Associations of Relative Humidity and Lifestyles with Metabolic Syndrome among the Ecuadorian Adult Population: Ecuador National Health and Nutrition Survey (ENSANUT-ECU) 2012
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Subjects
2.3. General Characteristics
2.4. Lifestyles
2.5. Anthropometric Measurements
2.6. Dietary Intake
2.7. Relative Humidity
2.8. Metabolic Syndrome
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome-a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong-McClure, R.A.; Gregg, E.W.; Barceló, A.; Lee, K.; Abarca-Gómez, L.; Sanabria-López, L.; Tortós-Guzmán, J. Prevalence of metabolic syndrome in Central America: A cross-sectional population-based study. Rev. Panam. Salud Pública 2015, 38, 202–208. [Google Scholar] [PubMed]
- Gosadi, I.M. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia. Saudi Med. J. 2016, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Galarza, J.; Baldeón, L.; Franco, O.H.; Muka, T.; Drexhage, H.A.; Voortman, T.; Freire, W.B. Prevalence of overweight and metabolic syndrome, and associated sociodemographic factors among adult Ecuadorian populations: The ENSANUT-ECU study. J. Endocrinol. Investig. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yearbook of Vital Statistics Births and Deaths 2019; National Institute of Statistics and Censuses: Quito, Ecuador, 2019. Available online: https://www.ecuadorencifras.gob.ec/documentos/webinec/Poblacion_y_Demografia/Nacimientos_Defunciones/2020/Boletin_%20tecnico_%20EDG%202019%20prov.pdf (accessed on 5 June 2020).
- Burtscher, M. Effects of living at higher altitudes on mortality: A narrative review. Aging Dis. 2014, 5, 274–280. [Google Scholar]
- Voss, J.D.; Masuoka, P.; Webber, B.J.; Scher, A.I.; Atkinson, R.L. Association of elevation, urbanization and ambient temperature with obesity prevalence in the United States. Int. J. Obes. 2013, 37, 1407–1412. [Google Scholar] [CrossRef] [Green Version]
- Juna, C.F.; Cho, Y.H.; Joung, H. Low Elevation and Physical Inactivity Are Associated with a Higher Prevalence of Metabolic Syndrome in Ecuadorian Adults: A National Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2020, 13, 2217–2226. [Google Scholar] [CrossRef]
- Pallubinsky, H.; Phielix, E.; Dautzenberg, B.; Schaart, G.; Connell, N.J.; de Wit-Verheggen, V.; Havekes, B.; van Baak, M.A.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol. 2020, 229. [Google Scholar] [CrossRef]
- van Marken Lichtenbelt, W.; Hanssen, M.; Pallubinsky, H.; Kingma, B.; Schellen, L. Healthy excursions outside the thermal comfort zone. Build. Res. J. 2017, 45, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; Mavrogianni, A.; Ucci, M.; Vidal-Puig, A.; Wardle, J. Could increase time spent in a thermal comfort zone contribute to population increases in obesity? Obes. Rev. 2011, 12, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Valdés, S.; Maldonado-Araque, C.; García-Torres, F.; Goday, A.; Bosch-Comas, A.; Bordiu, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; et al. Ambient temperature and prevalence of obesity in the Spanish population: The [email protected] study. Obesity 2014, 22, 2328–2332. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Heidari-Bakavoli, S. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci. Rep. 2016, 6, 6. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Nastos, P.; Anadiotis, A.; Tentolouris, C.; Stefanadis, C.; Toutouzas, P.; Paliatsos, A. Climatological variations in daily hospital admissions for acute coronary syndromes. Int. J. Cardiol. 2004, 94, 229–233. [Google Scholar] [CrossRef]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance, 3rd ed.; Taylor and Francis Group: London, UK, 2003. [Google Scholar]
- Barnett, A.G.; Tong, S.; Clements, A.C.A. What measure of temperature is the best predictor of mortality? Environ. Res. 2010, 110, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Barreca, A.I. Climate change, humidity, and mortality in the United States. J. Environ. Econ. Manag. 2012, 63, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; Filipp, S.L.; DeBoer, M.D. Geographical variation in the prevalence of obesity, metabolic syndrome, and diabetes among US adults. Nutr. Diabetes 2018, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Tyrovolas, S.; Chalkias, C.; Morena, M.; Kalogeropoulos, K.; Tsakountakis, N.; Zeimbekis, A.; Gotsis, E.; Metallinos, G.; Bountziouka, V.; Lionis, C.; et al. High relative environmental humidity is associated with diabetes among elders living in Mediterranean islands. J. Diabetes Metab. Disord. 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.A. Comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 2014. [Google Scholar] [CrossRef]
- Freire, W.B.; Ramírez-Luzuriaga, M.J.; Belmont, P.; Mendieta, M.J.; SilvaJaramillo, K.; Romero, N. Encuesta Nacional de Salud y Nutrición de la Población Ecuatoriana de cero a 59 años. ENSANUT-ECU 2012, 1st ed.; Ministerio de Salud Pública/Instituto Nacional de Estadísticas y Censos: Quito, Ecuador, 2014.
- Ryan, H.; Trosclair, A.; Gfroerer, J. Adult current smoking: Differences in definitions and prevalence estimates—NHIS and NSDUH, 2008. J. Environ. Public Health 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans; US Department of Health and Human Services: Hyattsville, MD, USA, 2008. Available online: http://www.health.gov/paguidelines (accessed on 5 January 2020).
- de Onis, M.; Habicht, J.P. Anthropometric reference data for international use: Recommendations from a World Health Organization Expert Committee. Am. J. Clin. Nutr. 1996, 64, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eblen-Zajjur, A.; Eblen-Zajjur, M. Calculo de la concentración de colesterol de la lipoproteína de baja densidad: Análisis de regresión versus formula de Friedewald. Rev. Med. Chile 2001, 129, 263–270. [Google Scholar] [CrossRef]
- Documento Técnico de las Guías Alimentarias Basadas en Alimentos (GABA) del Ecuador. GABA-ECU 2018; Ministerio de Salud Pública del Ecuador y Organización de las Naciones Unidas para la Alimentación y la Agricultura: Quito, Ecuador, 2018.
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids; National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Anuario Meteorológico No. 52-2012; Instituto Nacional de Meteorología e Hidrología de Ecuador: Quito, Ecuador, 2015; Available online: http://www.serviciometeorologico.gob.ec/wpcontent/uploads/anuarios/meteorologicos/Am%202012.pdf (accessed on 5 January 2020).
- Nicol, F. Adaptive thermal comfort standards in the hot–humid tropics. Energy Build. 2004, 36, 628–637. [Google Scholar] [CrossRef]
- Buonocore, C.; de Vecchi, R.; Scalco, V.; Lamberts, R. Influence of relative air humidity and movement on human thermal perception in classrooms in a hot and humid climate. Build. Environ. 2018, 146, 98–106. [Google Scholar] [CrossRef]
- SAS, Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2014.
- Tamerius, J.D.; Perzanowski, M.S.; Acosta, L.M.; Jacobson, J.S.; Goldstein, I.F.; Quinn, J.W.; Rundle, A.G.; Shaman, J. Socioeconomic and outdoor meteorological determinants of indoor temperature and humidity in New York City dwellings. Weather Clim. Soc. 2013, 5, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E.; McGregor, G.R.; Enfield, K.B. Humidity: A review and primer on atmospheric moisture and human health. Environ. Res. 2016, 144, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Bentayeb, M.; Simoni, M.; Baiz, N.; Norback, D.; Baldacci, S.; Maio, S.; Viegi, G.; Annesi-Maesano, I. Adverse respiratory effects of outdoor air pollution in the elderly. Int. J. Tuberc. Lung Dis. 2012, 16, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, J.; Yu, W. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China. Int. J. Environ. Res. Public Health 2014, 11, 3982–3994. [Google Scholar] [CrossRef] [Green Version]
- Abrignani, M.G.; Corrao, S.; Biondo, G.B.; Renda, N.; Braschi, A.; Novo, G.; Di Girolamo, A.; Braschi, G.B.; Novo, S. Influence of climatic variables on acute myocardial infarction hospital admissions. Int. J. Cardiol. 2009, 137, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.; Synetos, A.; Giannopoulos, G.; Gialafos, E.; Pantazis, A.; Stefanadis, C. CLimate Impacts on Myocardial infarction deaths in the Athens Territory: The CLIMATE study. Heart 2006, 92, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Ravljen, M.; Bilban, M.; Kajfez-Bogataj, L.; Hovelja, T.; Vavpotic, D. Influence of daily individual meteorological parameters on the incidence of acute coronary syndrome. Int. J. Environ. Res. Public Health 2014, 11, 11616–11626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharif Nia, H.; Chan, Y.H.; Froelicher, E.S.; Pahlevan Sharif, S.; Yaghoobzadeh, A.; Jafari, A.; Goudarzian, A.H.; Pourkia, R.; Haghdoost, A.A.; Arefinia, F.; et al. Weather fluctuations: Predictive factors in the prevalence of acute coronary syndrome. Health Promot. Perspect. 2019, 9, 123–130. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N. Climate Trends and Variability in Ecuador (1966–2011). Int. J. Climatol. 2016, 36, 3839–3855. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.; Sera, F.; Vicedo-Cabrera, A.M.; Abrutzky, R.; Åström, D.O.; Bell, M.L.; Chen, B.Y.; de Sousa Zanotti Stagliorio Coelho, M.; Correa, P.M.; Dang, T.N.; et al. The Role of Humidity in Associations of High Temperature with Mortality: A Multicountry, Multicity Study. Environ. Health Perspect. 2019, 127. [Google Scholar] [CrossRef]
- Matsushita, M.; Yoneshiro, T.; Aita, S.; Kameya, T.; Sugie, H.; Saito, M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int. J. Obes. 2014, 38, 812–817. [Google Scholar] [CrossRef]
- Orava, J.; Nuutila, P.; Lidell, M.E.; Oikonen, V.; Noponen, T.; Viljanen, T.; Scheinin, M.; Taittonen, M.; Niemi, T.; Enerbäck, S.; et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011, 14, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Savva, C.; Korach-Andre, M. Estrogen Receptor beta (ERbeta) Regulation of Lipid Homeostasis-Does Sex Matter? Metabolites 2020, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Christakis, M.K.; Hasan, H.; De Souza, L.R.; Shirreff, L. The effect of menopause on metabolic syndrome: Cross-sectional results from the Canadian Longitudinal Study on Aging. Menopause 2020, 27, 999–1009. [Google Scholar] [CrossRef]
- Lobo, R.A. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Jouyandeh, Z.; Nayebzadeh, F.; Qorbani, M.; Asadi, M. Metabolic syndrome and menopause. J. Diabetes Metab. Disord. 2013, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Li, K.; Wang, Y. The Effects of High-Temperature Weather on Human Sleep Quality and Appetite. Int. J. Environ. Res. Public Health 2019, 16, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, C.P. Effects of heat on appetite. In Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations; Marriott, B.M., Ed.; National Academy Press: Washington, DC, USA, 1993; pp. 187–214. [Google Scholar]
- Pilgrim, A.L.; Robinson, S.M.; Sayer, A.A.; Roberts, H.C. An overview of appetite decline in older people. Nurs. Older People 2015, 27, 29–35. [Google Scholar] [CrossRef]
- Maughan, R.J.; Otani, H.; Watson, P. Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol. 2012, 112, 2313–2321. [Google Scholar] [CrossRef]
- Chmura, P.; Konefal, M.; Andrzejewski, M.; Kosowski, J.; Rokita, A.; Chmura, J. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity. Int. J. Biometeorol. 2017, 61, 677–684. [Google Scholar] [CrossRef]
- Rennie, K.L.; McCarthy, N.; Yazdgerdi, S.; Marmot, M.; Brunner, E. Association of the metabolic syndrome with both vigorous and moderate physical activity. Int. J. Epidemiol. 2003, 32, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [Green Version]
- van der Gaag, M.S.; van Tol, A.; Vermunt, S.H.; Scheek, L.M.; Schaafsma, G.; Hendriks, H.F. Alcohol consumption stimulates early steps in reverse cholesterol transport. J. Lipid. Res. 2001, 42, 2077–2083. [Google Scholar]
- Du, D.; Bruno, R.; Blizzard, L.; Venn, A.; Dwyer, T.; Smith, K.J.; Magnussen, C.G.; Gall, S. The metabolomic signatures of alcohol consumption in young adults. Eur. J. Prev. Cardiol. 2020, 27, 840–849. [Google Scholar] [CrossRef]
- Jung, I.K. Association of Smoking Status and High Density Lipoprotein-Cholesterol in Males in the Fifth Korea National Health and Nutrition Examination Survey. Korean J. Health Promot. 2017, 17, 289–297. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged ≥20 years. J. Circ. Biomark. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Men | Women | ||||
---|---|---|---|---|---|---|
Low Relative Humidity | High Relative Humidity | p-Value | Low Relative Humidity | High Relative Humidity | p-Value | |
Number of people, N (%) | 869 (44.2) | 1095 (55.8) | 1525 (37.6) | 2535 (62.4) | ||
Age, years, N (%) | 0.744 | 0.0332 | ||||
20–29 | 305 (38.5) | 400 (38.7) | 498 (33.5) | 923 (39.6) | ||
30–39 | 292 (29.6) | 367 (28.7) | 544 (30.3) | 913 (30.0) | ||
40–49 | 198 (20.9) | 249 (19.5) | 397 (25.5) | 595 (20.5) | ||
50–59 | 74 (11.0) | 79 (13.1) | 86 (10.7) | 104 (9.9) | ||
Ethnicity, N (%) | <0.0001 | 0.0003 | ||||
Mestizo | 802 (88.2) | 937 (73.4) | 1397 (86.4) | 2186 (79.0) | ||
Others | 67 (11.8) | 158 (26.6) | 128 (13.6) | 349 (21.0) | ||
Family economic status a, N (%) | <0.0001 | <0.0001 | ||||
Low | 191 (21.3) | 342 (32.9) | 400 (22.8) | 835 (33.6) | ||
Middle | 391 (44.4) | 542 (49.6) | 637 (40.6) | 1245 (49.7) | ||
High | 287 (34.3) | 211 (17.5) | 488 (36.6) | 455 (16.7) | ||
Education level, N (%) | 0.0004 | <0.0001 | ||||
Primary school | 217 (22.9) | 290 (28.9) | 415 (24.3) | 716 (32.6) | ||
Secondary school | 395 (48.4) | 569 (52.5) | 694 (47.3) | 1218 (45.4) | ||
College or higher | 257 (28.7) | 236 (18.6) | 416 (28.4) | 601 (22.0) | ||
Current alcohol consumption b, N (%) | 0.2684 | 0.9006 | ||||
Yes | 478 (56.6) | 631 (59.9) | 392 (25.7) | 672 (25.4) | ||
No | 391 (43.4) | 464 (40.1) | 1133 (74.3) | 1863 (74.6) | ||
Current smoking c, N (%) | 0.1086 | <0.0001 | ||||
Yes | 303 (30.9) | 350 (26.5) | 114 (8.1) | 118 (3.5) | ||
No | 566 (69.1) | 745 (73.5) | 1411 (91.9) | 2417 (96.5) | ||
Physical activity d, N (%) | 0.0432 | 0.0007 | ||||
Yes | 394 (44.7) | 456 (38.6) | 276 (20.0) | 400 (14.2) | ||
No | 475 (55.3) | 639 (61.4) | 1249 (80.0) | 2135 (85.8) | ||
Environmental conditions (mean ± SE) | ||||||
Elevation (masl) | 1345.7 ± 58.6 | 703.1 ± 45.8 | <0.0001 | 1456.8 ± 48.9 | 650.7 ± 28.7 | <0.0001 |
Temperature (°C) | 20.4 ± 0.2 | 22.6 ± 0.2 | <0.0001 | 20 ± 0.2 | 22.7 ± 0.1 | <0.0001 |
Variables | Low Relative Humidity | High Relative Humidity | p-Value | Low Relative Humidity | High Relative Humidity | p-Value |
---|---|---|---|---|---|---|
(869) | (1095) | (1525) | (2535) | |||
Anthropometric and biochemical variable (mean ± SE) | ||||||
BMI (kg/m2) | 26.5 ± 0.2 | 26.8 ± 0.2 | 0.4684 | 27.2 ± 0.2 | 27.6 ± 0.2 | 0.0461 |
Waist circumference (cm) | 94.7 ± 2.2 | 95.6 ± 2.4 | 0.7722 | 98.3 ± 3.7 | 91.5 ± 1.3 | 0.0796 |
SBP (mmHg) | 125.1 ± 2.1 | 123.9 ± 1.7 | 0.6468 | 116.3 ± 1.3 | 115.6 ± 0.9 | 0.6341 |
DBP (mmHg) | 79.9 ± 2.2 | 79.0 ± 1.7 | 0.7634 | 73.7 ± 1.3 | 72.3 ± 0.8 | 0.3956 |
Fasting glucose (mg/dL) | 93.8 ± 1.2 | 95.2 ± 1.9 | 0.5249 | 92.7 ± 0.8 | 93.0 ± 1.1 | 0.8312 |
Total cholesterol (mg/dL) | 186.7 ± 1.8 | 184.8 ± 1.8 | 0.4416 | 181.4 ± 1.3 | 178.3 ± 1.3 | 0.0899 |
HDL cholesterol (mg/dL) | 40.6 ± 0.5 | 42.2 ± 0.6 | 0.0278 | 45.5 ± 0.5 | 47.0 ± 0.4 | 0.0146 |
LDL cholesterol (mg/dL) | 112.2 ± 1.5 | 110.4 ± 1.5 | 0.3928 | 108.9 ± 1.1 | 108.7 ± 1.0 | 0.8622 |
Triglyceride (mg/dL) | 179.2 ± 5.5 | 169.4 ± 6.7 | 0.2589 | 129.7 ± 3.2 | 122.2 ± 2.3 | 0.0541 |
Macronutrient intake (mean ± SE) | ||||||
Energy (kcal) | 2123.8 ± 20.2 | 2210.5 ± 20.8 | 0.0028 | 1826.9 ± 15.1 | 1868.5 ± 14.3 | 0.0463 |
EER (%) | 81.6 ± 1.0 | 86.1 ± 1.0 | 0.0033 | 97.1 ± 0.9 | 99.8 ± 0.9 | 0.0364 |
Men | Women | |||
---|---|---|---|---|
Components of MetS | Low Relative Humidity | High Relative Humidity | Low Relative Humidity | High Relative Humidity |
(n = 869) | (n = 1095) | (n = 1525) | (n = 2535) | |
Increased waist circumference | ||||
Prevalence (%) | 34.00 | 19.17 | 41.14 | 25.62 |
OR (95 % CI) | 1.00 (ref) | 1.13 (0.85–1.48) | 1.00 (ref) | 1.21 (0.95–1.53) |
Elevated blood pressure | ||||
Prevalence (%) | 18.50 | 9.99 | 8.85 | 5.35 |
OR (95 % CI) | 1.00 (ref) | 0.96(0.71–1.28) | 1.00 (ref) | 1.02 (0.75–1.38) |
Reduced HDL cholesterol | ||||
Prevalence (%) | 33.34 | 16.33 | 25.55 | 38.69 |
OR (95 % CI) | 1.00 (ref) | 0.87 (0.66–1.13) | 1.00 (ref) | 1.25 (1.06–1.56) |
Elevated triglycerides | ||||
Prevalence (%) | 30.98 | 14.22 | 16.96 | 9.30 |
OR (95 % CI) | 1.00 (ref) | 0.80 (0.61–1.06) | 1.00 (ref) | 0.87 (0.68–1.11) |
Elevated fasting glucose | ||||
Prevalence (%) | 9.24 | 7.13 | 9.31 | 5.73 |
OR (95 % CI) | 1.00 (ref) | 1.20 (084–1.70) | 1.00 (ref) | 0.83 (0.61–1.12) |
Metabolic syndrome | ||||
Prevalence (%) | 24.13 | 12.41 | 11.53 | 17.73 |
OR (95 % CI) | 1.00 (ref) | 0.84 (0.61–1.14) | 1.00 (ref) | 1.20 (1.01–1.42) |
Components of MetS | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
Yes (95 % CI) | p-Value | No (95 % CI) | p-Value | Yes (95 % CI) | p-Value | No (95 % CI) | p-Value | |
Current alcohol consumption | ||||||||
Increased waist circumference | 1.18 (0.81 ± 1.73) | 0.3817 | 0.99 (0.65 ± 1.51) | 0.9757 | 1.58 (0.99 ± 2.51) | 0.0552 | 0.93 (0.70 ± 1.25) | 0.6386 |
Elevated blood pressure | 1.09 (0.78 ± 1.53) | 0.6478 | 1.03 (0.69 ± 1.54) | 0.9025 | 0.83 (0.50 ± 1.37) | 0.1115 | 1.02 (0.78 ± 1.34) | 0.8161 |
Reduced HDL cholesterol | 0.86 (0.58 ± 1.27) | 0.4400 | 0.77 (0.48 ± 1.23) | 0.2400 | 1.31 (1.01 ± 1.69) | 0.0350 | 0.99 (0.65 ± 1.53) | 0.9746 |
Elevated triglycerides | 0.76 (0.52 ± 1.10) | 0.1464 | 0.78 (051 ± 1.19) | 0.2487 | 0.88 (0.49 ± 1.56) | 0.4711 | 1.03 (0.80 ± 1.34) | 0.8119 |
Elevated fasting glucose | 1.09 (0.70 ± 1.73) | 0.6922 | 1.60 (0.94 ± 2.70) | 0.0785 | 0.54 (0.27 ± 1.06) | 0.0735 | 0.95 (0.68 ± 1.33) | 0.7663 |
Metabolic syndrome | 0.87 (0.60 ± 1.32) | 0.4988 | 0.88 (0.54 ± 1.41) | 0.7616 | 0.79 (0.47 ± 1.33) | 0.3849 | 1.16 (0.87 ± 1.54) | 0.3078 |
Current smoking | ||||||||
Increased waist circumference | 1.24 (0.78 ± 1.96) | 0.3684 | 1.19 (0.86 ± 1.64) | 0.3030 | 1.43 (0.90 ± 2.28) | 0.1290 | 0.56 (0.21 ± 1.50) | 0.2464 |
Elevated blood pressure | 0.56 (0.36 ± 0.87) | 0.0101 | 0.87 (0.61 ± 1.25) | 0.4605 | 0.89 (0.27 ± 2.95) | 0.8537 | 0.91 (0.69 ± 1.19) | 0.4910 |
Reduced HDL cholesterol | 0.89 (0.57 ± 1.38) | 0.5916 | 0.99 (0.73 ± 1.36) | 0.9612 | 1.95 (1.30 ± 2.93) | 0.0013 | 1.08 (0.83 ± 1.39) | 0.5484 |
Elevated triglycerides | 1.00 (0.63 ± 1.59) | 0.9877 | 0.78 (0.56 ± 1.16) | 0.1177 | 0.41 (0.15 ± 1.07) | 0.0681 | 1.07 (0.86 ± 1.33) | 0.5359 |
Elevated fasting glucose | 1.21 (0.62 ± 2.36) | 0.5720 | 0.88 (0.60 ± 1.29) | 0.5017 | 0.66 (0.12 ± 3.60) | 0.6278 | 0.81 (0.61 ± 1.08) | 0.1480 |
Metabolic syndrome | 1.03 (0.64 ± 1.65) | 0.9118 | 1.05 (0.67 ± 1.66) | 0.7658 | 0.35 (0.11 ± 1.05) | 0.0623 | 1.09 (0.82 ± 1.47) | 0.4500 |
Physical activity | ||||||||
Increased waist circumference | 0.98 (0.60 ± 1.61) | 0.9300 | 1.37 (0.85 ± 2.20) | 0.1937 | 0.83 (0.44 ± 1.58) | 0.5655 | 1.15 (0.88 ± 1.47) | 0.2747 |
Elevated blood pressure | 1.04 (0.70 ± 1.55) | 0.7428 | 1.13 (0.80 ± 1.60) | 0.4095 | 0.69 (1.05 ± 1.13) | 0.3457 | 1.06 (0.78 ± 1.43) | 0.7264 |
Reduced HDL cholesterol | 0.94 (0.64 ± 1.38) | 0.7484 | 0.86 (0.58 ± 1.26) | 0.4387 | 1.28 (0.77 ± 2.12) | 0.3349 | 1.20 (0.97 ± 1.48) | 0.0975 |
Elevated triglycerides | 0.59 (0.37 ± 0.85) | 0.0067 | 0.94 (0.64 ± 1.38) | 0.7556 | 0.88 (0.49 ± 1.59) | 0.6650 | 1.01 (0.80 ± 1.28) | 0.9145 |
Elevated fasting glucose | 1.16 (0.65 ± 2.08) | 0.6210 | 0.84 (0.55 ± 1.27) | 0.4022 | 0.96 (0.42 ± 2.24) | 0.9325 | 0.79 (0.59 ± 1.06) | 0.1125 |
Metabolic syndrome | 0.87 (0.54 ± 1.45) | 0.5708 | 0.79 (0.52 ± 1.22) | 0.2860 | 1.03 (0.55 ± 1.91) | 0.9368 | 1.23 (1.02 ± 1.48) | 0.0301 |
High a (95 % CI) | p-Value | Low (95 % CI) | p-Value | High a (95 % CI) | p-Value | Low (95 % CI) | p-Value | |
% EER | ||||||||
Increased waist circumference | 0.91 (0.45 ± 1.87) | 0.8163 | 1.24 (0.85 ± 1.80) | 0.2672 | 1.35 (0.98 ± 1.86) | 0.0645 | 0.85 (0.60 ± 1.18) | 0.3307 |
Elevated blood pressure | 1.06 (0.52 ± 2.15) | 0.6800 | 1.11 (0.81 ± 1.52) | 0.5308 | 1.18 (0.78 ± 1.78) | 0.5875 | 0.96 (0.71 ± 1.32) | 0.3117 |
Reduced HDL cholesterol | 0.96 (0.46 ± 1.99) | 0.4993 | 0.77 (0.53 ± 1.13) | 0.2813 | 1.06 (0.77 ± 1.63) | 0.6920 | 1.32 (0.99 ± 1.79) | 0.0578 |
Elevated triglycerides | 0.86 (0.39 ± 1.87) | 0.8164 | 0.82 (0.50 ± 1.06) | 0.1985 | 0.88 (0.66 ± 1.64) | 0.4841 | 1.05 (0.80 ± 1.41) | 0.7065 |
Elevated fasting glucose | 0.88 (0.43 ± 1.80) | 0.7201 | 1.01 (0.68 ± 1.56) | 0.9564 | 0.85 (0.55 ± 1.30) | 0.4597 | 0.77 (0.53 ± 1.11) | 0.1605 |
Metabolic syndrome | 0.81 (0.33 ± 1.92) | 0.6444 | 0.91 (0.65 ± 1.28) | 0.5948 | 0.91 (0.64 ± 1.29) | 0.6005 | 1.22 (0.91 ± 1.65) | 0.1808 |
Components of MetS | Women (n = 4060) | |||
---|---|---|---|---|
Yes (95 % CI) | p-Value | No (95 % CI) | p-Value | |
Menopausal stage | ||||
Increased waist circumference | 1.34 (1.09 ± 1.63) | 0.0045 | 0.22 (0.02 ± 3.04) | 0.2550 |
Elevated blood pressure | 3.10 (1.15 ± 8.35) | 0.0253 | 0.80 (0.60 ± 1.07) | 0.1382 |
Reduced HDL cholesterol | 1.48 (0.59 ± 3.74) | 0.4064 | 1.13 (0.93 ± 1.37) | 0.2243 |
Elevated triglycerides | 2.37 (0.96 ± 5.90) | 0.0627 | 0.87 (0.70 ± 1.08) | 0.2130 |
Elevated fasting glucose | 0.90 (0.31 ± 2.64) | 0.8510 | 0.81 (0.61 ± 1.08) | 0.1442 |
Metabolic syndrome | 5.42 (1.92 ± 15.27) | 0.0015 | 0.89 (0.71 ± 1.12) | 0.3177 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juna, C.F.; Cho, Y.H.; Ham, D.; Joung, H. Associations of Relative Humidity and Lifestyles with Metabolic Syndrome among the Ecuadorian Adult Population: Ecuador National Health and Nutrition Survey (ENSANUT-ECU) 2012. Int. J. Environ. Res. Public Health 2020, 17, 9023. https://doi.org/10.3390/ijerph17239023
Juna CF, Cho YH, Ham D, Joung H. Associations of Relative Humidity and Lifestyles with Metabolic Syndrome among the Ecuadorian Adult Population: Ecuador National Health and Nutrition Survey (ENSANUT-ECU) 2012. International Journal of Environmental Research and Public Health. 2020; 17(23):9023. https://doi.org/10.3390/ijerph17239023
Chicago/Turabian StyleJuna, Christian F., Yoon Hee Cho, Dongwoo Ham, and Hyojee Joung. 2020. "Associations of Relative Humidity and Lifestyles with Metabolic Syndrome among the Ecuadorian Adult Population: Ecuador National Health and Nutrition Survey (ENSANUT-ECU) 2012" International Journal of Environmental Research and Public Health 17, no. 23: 9023. https://doi.org/10.3390/ijerph17239023
APA StyleJuna, C. F., Cho, Y. H., Ham, D., & Joung, H. (2020). Associations of Relative Humidity and Lifestyles with Metabolic Syndrome among the Ecuadorian Adult Population: Ecuador National Health and Nutrition Survey (ENSANUT-ECU) 2012. International Journal of Environmental Research and Public Health, 17(23), 9023. https://doi.org/10.3390/ijerph17239023