Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Determination of Total and Bioavailable Pb, Zn and Cd in Soils
2.4. Determination of Bioaccumulation Factors for Pb, Zn and Cd in Maize Stover and Grain
2.5. Pb and Cd Dietary Intake and Health Risk Assessment
2.6. Data Analysis
3. Results
3.1. Effect of Soil Amendments on Potentially-Plant Available Pb, Zn and Cd and Maize Biomass Production
3.2. Effect Soil Amendments on Pb, Zn and Cd Accumulation in Maize
3.3. Effect of Soil Amendments on Bioaccumulation Factors of Pb, Zn and Cd
3.4. Estimated Dietary Intake and Hazard Quotient Assessment of Pb and Cd
4. Discussion
4.1. Effects of Soil Amendments on Heavy Metal Bioavailability and Plant Uptake
4.2. Health Risk Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puga, P.A.; Melo, C.L.A.; Abreu, A.C.; Coscione, R.A.; Paz-ferreiro, J. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 2016, 164, 25–33. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Mcbride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Long, M.; Zhu, M.; Zhou, Q.; Zhang, L.; Liu, J. Food chain transfer of cadmium and lead to cattle in a lead–zinc smelter in Guizhou, China. Environ. Pollut. 2009, 157, 3078–3082. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Rai, K.P.; Sang, L.S.; Zhang, M.; Tsang, F.Y.; Kim, K. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Bi, C.; Zhou, Y.; Chen, Z.; Jia, J.; Bao, X. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619–620, 1349–1357. [Google Scholar] [CrossRef]
- Abbas, Q.; Yousaf, B.; Liu, G.; Zia-ur-rehman, M.; Ali, M.U.; Munir, M.A.M.; Hussain, S.A. Evaluating the health risks of potentially toxic elements through wheat consumption in multi-industrial metropolis of Faisalabad, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 26646–26657. [Google Scholar] [CrossRef] [PubMed]
- Adejumo, S.A.; Ogundiran, M.B.; Togun, A.O. Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. J. Environ. Chem. Eng. 2018, 6, 4809–4819. [Google Scholar] [CrossRef]
- Oka, M.; Uchida, Y. Heavy metals in slag affect inorganic N dynamics and soil bacterial community structure and function. Environ. Pollut. 2018, 243, 713–722. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. In A Report of the Working Group on the Global Metal Flows to the International Resource Panel; van der Voeat, E., Salminen, R., Eckelman, M., Mudd, G., Norgate, T., Hischier, R., Eds.; UNEP: Nairobi, Kenya, 2013. [Google Scholar]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Caravanos, J.; Kevin, C.; Bret, E.; Landrigan, P.J.; Richard, F. The burden of disease from pediatric lead exposure at hazardous waste sites in 7 Asian countries. Environ. Res. 2013, 120, 119–125. [Google Scholar] [CrossRef]
- Voegelin, A.; Tokpa, G.; Jacquat, O.; Barmettler, K.; Kretzschmar, R. Zinc Fractionation in Contaminated Soils by Sequential and Single Extractions: Influence of Soil Properties and Zinc Content. J. Environ. Qual. 2008, 37, 1190–1200. [Google Scholar] [CrossRef]
- Spliethoff, H.M.; Mitchell, R.G.; Shayler, H.; Marquez-bravo, L.G.; Russell-Anelli, J.; Ferenz, G.; Mcbride, M. Estimated lead (Pb) exposures for a population of urban community gardeners. Environ. Geochem. Health 2017, 38, 955–971. [Google Scholar] [CrossRef] [Green Version]
- Suelee, A.L.; Hasan, S.N.S.M.; Kusin, F.M.; Yusuff, F.M.; Ibrahim, Z.Z. Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water. Water Air Soil Pollut. 2017, 228, 158. [Google Scholar] [CrossRef]
- Paltseva, A.A.; Cheng, Z.; Egendorf, S.P.; Groffman, P.M. Remediation of an Urban Garden with Elevated Levels of Soil Contamination. Sci. Total Environ. 2020, 722, 137965. [Google Scholar] [CrossRef]
- Mcbride, M.B.; Richards, B.K.; Steenhuis, T. Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant. Soil 2004, 262, 71–84. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Li, R.; Zhang, Z. Immobilization of Lead and Cadmium in Contaminated Soil Using Amendments: A Review. Pedosphere 2015, 25, 555–568. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, P.; Sui, F.; Liu, H.; Fu, H. Influence of Soil Amendments on Uptake and Accumulation of Cd and Pb in Maize (Zea mays L.). Environ. Eng. Sci. 2018, 35, 194–202. [Google Scholar] [CrossRef]
- Cao, R.X.; Ma, L.Q.; Chen, M.; Singh, S.P.; Harris, W.G. Phosphate-induced metal immobilization in a contaminated site. Environ. Pollut. 2003, 122, 19–28. [Google Scholar] [CrossRef]
- Bernardino, C.A.R.; Mahler, C.F.; Preussler, K.H.; Novo, L.A. State of the Art of Phytoremediation in Brazil—Review and Perspectives. Water Air Soil Pollut. 2016, 227, 272. [Google Scholar] [CrossRef]
- Osmond, G.; Hamon, R.E. Remediation of polluted soils. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 379–385. [Google Scholar]
- Munir, M.A.M.; Liu, G.; Yousaf, B.; Mian, M.; ALi, U.M.; Ahmed, R.; Cheema, I.A.; Naushad, M. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotoxicol. Environ. Saf. 2020, 191, 110244. [Google Scholar] [CrossRef]
- Adejumo, S.A.; Togun, A.O.; Adediran, A.J.; Ogundiran, M.B. Field Assessment of Progressive Remediation of Soil Contaminated with Lead-acid Battery Waste in Response to Compost Application. Pedologist 2011, 54, 182–193. [Google Scholar]
- Putwattana, N.; Kruatrachue, M.; Kumsopa, A.; Pokethitiyook, P. Evaluation of Organic and Inorganic Amendments on Maize Growth and Uptake of Cd and Zn from Contaminated Paddy Soils. Int. J. Phytoremediat. 2015, 17, 165–174. [Google Scholar] [CrossRef]
- Bohdan, K.; Nyambe, I.; Majer, V.; Knésl, I.; Mihaljevi, M.; Pení, V.; Sracek, O. Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmental impacts and remediation measures proposal. J. Geochemical Explor. 2019, 197, 159–173. [Google Scholar]
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-sam, N.; Nketani, A.; Ntapisha, J.; Mizukawa, H.; Umemura, T.; Ishizuka, M. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 2018, 202, 48–55. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-sam, N.; Oroszlany, B.; Muzandu, K.; Choongo, K.; Nketani, A.; Ntapisha, J.; et al. Lead poisoning in children from townships in the vicinity of a lead—Zinc mine in Kabwe, Zambia. Chemosphere 2015, 119, 941–947. [Google Scholar] [CrossRef]
- Cachada, A.; Rocha-santos, T.; Duarte, A.C. Soil and Pollution: An Introduction to the Main Issues; Duarte, A.C., Cachada, A., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Ministry of Agriculture. Exploratory Soil Map of Zambia. Scale 1: 1,000,000; Ministry of Agriculture: Lusaka, Zambia, 1991. [Google Scholar]
- Hettiarachchi, G.M.; Pierzynski, G.M. Soil Lead Bioavailability and in Situ Remediation of Lead-Contaminated Soils: A Review. Environ. Prog. 2004, 23, 78–93. [Google Scholar] [CrossRef]
- TerAvest, D.; Carpenter-Boggs, L.; Thierfelder, C.; Reganold, J.P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric. Ecosyst. Environ. 2015, 212, 285–296. [Google Scholar] [CrossRef]
- Clark, H.F.; Hausladen, D.M.; Brabander, D.J. Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design. Environ. Res. 2008, 107, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L.S. Plant Nutrition for Food Security: FAO Fertilizer and Plant Nutrition Bulletin 16; United Nations Food and Agricultural Organization (FAO): Rome, Italy, 2006. [Google Scholar]
- Lindsay, W.; Norvell, W. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Antoniadis, V.; Golia, E.E.; Liu, Y.; Wang, S.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO/WHO. Codex Alimentarius Commission General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995); FAO: Rome, Italy, 2018. [Google Scholar]
- Alaofe, H.; Kohler, L.; Taren, D.; Mofu, M.J.; Chileshe, J.; Kalungwana, N. Zambia Food Consumption and Nutrition Survey Report; National Food and Nutrition Commission: Lusaka, Zambia, 2014. [Google Scholar]
- Kribek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevic, M.; Ettler, V.; Sracek, O. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J. Afr. Earth Sci. 2014, 99, 713–723. [Google Scholar] [CrossRef]
- Nakata, H.; Nakayama, S.M.M.; Yabe, J.; Liazambi, A.; Mizukawa, H.; Darwish, W.S.; Ikenaka, Y.; Ishizuka, M. Reliability of stable Pb isotopes to identify Pb sources and verifying biological fractionation of Pb isotopes in goats and chickens. Environ. Pollut. 2016, 208, 395–403. [Google Scholar] [CrossRef]
Parameter | Soil | Manure | BF | TSP |
---|---|---|---|---|
Total Pb (mg kg−1) | 8810 ± 310 | - | - | - |
Total Zn (mg kg−1) | 1102 ± 203 | - | - | - |
Total Cd (mg kg−1) | 260 ± 17 | - | - | - |
Total P | 21.0 mg kg−1 | 1.2% | 20% | 46% |
Total carbon (%) | 3.7 | |||
Total nitrogen (%) | 0.28 | 3.0 | 10 | 0 |
pH | 5.7 | |||
CEC (cmol + kg−1) | 5.2 |
CT | CM | TSP | BF | |
---|---|---|---|---|
Biomass Yield (kg plot−1) | 0.9 ± 0.2 b | 22.7 ± 2.2 a | 5.2 ± 0.4 b | 22.5 ± 3.7 a |
Biomass Yield (kg ha−1) | 1164 ± 310 b | 28,438 ± 2830 a | 6578 ± 529 b | 28,092 ± 4726 a |
Pb Grain | Yield | |
Pb soil | 0.59 * | −0.45 |
Pb roots | −0.03 ns | 0.06 ns |
Pb stover | 0.74 ** | −0.61 * |
Pb grain | 1 | −0.92 *** |
Zn Grain | Yield | |
Zn soil | 0.04 ns | −0.26 ns |
Zn roots | 0.86 *** | −0.66 ** |
Zn stover | 0.60 * | −0.66 ** |
Zn grain | 1 | −0.75 *** |
Cd Grain | Yield | |
Cd soil | −0.30 ns | 0.18 ns |
Cd roots | −0.28 ns | 0.38 ns |
Cd stover | −0.33 ns | −0.41 ns |
Cd grain | 1 | −0.47 ns |
CT † | CM | TSP | BF | FAO/WHO Limit | |
---|---|---|---|---|---|
EIPb (mg/kg HBW/week) | 0.99 ± 0.02 a | 0.16 ± 0.05 b | 0.72 ± 0.02 a | 0.24 ± 0.04 b | 0.025 |
EICd (mg/kg HBW/month) | 0.31 ± 0.04 b | 0.17 ± 0.05 b | 0.62 ± 0.23 a | 0.35 ± 0.06 b | 0.025 |
HQPb | 39.6 ± 1.0 a | 6.6 ± 2.3 b | 28.9 ± 0.9 a | 9.6 ± 1.5 b | |
HQCd | 12.5 ± 1.7 b | 6.8 ± 2.3 b | 25.0 ± 9.5 a | 14.1 ± 2.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwilola, P.N.; Mukumbuta, I.; Shitumbanuma, V.; Chishala, B.H.; Uchida, Y.; Nakata, H.; Nakayama, S.; Ishizuka, M. Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments. Int. J. Environ. Res. Public Health 2020, 17, 9038. https://doi.org/10.3390/ijerph17239038
Mwilola PN, Mukumbuta I, Shitumbanuma V, Chishala BH, Uchida Y, Nakata H, Nakayama S, Ishizuka M. Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments. International Journal of Environmental Research and Public Health. 2020; 17(23):9038. https://doi.org/10.3390/ijerph17239038
Chicago/Turabian StyleMwilola, Patricia N., Ikabongo Mukumbuta, Victor Shitumbanuma, Benson H. Chishala, Yoshitaka Uchida, Hokuto Nakata, Shouta Nakayama, and Mayumi Ishizuka. 2020. "Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments" International Journal of Environmental Research and Public Health 17, no. 23: 9038. https://doi.org/10.3390/ijerph17239038
APA StyleMwilola, P. N., Mukumbuta, I., Shitumbanuma, V., Chishala, B. H., Uchida, Y., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments. International Journal of Environmental Research and Public Health, 17(23), 9038. https://doi.org/10.3390/ijerph17239038