The Association of Different Types of Leisure Time Physical Activities with Cardiometabolic Outcomes in Singapore—Findings from the Multi-Ethnic Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Dependent and Independent Variables
2.4. Statistical Analysis
3. Results
3.1. Association of Total LTPA with Cardiometabolic Outcomes
3.2. Association of LTPA Subtypes with Cardiometabolic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocon, M.; Hiemann, T.; Müller-Riemenschneider, F.; Thalau, F.; Roll, S.; Willich, S.N. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Physical, L.; Series, A.; Group, W. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 6736, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Sallis, J.F.; Bull, F.; Guthold, R.; Heath, G.W.; Inoue, S.; Kelly, P.; Oyeyemi, A.L.; Perez, L.G.; Richards, J.; Hallal, P.C. Progress in physical activity over the Olympic quadrennium. Lancet 2016, 388, 1325–1336. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; de Gonzalez, A.B.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef]
- Moore, S.C.; Lee, I.-M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; de Gonzalez, A.B.; Hartge, P. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef]
- Gebel, K.; Ding, D.; Chey, T.; Stamatakis, E.; Brown, W.J.; Bauman, A.E. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. JAMA Intern. Med. 2015, 175, 970–977. [Google Scholar] [CrossRef]
- Swain, D.P. Moderate or Vigorous Intensity Exercise: Which Is Better for Improving Aerobic Fitness? Prev. Cardiol. 2005, 8, 55–58. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.M. Physical activity and coronary heart disease in men: The Harvard Alumni Health Study. Circulation 2000, 102, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Hamer, M.; Chida, Y. Walking and primary prevention: A meta-analysis of prospective cohort studies. Br. J. Sports Med. 2008, 42, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, H.; Iso, H.; Toyoshima, H.; Date, C.; Yamamoto, A.; Kikuchi, S.; Koizumi, A.; Kondo, T.; Watanabe, Y.; Wada, Y. Walking and sports participation and mortality from coronary heart disease and stroke. J. Am. Coll. Cardiol. 2005, 46, 1761–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, J.E.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.; Perri, M.G.; Sheps, D.S.; Pettinger, M.B.; Siscovick, D.S. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N. Engl. J. Med. 2002, 347, 716–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanasescu, M.; Leitzmann, M.F.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002, 288, 1994–2000. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Xiang, Y.-B.; Li, H.; Yang, G.; Gao, J.; Zheng, W.; Shu, X.-O. Associations of Tai Chi, walking, and jogging with mortality in Chinese men. Am. J. Epidemiol. 2013, 178, 791–796. [Google Scholar] [CrossRef]
- Chen, M.; He, M.; Min, X.; Pan, A.; Zhang, X.; Yao, P.; Li, X.; Liu, Y.; Yuan, J.; Chen, W.; et al. Different physical activity subtypes and risk of metabolic syndrome in middle-aged and older Chinese people. PLoS ONE 2013, 8, e53258. [Google Scholar] [CrossRef]
- Tan, K.H.X.; Tan, L.W.L.; Sim, X.; Tai, E.S.; Lee, J.J.-M.; Chia, K.S.; van Dam, R.M. Cohort Profile: The Singapore Multi-Ethnic Cohort (MEC) study. Int. J. Epidemiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Uijtdewilligen, L.; Yin, J.D.-C.; van der Ploeg, H.P.; Müller-Riemenschneider, F. Correlates of occupational, leisure and total sitting time in working adults: Results from the Singapore multi-ethnic cohort. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 169. [Google Scholar] [CrossRef] [Green Version]
- Nang, E.E.K.; Gitau Ngunjiri, S.A.; Wu, Y.; Salim, A.; Tai, E.S.; Lee, J.; Van Dam, R.M. Validity of the international physical activity questionnaire and the Singapore prospective study program physical activity questionnaire in a multiethnic urban Asian population. BMC Med. Res. Methodol. 2011, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Moore, S.C.; Patel, A.V.; Matthews, C.E.; de Gonzalez, A.B.; Park, Y.; Katki, H.A.; Linet, M.S.; Weiderpass, E.; Visvanathan, K.; Helzlsouer, K.J. Leisure time physical activity of moderate to vigorous intensity and mortality: A large pooled cohort analysis. PLoS Med. 2012, 9, e1001335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradell, A.; Gómez-Cabello, A.; Gómez-Bruton, A.; Muniz-Pardos, B.; Puyalto, J.M.; Matute-Llorente, A.; Gónzalez-Agüero, A.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G. Associations between Physical Fitness, Bone Mass, and Structure in Older People. Biomed Res. Int. 2020, 2020, 6930682. [Google Scholar] [CrossRef]
- Murtagh, E.M.; Nichols, L.; Mohammed, M.A.; Holder, R.; Nevill, A.M.; Murphy, M.H. The effect of walking on risk factors for cardiovascular disease: An updated systematic review and meta-analysis of randomised control trials. Prev. Med. 2015, 72, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumner, J.; Uijtdewilligen, L.; Yee, A.C.H.; Xian, S.N.H.; Barreira, T.V.; Sloan, R.A.; Van Dam, R.M.; Müller-Riemenschneider, F. Volume and Intensity of Stepping Activity and Cardiometabolic Risk Factors in a Multi-ethnic Asian Population. Int. J. Environ. Res. Public Health 2020, 17, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, J.; Uijtdewilligen, L.; Chu, A.H.Y.; Xian, S.N.H.; Barreira, T.V.; Sloan, R.A.; van Dam, R.M.; Müller-Riemenschneider, F. Stepping volume and intensity patterns in a multi-ethnic urban Asian population. BMC Public Health 2018, 18, 539. [Google Scholar]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update a scientific statement from the american heart association council on clinical cardiology and council on nutrition, physical activity, and metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Rankin, A.J.; Rankin, A.C.; MacIntyre, P.; Hillis, W.S. Walk or run? Is high-intensity exercise more effective than moderate-intensity exercise at reducing cardiovascular risk? Scott. Med. J. 2012, 57, 99–102. [Google Scholar] [CrossRef]
- Gill, J.M.R.; Celis-Morales, C.A.; Ghouri, N. Physical activity, ethnicity and cardio-metabolic health: Does one size fit all? Atherosclerosis 2014, 232, 319–333. [Google Scholar] [CrossRef]
- Win, A.M.; Yen, L.W.; Tan, K.H.X.; Lim, R.B.T.; Chia, K.S.; Mueller-Riemenschneider, F. Patterns of physical activity and sedentary behavior in a representative sample of a multi-ethnic South-East Asian population: A cross-sectional study. BMC Public Health 2015, 15, 318. [Google Scholar] [CrossRef] [Green Version]
- Iliodromiti, S.; Ghouri, N.; Celis-Morales, C.A.; Sattar, N.; Lumsden, M.A.; Gill, J.M.R. Should Physical Activity Recommendations for South Asian Adults Be Ethnicity-Specific? Evidence from a Cross-Sectional Study of South Asian and White European Men and Women. PLoS ONE 2016, 11, e0160024. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All (N = 9768) | Chinese (N = 4618) | Malays (N = 2535) | Indians (N = 2615) | |||||
---|---|---|---|---|---|---|---|---|---|
N | Proportion (%) | N | Proportion (%) | N | Proportion (%) | N | Proportion (%) | p-Value for between Ethnicity Diffterences | |
Age (in years), mean ± SD | 45.2 ± 12.5 | 46.3 ± 12.4 | 44.3 ± 12.7 | 44.3 ± 12.5 | <0.001 | ||||
Gender | |||||||||
Male | 4169 | 42.7 | 2054 | 44.5 | 1037 | 40.9 | 1078 | 41.2 | 0.003 |
Female | 5599 | 57.3 | 2564 | 55.5 | 1498 | 59.1 | 1537 | 58.8 | |
Marital Status (Missing = 4) | |||||||||
Never married | 1624 | 16.6 | 882 | 19.1 | 352 | 13.9 | 390 | 14.9 | <0.001 |
Currently married | 7428 | 76.1 | 3493 | 75.6 | 1981 | 78.1 | 1954 | 74.8 | |
Separated | 43 | 0.4 | 13 | 0.3 | 14 | 0.6 | 16 | 0.6 | |
Divorced | 293 | 3.0 | 91 | 2.0 | 86 | 3.4 | 116 | 4.4 | |
Widowed | 376 | 3.9 | 137 | 3.0 | 101 | 4.0 | 138 | 5.3 | |
Educational Status | |||||||||
No formal education/Lower primary | 687 | 7.0 | 302 | 6.5 | 191 | 7.5 | 194 | 7.4 | <0.001 |
Primary education | 1966 | 20.1 | 733 | 15.9 | 609 | 24.0 | 624 | 23.9 | |
Secondary education | 3558 | 36.4 | 1549 | 33.5 | 1076 | 42.4 | 933 | 35.7 | |
Technical certification a | 587 | 6.0 | 162 | 3.5 | 273 | 10.8 | 152 | 5.8 | |
Foundation/Associate degrees b | 1707 | 17.5 | 999 | 21.6 | 314 | 12.4 | 394 | 15.1 | |
University | 1263 | 12.9 | 873 | 18.9 | 72 | 2.8 | 318 | 12.2 | |
Employment Status (Missing = 3) | |||||||||
Working | 6451 | 66.1 | 3294 | 71.4 | 1514 | 59.7 | 1643 | 62.8 | <0.001 |
Student (full-time) | 215 | 2.2 | 118 | 2.6 | 37 | 1.5 | 60 | 2.3 | |
Homemaker/Housewife | 2171 | 22.2 | 762 | 16.5 | 776 | 30.6 | 633 | 24.2 | |
Retired | 526 | 5.4 | 314 | 6.8 | 115 | 4.5 | 97 | 3.7 | |
Unemployed (able to work) | 312 | 3.2 | 89 | 1.9 | 79 | 3.1 | 144 | 5.5 | |
Unemployed (unable to work) | 50 | 0.5 | 16 | 0.3 | 6 | 0.2 | 28 | 1.1 | |
Others | 40 | 0.4 | 22 | 0.5 | 8 | 0.3 | 10 | 0.4 | |
Mean Monthly Household Income (SGD) | |||||||||
Less than 2000 | 2205 | 22.6 | 633 | 13.7 | 775 | 30.6 | 797 | 30.5 | <0.001 |
2000 to 3999 | 2471 | 25.3 | 916 | 19.8 | 745 | 29.4 | 810 | 31.0 | |
4000 to 5999 | 1561 | 16.0 | 684 | 14.8 | 428 | 16.9 | 449 | 17.2 | |
6000 to 9999 | 989 | 10.1 | 570 | 12.3 | 176 | 6.9 | 243 | 9.3 | |
More than 10,000 | 377 | 3.9 | 314 | 6.8 | 14 | 0.6 | 49 | 1.9 | |
Missing | 2165 | 22.2 | 1501 | 32.5 | 397 | 15.7 | 267 | 10.2 |
Total LTPA | LTPA | Outcomes | ||||||
---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | Waist Circumference (cm) | Systolic Blood Pressure (mmHg) | Diastolic Blood Pressure (mmHg) | Triglycerides (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | ||
Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | ||
Model 1 * | 0 MET-h/wk | reference | reference | reference | reference | reference | reference | reference |
0–15 MET-h/wk | −0.28 (−0.50, 0.07) p = 0.010 | −1.55 (−2.72, −0.37) p = 0.010 | 0.56 (−0.26, 1.39) p = 0.181 | −0.001 (−0.49, 0.49) p = 0.997 | −3.39 (−7.03, 0.25) p = 0.068 | 0.78 (0.18, 1.37) p = 0.011 | 0.40 (−1.15, 1.96) p = 0.611 | |
> 15 MET-h/wk | −0.23 (−0.48, 0.02) p = 0.067 | −1.44 (−2.77, −0.10) p = 0.035 | 1.35 (0.41, 2.29) p = 0.005 | −0.54 (−1.10, 0.01) p = 0.055 | −6.19 (−10.34, −2.03) p = 0.004 | 1.83 (1.15, 2.51) P < 0.001 | 0.17 (−1.61, 1.95) p = 0.853 | |
Test for Trend | p = 0.146 | p = 0.058 | p = 0.011 | p = 0.005 | p < 0.001 | p < 0.001 | p = 0.317 | |
Model 2 ^ | 0 MET-h/wk | reference | reference | reference | reference | reference | ||
0–15 MET-h/wk | 0.84 (0.05, 1.64) p = 0.038 | 0.14 (−0.34, 0.61) p = 0.575 | −2.15 (−5.68, 1.38) p = 0.232 | 0.52 (−0.05, 1.08) p = 0.072 | 0.76 (−0.79. 2.30) p = 0.338 | |||
> 15 MET-h/wk | 1.54 (0.63, 2.45) p = 0.001 | −0.45 (−0.99, 0.09) p = 0.104 | −5.24 (−9.26, −1.21) p = 0.011 | 1.63 (0.98, 2.27) p < 0.001 | 0.44 (−1.32, 2.21) p = 0.622 | |||
Test for Trend | p = 0.003 | p = 0.011 | p = 0.002 | p < 0.001 | p = 0.437 |
LTPA Subtypes | Outcomes | |||||||
---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | Waist Circumference (cm) | Systolic Blood Pressure (mmHg) | Diastolic Blood Pressure (mmHg) | Triglycerides (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | ||
Categorized as Participated Yes/No with No Being the Reference Category | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | Effect Size (95% CI) | |
Balance exercises | Model 1 * | −0.75 (−1.15, −0.35) p < 0.001 | −1.24 (−3.43, 0.95) p = 0.269 | −2.06 (−3.63, −0.49) p = 0.010 | −1.60 (−2.53, −0.67) p = 0.001 | −1.56 (−8.46, 5.34) p = 0.657 | −0.75 (−1.88, 0.39) p = 0.196 | −1.91 (−4.88, 1.05) p = 0.206 |
Model 2 ^ | −1.38 (−2.90, 0.14) p = 0.076 | −1.25 (−2.16, −0.34) p = 0.007 | 1.36 (−5.33, 8.06) p = 0.690 | −1.38 (−2.46, −0.31) p = 0.012 | −1.05 (−3.98, 1.89) p = 0.485 | |||
Ball games | Model 1 * | 0.13 (−0.19, 0.44) p = 0.435 | −1.42 (−3.14, 0.29) p = 0.104 | 0.02 (−1.15, 1.20) p = 0.971 | −0.97 (−1.66, −0.27) p = 0.006 | −5.49 (−10.73, −0.26) p = 0.040 | 0.18 (−0.68, 1.04) p = 0.686 | 1.15 (−1.10, 3.40) p = 0.317 |
Model 2 ^ | −0.10 (−1.23, 1.04) p = 0.869 | −1.02 (−1.70, −0.34) p = 0.003 | −5.94 (−11.02, −0.86) p = 0.022 | 0.27 (−0.54, 1.09) p = 0.512 | 1.00 (−1.23, 3.22) p = 0.379 | |||
Cycling | Model 1 * | −0.59 (−0.97, −0.22) p = 0.002 | −2.08 (−4.11, −0.06) p = 0.044 | −1.00 (−2.39, 0.39) p =0.159 | −0.24 (−1.06, 0.58) p = 0.566 | −3.47 (−9.66, 2.72) p = 0.271 | 1.16 (0.15, 2.18) p = 0.025 | −0.85 (−3.50, 1.80) p = 0.530 |
Model 2 ^ | −0.56 (−1.90, 0.79) p = 0.416 | −0.03 (−0.83, 0.78) p = 0.943 | −1.09 (−7.09, 4.91) p = 0.723 | 0.64 (−0.32, 1.61) p = 0.189 | −0.27 (−2.89, 2.36) p =0.842 | |||
Dancing | Model 1 * | 0.10 (−0.44, 0.65) p = 0.711 | −0.53 (−3.50, 2.45) p = 0.729 | −0.15 (−2.25, 1.96) p = 0.891 | −0.43 (−1.67, 0.81) p = 0.497 | 1.10 (−8.15, 10.34) p = 0.816 | 1.67 (0.16, 3.19) p = 0.031 | −0.45 (−4.42, 3.52) p = 0.824 |
Model 2 ^ | −0.23 (−2.26, 1.81) p = 0.827 | −0.47 (−1.69, 0.74) p = 0.448 | 0.11 (−8.86, 9.07) p = 0.982 | 1.88 (0.44, 3.31) p = 0.010 | −0.72 (−4.65, 3.21) p = 0.719 | |||
Golf | Model 1 * | 0.49 (−0.22, 1.20) p = 0.177 | 1.78 (−2.08, 5.65) p = 0.367 | −0.38 (−3.09, 2.34) p = 0.786 | 2.04 (0.44, 3.64) p = 0.013 | 6.55 (−5.90, 18.99) p = 0.303 | 0.14 (−1.90, 2.19) p = 0.892 | 3.25 (−2.10, 8.60) p = 0.234 |
Model 2 ^ | −0.77 (−3.39, 1.86) p = 0.567 | 1.85 (0.28, 3.42) p = 0.021 | 4.54 (−7.52, 16.61) p = 0.461 | 0.56 (−1.37, 2.50) p = 0.568 | 2.76 (−2.53, 8.06) p = 0.307 | |||
Running | Model 1 * | −0.41 (−0.66, −0.15) p = 0.002 | −1.47 (−2.86, −0.08) p = 0.038 | −0.19 (−1.15, 0.77) p = 0.702 | −1.01 (−1.58, −0.45) p < 0.001 | −9.44 (−13.70, −5.18) p < 0.001 | 0.81 (0.11, 1.51) p = 0.023 | −1.69 (−3.52, 0.14) p = 0.071 |
Model 2 ^ | 0.12 (−0.81, 1.05) p = 0.803 | −0.87 (−1.42, −0.31) p = 0.002 | −7.71 (−11.84, −3.57) p < 0.001 | 0.44 (−0.22, 1.10) p = 0.192 | −1.26 (−3.07, 0.55) p = 0.174 | |||
Strength and fitness | Model 1 * | −0.25 (−0.47, −0.03) p = 0.027 | −1.20 (−2.39, 0) p = 0.050 | 1.39 (0.55, 2.23) p = 0.001 | −0.08 (−0.58, 0.42) p = 0.748 | −4.13 (−7.84, −0.42) p = 0.029 | 1.68 (1.08, 2.29) p < 0.001 | 0.48 (−1.12, 2.07) p = 0.558 |
Model 2 ^ | 1.62 (0.81, 2.44) p < 0.001 | 0.03 (−0.46, 0.52) p = 0.908 | −3.18 (−6.78, 0.42) p = 0.083 | 1.46 (0.89, 2.04) p < 0.001 | 0.75 (−0.83, 2.33) p = 0.351 | |||
Swimming | Model 1 * | 0.64 (0.33, 0.96) p < 0.001 | 2.06 (0.36, 3.76) p = 0.018 | 0.15 (−1.02, 1.33) p = 0.800 | 0.54 (−0.15, 1.23) p = 0.128 | 4.66 (−0.57, 9.89) p = 0.080 | −0.51 (−1.37, 0.35) p = 0.244 | 1.42 (−0.82, 3.67) p = 0.213 |
Model 2 ^ | −0.52 (−1.66, 0.62) p = 0.370 | 0.22 (−0.46, 0.90) p = 0.526 | 1.88 (−3.20, 6.95) p = 0.469 | 0.08 (−0.73, 0.90) p = 0.843 | 0.74 (−1.49, 2.96) p = 0.516 | |||
Walking | Model 1 * | −0.04 (−0.23, 0.16) p = 0.709 | −0.21 (−1.26, 0.84) p = 0.695 | 0.22 (−0.51, 0.96) p = 0.551 | 0.39 (−0.05, 0.82) p = 0.082 | 1.10 (−2.16, 4.36) p = 0.508 | 0.41 (−0.13, 0.94) p = 0.137 | −0.26 (−1.66, 1.14) p = 0.718 |
Model 2 ^ | 0.30 (−0.42, 1.01) p = 0.416 | 0.42 (−0.01, 0.84) p = 0.056 | 1.26 (−1.90, 4.42) p = 0.435 | 0.37 (−0.13, 0.88) p = 0.150 | −0.20 (−1.59, 1.18) p = 0.773 | |||
Other LTPA | Model 1 * | 0.19 (−0.30, 0.67) p = 0.449 | 1.03 (−1.59, 3.66) p = 0.441 | −0.32 (−2.13, 1.49) p = 0.731 | −1.08 (−2.15, −0.02) p = 0.047 | −3.55 (−11.59, 4.48) p = 0.386 | 0.51 (−0.81, 1.83) p = 0.452 | 0.27 (−3.18, 3.71) p = 0.880 |
Model 2 ^ | −0.50 (−2.24, 1.25) p = 0.578 | −1.17 (−2.21, −0.12) p = 0.029 | −4.30 (−12.10, 3.50) p = 0.280 | 0.72 (−0.53, 1.97) p = 0.257 | 0.003 (−3.41, 3.42) p = 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Riemenschneider, F.; Hong, Y.; Tan, K.H.X.; van Dam, R.M.; Uijtdewilligen, L. The Association of Different Types of Leisure Time Physical Activities with Cardiometabolic Outcomes in Singapore—Findings from the Multi-Ethnic Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 9030. https://doi.org/10.3390/ijerph17239030
Müller-Riemenschneider F, Hong Y, Tan KHX, van Dam RM, Uijtdewilligen L. The Association of Different Types of Leisure Time Physical Activities with Cardiometabolic Outcomes in Singapore—Findings from the Multi-Ethnic Cohort Study. International Journal of Environmental Research and Public Health. 2020; 17(23):9030. https://doi.org/10.3390/ijerph17239030
Chicago/Turabian StyleMüller-Riemenschneider, Falk, Yueheng Hong, Kristin Hui Xian Tan, Rob M. van Dam, and Léonie Uijtdewilligen. 2020. "The Association of Different Types of Leisure Time Physical Activities with Cardiometabolic Outcomes in Singapore—Findings from the Multi-Ethnic Cohort Study" International Journal of Environmental Research and Public Health 17, no. 23: 9030. https://doi.org/10.3390/ijerph17239030
APA StyleMüller-Riemenschneider, F., Hong, Y., Tan, K. H. X., van Dam, R. M., & Uijtdewilligen, L. (2020). The Association of Different Types of Leisure Time Physical Activities with Cardiometabolic Outcomes in Singapore—Findings from the Multi-Ethnic Cohort Study. International Journal of Environmental Research and Public Health, 17(23), 9030. https://doi.org/10.3390/ijerph17239030