Can Physiological and Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Military Winter Survival Training
2.2. Physical Fitness
2.3. Body Composition
2.4. Serum Hormone Concentrations
2.5. Self-Reported Psychological Measures
2.6. Statistics
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Henning, P.; Park, B.-S.; Kim, J.-S. Physiological decrements during sustained military operational stress. Mil. Med. 2011, 176, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigrang, J.A.; Carbone, E.G.; Todd, S.; Fiedler, E. Mental health attrition from Air Force basic military training. Mil. Med. 1998, 163, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxon, L.; DiPaula, B.; Fox, G.R.; Ebert, R.; Duhaime, J.; Nocera, L.; Tran, L.; Sobhani, M. Continuous Measurement of Reconnaissance Marines in Training with Custom Smartphone App and Watch: Observational Cohort Study. JMIR Mhealth Uhealth 2020, 8, e14116. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Barnes, B.R.; Alemany, J.A.; Frykman, P.N.; Shippee, R.L.; Friedl, K.E. Physiological consequences of U.S. Army Ranger training. Med. Sci. Sports Exerc. 2007, 39, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mäntysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur. J. Appl. Physiol. 2008, 102, 539–546. [Google Scholar] [CrossRef]
- Harris, W.C.; Hancock, P.A.; Morgan, C.A., III. Cognitive change in Special Forces Personnel following Stressful Survival Training. In Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting, Orlando, FL, USA, 26–30 September 2005. [Google Scholar]
- Duman, R.S.; Monteggia, L.M. A Neurotrophic Model for Stress-Related Mood Disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Farina, E.K.; Caldwell, J.; Williams, K.W.; Thompson, L.A.; Niro, P.J.; McClung, J.P. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training. Physiol. Behav. 2016, 165, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.A., 3rd; Wang, S.; Mason, J.; Southwick, S.M.; Fox, P.; Hazlett, G.; Charney, D.S.; Greenfield, G. Hormone profiles in humans experiencing military survival training. Biol. Psychiatry 2000, 47, 891–901. [Google Scholar] [CrossRef]
- Szivak, T.K.; Lee, E.C.; Saenz, C.; Flanagan, S.D.; Focht, B.C.; Volek, J.S.; Maresh, C.M.; Kraemer, W.J. Adrenal Stress and Physical Performance during Military Survival Training. Aerosp. Med. Hum. Perform. 2018, 89, 99–107. [Google Scholar] [CrossRef]
- Gottlieb, U.; Kelman, D.; Springer, S. Evaluation of Two Simple Functional Tests to Predict Attrition from Combat Service in Female Light Infantry Soldiers. Med. Sci. Monit. 2018, 24, 9334–9341. [Google Scholar] [CrossRef]
- Eid, J.; Morgan, C.A., 3rd. Dissociation, hardiness, and performance in military cadets participating in survival training. Mil. Med. 2006, 171, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sin, N.L.; Wen, J.H.; Klaiber, P.; Buxton, O.M.; Almeida, D.M. Sleep duration and Affective Reactivity to Stressors and Positive events in Daily Life. Health Psychol. 2020, 12, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Finestone, A.S.; Milgrom, C.; Yanovich, R.; Evans, R.; Constantini, N.; Moran, D.S. Evaluation of the performance of females as light infantry soldiers. Biomed. Res. Int. 2014, 2014, 572953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, E.; Sunde, T.; Kristensen, W.; Martinussen, M. Psychological measures as predictors of military training performance. J. Personal. Assess. 2003, 80, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-Efficacy—The Exercise of Control; Freeman: New York, NY, USA, 1997. [Google Scholar]
- Souza, L.A.S.D.; Torres, A.R.R.; Barbosa, G.A.; Lima, T.J.S.D.; Souza, L.E.C.D. Self-efficacy as a mediator of the relationship between subjective well-being and general health of military cadets. Cadernos de Saúde Pública 2014, 30, 2309–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartone, P.T. Hardiness protects against war-related stress in Army Reserve forces. Consult. Psychol. J. Pract. Res. 1999, 51, 72. [Google Scholar] [CrossRef]
- Bartone, P.T. Resilience Under Military Operational Stress: Can Leaders Influence Hardiness? Mil. Psychol. 2006, 18 (Suppl. S1), S131–S148. [Google Scholar] [CrossRef] [Green Version]
- Escolas, S.M.; Pitts, B.L.; Safer, M.A.; Bartone, P.T. The protective value of hardiness on military posttraumatic stress symptoms. Mil. Psychol. 2013, 25, 116–123. [Google Scholar] [CrossRef]
- Häkkinen, K.; Kallinen, M.; Izquierdo, M.; Jokelainen, K.; Lassila, H.; Mälkiä, E.; Alen, M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J. Appl. Physiol. 1998, 84, 1341–1349. [Google Scholar] [CrossRef]
- Herbert, P.; Sculthorpe, N.; Baker, J.S.; Grace, F.M. Validation of a six second cycle test for the determination of peak power output. Res. Sports Med. 2015, 23, 115–125. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Viljanen, T.; Viitasalo, J.T.; Kujala, U.M. Strength characteristics of a healthy urban adult population. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 43–47. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Cooper, K.H. A means of assessing maximal oxygen uptake. JAMA 1968, 203, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Konstabel, K.; Lönnqvist, J.E.; Walkowitz, G.; Konstabel, K.; Verkasalo, M. The ‘Short Five’ (S5): Measuring personality traits using comprehensive single items. Eur. J. Personal. 2012, 26, 13–29. [Google Scholar] [CrossRef]
- Antonovsky, A. The structure and properties of the sense of coherence scale. Soc. Sci. Med. 1993, 36, 725–733. [Google Scholar] [CrossRef]
- Leskinen, J. Salonseudulta EU-Isännäksi–Lypsykarjayrittäjät Muutosmurroksessa, Seurantatutkimus 1997–2011. Work and Human, Technical Report. Ph.D Thesis, Finnish Institute of Occupational Health, Tampere, Finland, 2004. [Google Scholar]
- Salokangas, R.K.; Poutanen, O.; Stengard, E. Screening for depression in primary care. Development and validation of the Depression Scale, a screening instrument for depression. Acta Psychiatr. Scand. 1995, 92, 10–16. [Google Scholar] [CrossRef]
- Siebold, G.L.; Kelly, D.R. Development of the Platoon Cohesion Index; Technical Report 816; US Army Research Institute for Behavioral and Social Sciences: Alexandria, VA, USA, 1988.
- Eriksson, M.; Mittelmark, M.B. The Sense of Coherence and Its Measurement. In The Handbook of Salutogenesis; Mittelmark, M.B., Sagy, S., Eriksson, M., Bauer, G.F., Pelikan, J.M., Lindström, B., Espnes, G.A., Eds.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Judge, T.A.; Erez, A.; Bono, J.E.; Thoresen, C.J. The Core Self-Evaluations Scale: Development of a measure. Pers. Psychol. 2003, 56, 303–331. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Therneau, T.M. A Package for Survival Analysis in R. R Package Version 3.1-8. New York, NY, USA, 2019. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj4mJWtibTtAhVKFqYKHSn0CicQFjAAegQIARAC&url=https%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fsurvival%2Fvignettes%2Fsurvival.pdf&usg=AOvVaw2fxLnFDufEG0EyK1Dm0eRe (accessed on 20 October 2020).
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4, 136. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Périard, J.; Rattray, B.; Pyne, D.B. Physiological factors which influence cognitive performance in military personnel. Hum. Factors 2020, 62, 93–123. [Google Scholar] [CrossRef]
- Rayson, M.; Holliman, D.; Belyavin, A. Development of physical selection procedures for the British Army. Phase 2: Relationship between physical performance tests and criterion tasks. Ergonomics 2000, 43, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The effect of strength training on performance in endurance athletes. Sports Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Tanskanen, M.M.; Kyröläinen, H.; Uusitalo, A.L.; Huovinen, J.; Nissilä, J.; Kinnunen, H.; Atalay, M.; Häkkinen, K. Serum sex hormone-binding globulin and cortisol concentrations are associated with overreaching during strenuous military training. J. Strength Cond. Res. 2011, 25, 787–797. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, D.W.; Scott, C.T.; Li, Y.; Bedno, S.A.; Han, W.; Powers, T.E. Preaccession fitness and body composition as predictors of attrition in U.S. Army recruits. Mil. Med. 2009, 7, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.N.; Young, M.D.; Crum, A.J. Stress, Mindsets, and Success in Navy SEALs Special Warfare Training. Front. Psychol. 2020, 10, 2962. [Google Scholar] [CrossRef] [Green Version]
- Booth-Kewley, S.; Larson, G.E.; Ryan, M.A.K. Predictors of Navy attrition: I. Analysis of 1-year attrition. Mil. Med. 2002, 167, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Larson, G.E.; Booth-Kewley, S.; Ryan, M.A. Predictors of Navy attrition. II. A demonstration of potential usefulness for screening. Mil. Med. 2002, 167, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Lerew, D.R.; Schmidt, N.B.; Jackson, R.J. Evaluation of psychological risk factors: Prospective prediction of psychopathology during basic training. Mil. Med. 1999, 164, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.M.; Williamson, D.A.; Alfonso, A.J.; Ryan, D.H. Psychological adjustment during Army basic training. Mil. Med. 2006, 171, 157–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, A.E.; Bernards, J.R.; Jameson, J.T.; Johnson, D.C.; Kelly, K.R. The Benefit of Mental Skills Training on Performance and Stress Response in Military Personnel. Front. Psychol. 2020, 10, 2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Completers (n = 49) | Drop Outs (n = 20) |
---|---|---|
Age (yrs.) | 19.6 ± 1.0 | 19.6 ± 0.8 |
Physical fitness | ||
12 min running test (m) | 2754 ± 196 | 2652 ± 247 |
Sit-ups (reps/min) | 43 ± 8 | 39 ± 9 |
Push-ups (reps/min) | 37 ± 12 | 33 ± 15 |
Standing long jump (cm) | 224 ± 19 | 214 ± 23 |
Maximal isometric force of the lower extremities (N) | 3230 ± 810 | 2840 ± 860 |
Maximal isometric force of the upper extremities (N) | 870 ± 210 | 800 ± 170 |
Medicine ball throw (cm) | 603 ± 78 | 592 ± 69 |
6 s maximal cycle performance (max W) | 837 ± 131 | 771 ± 132 |
Body composition | ||
Body mass index | 23.2 ± 2.6 | 22.5 ± 3.0 |
%Body fat | 13.1 ± 4.9 | 13.8 ± 6.1 |
Body mass (kg) | 75.0 ± 10.4 | 72.3 ± 11.1 |
Body height (cm) | 179.7 ± 6.7 | 179.2 ± 5.7 |
Skeletal muscle mass (kg) | 36.9 ± 4.9 | 35.1 ± 4.2 |
Fat mass (kg) | 10.0 ± 4.7 | 10.4 ± 6.2 |
Hormonal profile | ||
Testosterone (nmol/L) | 17.5 ± 6.0 | 20.1 ± 5.8 |
DHEA (nmol/L) | 8.65 ± 3.93 | 10.71 ± 4.17 |
Cortisol (nmol/L) | 439 ± 103 | 476 ± 115 |
BDNF (nmol/L) | 19.0 ± 5.5 | 18.1 ± 5.5 |
CRP (nmol/L) | 1.77 ± 3.64 | 1.73 ± 2.86 |
IGF-1 (nmol/L) | 25.2 ± 4.5 | 27.0 ± 5.2 |
SHBG (nmol/L) | 29.6 ± 11.5 | 27.1 ± 9.2 |
Psychological factors | ||
Hardiness | 2.99 ± 0.34 | 2.87 ± 0.36 |
Sense of Coherence | 4.87 ± 0.74 | 4.76 ± 0.68 |
Depression | 1.38 ± 0.36 | 1.48 ± 0.52 |
Stress | 1.91 ± 0.47 | 2.05 ± 0.54 |
Cohesion | 3.82 ± 0.38 | 3.74 ± 0.48 |
Big Five: neuroticism | −1.45 ± 0.92 | −1.35 ± 0.95 |
Big Five: extraversion | 0.96 ± 0.98 | 0.70 ± 1.00 |
Big Five: openness | 0.90 ± 0.95 | 0.60 ± 0.85 |
Big Five: agreeableness | 1.32 ± 0.80 | 1.18 ± 0.87 |
Big Five: conscientiousness | 1.48 ± 0.88 | 1.27 ± 0.76 |
Adverse childhood experiences | 30.12 ± 2.06 | 29.95 ± 2.28 |
Core self-evaluation: self-esteem | 2.38 ± 0.47 | 2.48 ± 0.42 |
Core self-evaluation: generalized self-efficacy | 2.65 ± 0.29 | 2.70 ± 0.26 |
Core self-evaluation: locus of control | 2.99 ± 0.60 | 2.93 ± 0.55 |
Core self-evaluation: neuroticism | 3.63 ± 0.86 | 3.63 ± 0.90 |
Characteristics | Beta-Coefficients + 95% CI | p-Value |
---|---|---|
Physical fitness | ||
12 min running test (m) | −0.003 (−0.006–−0.0002) | 0.047 |
Sit-ups (reps/min) | −0.09 (−0.18–−0.02) | 0.025 |
Push-ups (reps/min) | −0.03 (−0.08–0.009) | 0.139 |
Standing long jump (cm) | −0.03 (−0.05–−0.008) | 0.054 |
Maximal isometric force of the lower extremities (kg) | −0.06 (−0.01–0.0006) | 0.090 |
Maximal isometric force of the upper extremities (kg) | −0.02 (−0.05–0.006) | 0.144 |
Medicine ball throw | −0.002 (−0.01–−0.005) | 0.510 |
6 s maximal cycle performance (max W) | −0.003 (−0.008–0.001) | 0.164 |
Body composition | ||
%Body fat | 0.02 (−0.08–0.13) | 0.641 |
Body mass (kg) | −0.02 (−0.08–0.03) | 0.493 |
Body height (cm) | −0.001 (−0.09–0.08) | 0.432 |
Skeletal muscle mass (kg) | −0.07 (−0.20–0.05) | 0.256 |
Fat mass (kg) | 0.02 (−0.09–0.13) | 0.710 |
Hormonal factors | ||
Testosterone (nmol/L) | 0.07 (−0.02–0.18) | 0.133 |
DHEA (nmol/L) | 0.15 (0.01–0.31) | 0.042 |
Cortisol (nmol/L) | 0.003 (−0.002–0.008) | 0.317 |
BDNF (nmol/L) | −0.07 (−0.21–0.05) | 0.257 |
CRP (nmol/L) | −0.02 (−0.21–0.13) | 0.840 |
IGF−1 (nmol/L) | 0.07 (−0.05–0.19) | 0.241 |
SHBG (nmol/L) | −0.02 (−0.08–0.03) | 0.393 |
Psychological factors | ||
Hardiness | −1.03 (−2.83–0.57) | 0.226 |
Sense of coherence | −0.25 (−1.02–0.51) | 0.525 |
Depression | 0.43 (−0.88–1.70) | 0.496 |
Stress | 0.54 (−0.56–1.66) | 0.334 |
Cohesion | −0.49 (−1.88–0.83) | 0.471 |
Big Five: neuroticism | 0.14 (−0.45–0.72) | 0.633 |
Big Five: extraversion | −0.28 (−0.86–0.27) | 0.313 |
Big Five: openness | −0.38 (−1.01–0.22) | 0.215 |
Big Five: agreeableness | −0.49 (−1.30–0.26) | 0.204 |
Big Five: conscientiousness | −0.33 (−0.97–0.29) | 0.294 |
Adverse childhood experiences | −0.07 (−0.33–0.20) | 0.590 |
Core self-evaluation: self-esteem | 0.52 (−0.64–1.77) | 0.388 |
Core self-evaluation: generalized self-efficacy | 0.68 (−1.30–2.71) | 0.499 |
Core self-evaluation: locus of control | 0.10 (−1.08–0.84) | 0.828 |
Core self-evaluation: neuroticism | −0.02 (−0.63–0.60) | 0.954 |
Characteristics | Beta-Coefficients + 95% CI | p-Value |
---|---|---|
Physical fitness | ||
12 min running test (m) | 0.998 (0.996–1.00002) | 0.052 |
Maximal isometric force of the lower extremities (kN) | 0.0996 (0.0991–0.1001) | 0.129 |
Body composition | ||
Body height (cm) | 0.08 (−0.04–0.21) | 0.226 |
% Body fat | 0.04 (−0.07–0.16) | 0.435 |
Skeletal muscle mass (kg) | −0.14 (−0.33–0.02) | 0.103 |
Hormonal factors | ||
Cortisol (nmol/L) | 1.006 (1.0003–1.01) | 0.039 |
IGF-1 (nmol/L) | 1.09 (0.98–1.21) | 0.096 |
Psychological factors | ||
Hardiness | 0.29 (0.06–1.30) | 0.105 |
Depression | 0.10 (0.009–1.17) | 0.066 |
Stress | 2.95 (0.65–13.32) | 0.159 |
Characteristics | Beta-Coefficients + 95% CI | p-Value |
---|---|---|
12 min running test (m) | 0.997 (0.994–0.999) | 0.006 |
Cortisol (nmol/L) | 1.006 (1.001–1.011) | 0.017 |
IGF-1 (nmol/L) | 1.082 (0.994–1.177) | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaara, J.P.; Eränen, L.; Ojanen, T.; Pihlainen, K.; Nykänen, T.; Kallinen, K.; Heikkinen, R.; Kyröläinen, H. Can Physiological and Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training? Int. J. Environ. Res. Public Health 2020, 17, 9064. https://doi.org/10.3390/ijerph17239064
Vaara JP, Eränen L, Ojanen T, Pihlainen K, Nykänen T, Kallinen K, Heikkinen R, Kyröläinen H. Can Physiological and Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training? International Journal of Environmental Research and Public Health. 2020; 17(23):9064. https://doi.org/10.3390/ijerph17239064
Chicago/Turabian StyleVaara, Jani P, Liisa Eränen, Tommi Ojanen, Kai Pihlainen, Tarja Nykänen, Kari Kallinen, Risto Heikkinen, and Heikki Kyröläinen. 2020. "Can Physiological and Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training?" International Journal of Environmental Research and Public Health 17, no. 23: 9064. https://doi.org/10.3390/ijerph17239064
APA StyleVaara, J. P., Eränen, L., Ojanen, T., Pihlainen, K., Nykänen, T., Kallinen, K., Heikkinen, R., & Kyröläinen, H. (2020). Can Physiological and Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training? International Journal of Environmental Research and Public Health, 17(23), 9064. https://doi.org/10.3390/ijerph17239064