0.938 | 0.099 | 89,821 | 0.000 | |||
Age | 0.001 | 0.002 | 0.388 | 0.534 | 1001 | 0.998 | 1004 |
Affect (index) | 0.502 | 0.08 | 38,983 | 0.000 | 1652 | 1411 | 1935 |
Gender (female) | 0.291 | 0.045 | 42,401 | 0.000 | 1337 | 1225 | 1459 |
Working outside the home | 0.457 | 0.046 | 970.21 | 0.000 | 1579 | 1442 | 1729 |
Health: poor/very poor | 0.491 | 0.164 | 8997 | 0.003 | 1634 | 1185 | 2252 |
Health: average | 0.455 | 0.059 | 590.499 | 0.000 | 1577 | 1405 | 1770 |
Protective measures: adequate | −0.173 | 0.048 | 12,778 | 0.000 | 0.841 | 0.765 | 0.925 |
Family member works in healthcare | 0.347 | 0.059 | 35,115 | 0.000 | 1415 | 1261 | 1586 |
A member of the household is infected | 0.244 | 0.145 | 2855 | 0.091 | 1277 | 0.962 | 1696 |
Information: official media | 0.030 | 0.056 | 0.030 | 0.584 | 1031 | 0.925 | 1149 |
Information: social networks | −0.236 | 0.078 | 9134 | 0.003 | 0.790 | 0.678 | 0.921 |
Risk of Infection: High | B | Std. Error | Wald | Sig. | OR | 95% CI for OR | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Intercept | −2699 | 0.132 | 415,322 | 0.000 | |||
Age | 0.004 | 0.002 | 3261 | 0.071 | 1004 | 1000 | 1008 |
Affect (index) | 1019 | 0.101 | 102,291 | 0.000 | 2770 | 2274 | 3375 |
Gender (female) | 0.426 | 0.056 | 57,432 | 0.000 | 1531 | 1372 | 10.71 |
Working outside the home | 1117 | 0.061 | 335,398 | 0.000 | 3057 | 2712 | 3445 |
Health: poor/very poor | 10.49 | 0.163 | 83,237 | 0.000 | 4439 | 3223 | 6115 |
Health: average | 0.788 | 0.069 | 130,468 | 0.000 | 2210 | 1922 | 2519 |
Protective measures: adequate | −0.647 | 0.067 | 94,344 | 0.000 | 0.524 | 0.46 | 0.597 |
Family member works in healthcare | 1447 | 0.062 | 539,488 | 0.000 | 4251 | 3762 | 4803 |
A member of the household is infected | 0.773 | 0.142 | 29,649 | 0.000 | 2167 | 10.64 | 2862 |
Information: official media | 0.229 | 0.066 | 12,163 | 0.000 | 1258 | 1106 | 1431 |
Information: social networks | −0.046 | 0.095 | 0240 | 0.624 | 0.955 | 0.793 | 1149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansilla Domínguez, J.M.; Font Jiménez, I.; Belzunegui Eraso, A.; Peña Otero, D.; Díaz Pérez, D.; Recio Vivas, A.M. Risk Perception of COVID−19 Community Transmission among the Spanish Population. Int. J. Environ. Res. Public Health 2020, 17, 8967. https://doi.org/10.3390/ijerph17238967
Mansilla Domínguez JM, Font Jiménez I, Belzunegui Eraso A, Peña Otero D, Díaz Pérez D, Recio Vivas AM. Risk Perception of COVID−19 Community Transmission among the Spanish Population. International Journal of Environmental Research and Public Health. 2020; 17(23):8967. https://doi.org/10.3390/ijerph17238967
Chicago/Turabian StyleMansilla Domínguez, José Miguel, Isabel Font Jiménez, Angel Belzunegui Eraso, David Peña Otero, David Díaz Pérez, and Ana María Recio Vivas. 2020. "Risk Perception of COVID−19 Community Transmission among the Spanish Population" International Journal of Environmental Research and Public Health 17, no. 23: 8967. https://doi.org/10.3390/ijerph17238967
APA StyleMansilla Domínguez, J. M., Font Jiménez, I., Belzunegui Eraso, A., Peña Otero, D., Díaz Pérez, D., & Recio Vivas, A. M. (2020). Risk Perception of COVID−19 Community Transmission among the Spanish Population. International Journal of Environmental Research and Public Health, 17(23), 8967. https://doi.org/10.3390/ijerph17238967