Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design
2.2. Apparatus and Task
2.3. Measures and Analysis
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Technical Scores
3.2. Cognitive Load
3.3. Intrinsec Motivation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leser, R.; Baca, A.; Uhlig, J. Effectiveness of multimedia-supported education in practical sports courses. J. Sports Sci. Med. 2001, 10, 184. [Google Scholar]
- Mohnsen, B. Using Technology in Physical Education; Bonnie’s Fitware: Cerritos, CA, USA, 2008. [Google Scholar]
- Lim, W.Y.; Koh, M. Effectiveness of learning technologies in the teaching and learning of gymnastics. Pac. Asian Educ. J. 2006, 18, 69–77. [Google Scholar]
- Papastergiou, M.; Pollatou, E.; Theofylaktou, I.; Karadimou, K. Examining the potential of web-based multimedia to support complex fine motor skill learning: An empirical study. Educ. Inform. Technol. 2014, 19, 817–839. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Zhu, C.; Zhang, C.; Meng, H. Chinese sports basketball teaching tactics training system combined with multimedia interactive model and virtual reality technology. Multimed. Tools Appl. 2019, 1–15. [Google Scholar] [CrossRef]
- Gunawan, G.; Firmansyah, D.; Widiastuti, W. Effect of interactive multimedia learning to learn skills of students sports volleyball. J. Educ. Health Sport. 2019, 9, 263–270. [Google Scholar]
- Mayer, R.E. Multimedia Learning; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Schnotz, W.; Bannert, M. Construction and interference in learning from multiple representation. Learn. Instr. 2003, 13, 141–156. [Google Scholar] [CrossRef]
- Sweller, J.; Van Merrienboer, J.J.; Paas, F.G. Cognitive architecture and instructional design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Glapa, A.; Grzesiak, J.; Laudanska-Krzeminska, I.; Chin, M.K.; Edginton, C.R.; Mok, M.M.C.; Bronikowski, M. The impact of brain breaks classroom-based physical activities on attitudes toward physical activity in polish school children in third to fifth grade. Int. J. Environ. Res. Public Health 2018, 15, 368. [Google Scholar] [CrossRef] [Green Version]
- Biljana, P.; Orce, M.; Katerina, M.P.; Snezana, J.M. Different teaching strategies and methods applied at phe classes-experiences of classrom teachers. Res. Phys. Educ. Sport Health 2020, 9, 225–232. [Google Scholar]
- Mok, M.M.C.; Chin, M.K.; Korcz, A.; Popeska, B.; Edginton, C.R.; Uzunoz, F.S.; Pasic, M. Brain Breaks® Physical Activity Solutions in the Classroom and on Attitudes toward Physical Activity: A Randomized Controlled Trial among Primary Students from Eight Countries. Int. J. Environ. Res. Public Health 2020, 17, 1666. [Google Scholar] [CrossRef] [Green Version]
- Van Gog, T.; Paas, F.; Marcus, N.; Ayres, P.; Sweller, J. The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educ. Psychol. Rev. 2009, 21, 21–30. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paas, F.; Sweller, J. An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educ. Psychol. Rev. 2012, 24, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Ayres, P.; Marcus, N.; Chan, C.; Qian, N. Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Comput. Hum. Behav. 2009, 25, 348–353. [Google Scholar] [CrossRef]
- Mayer, R.E.; Hegarty, M.; Mayer, S.; Campbell, J. When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. J. Exp. Psychol. 2005, 11, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bétrancourt, M.; Tversky, B. Effect of computer animation on users’ performance: A review/(Effet de l’animation sur les performances des utilisateurs: Une sythèse). Le Travail Hum. 2000, 63, 311. [Google Scholar]
- Hegarty, M. Mental animation: Inferring motion from static displays of mechanical systems. J. Exp. Psychol. Learn. Mem. Cogn. 1992, 18, 1084. [Google Scholar] [CrossRef]
- Tufte, E.R. Visual Explanations: Images and Quantities, Evidence and Narrative; Graphics Press: Cheshire, CT, USA, 1997. [Google Scholar]
- Hegarty, M.; Kriz, S.; Cate, C. The roles of mental animations and external animations in understanding mechanical systems. Cogn. Instr. 2003, 21, 209–249. [Google Scholar] [CrossRef]
- Khacharem, A.; Zoudji, B.; Ripoll, H. Effect of presentation format and expertise on attacking-drill memorization in soccer. J. Appl. Sport Psychol. 2013, 25, 234–248. [Google Scholar] [CrossRef]
- Lowee, R.K.; Schnotz, W.; Rasch, T. Aligning affordances of graphics with learning task requirements. Appl. Cogn. Psychol. 2010, 25, 452–459. [Google Scholar] [CrossRef]
- Boucheix, J.M.; Schneider, E. Static and animated presentations in learning dynamic mechanical systems. Learn. Instr. 2009, 19, 112–127. [Google Scholar] [CrossRef]
- Imhof, B.; Scheiter, K.; Gerjets, P. Learning about locomotion patterns from visualizations: Effects of presentation format and realism. Comput. Educ. 2011, 57, 1961–1970. [Google Scholar] [CrossRef]
- Imhof, B.; Scheiter, K.; Edelmann, J.; Gerjets, P. How temporal and spatial aspects of presenting visualizations affect learning about locomotion patterns. Learn. Instr. 2012, 22, 193–205. [Google Scholar] [CrossRef]
- Paas, F.; Van Gerven, P.W.; Wouters, P. Instructional efficiency of animation: Effects of interactivity through mental reconstruction of static key frames. Appl. Cogn. Psychol. 2007, 21, 783–793. [Google Scholar] [CrossRef]
- Khacharem, A. Top-down and bottom-up guidance in comprehension of schematic football diagrams. J. Sports Sci. 2017, 35, 1204–1210. [Google Scholar] [CrossRef]
- Paas, F.G. Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. J. Educ. Psychol. 1992, 84, 429. [Google Scholar] [CrossRef]
- Hasler, B.S.; Kersten, B.; Sweller, J. Learner control, cognitive load and instructional animation. Appl. Cogn. Psychol. 2007, 21, 713–729. [Google Scholar] [CrossRef]
- Ryan, R.M. Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. J. Personal. Soc. Psychol. 1982, 43, 450–461. [Google Scholar] [CrossRef]
- Badami, R.; VaezMousavi, M.; Wulf, G.; Namazizadeh, M. Feedback after good versus poor trials affects intrinsic motivation. Res. Quart. Exerc. Sport 2011, 82, 360–364. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Höffler, T.N.; Leutner, D. Instructional animation versus static pictures: A meta-analysis. Learn. Instr. 2007, 17, 722–738. [Google Scholar] [CrossRef]
- Wong, A.; Marcus, N.; Ayres, P.; Smith, L.; Cooper, G.A.; Paas, F.; Sweller, J. Instructional animations can be superior to statics when learning human motor skills. Comput. Hum. Behav. 2009, 25, 339–347. [Google Scholar] [CrossRef]
- Sweller, J.; Ayres, P.; Kalyuga, S. Measuring cognitive load. In Cognitive Load Theory: Explorations in the Learning Sciences, Instructional Systems and Performance Technologies; Sweller, J., Ayres, P., Kalyuga, S., Eds.; Springer: New York, NY, USA, 2011; pp. 71–85. [Google Scholar]
- Ayres, P.; Paas, F. Making instructional animations more effective: A cognitive load approach. Appl. Cogn. Psychol. 2007, 21, 695–700. [Google Scholar] [CrossRef]
- Kalyuga, S. Instructional benefits of spoken words: A review of cognitive load factors. Educ. Res. Rev. 2012, 7, 145–159. [Google Scholar] [CrossRef]
- Ayres, P.; Sweller, J. The split-attention principle in multimedia learning. Camb. Handb. Multimed. Learn. 2005, 2, 135–146. [Google Scholar]
- Münzer, S.; Seufert, T.; Brünken, R. Learning from multimedia presentations: Facilitation function of animations and spatial abilities. Learn. Individ. Differ. 2009, 19, 481–485. [Google Scholar] [CrossRef]
- Höffler, T.N. Spatial ability: Its influence on learning with visualizations—A metaanalytic review. Educ. Psychol. Rev. 2010, 22, 245–269. [Google Scholar] [CrossRef]
Phases | Criteria | Scores |
---|---|---|
Break of balance | 1-Pull forward and up the right arm of Uke | 0, 1 or 2 |
2-Pull the left back of the Judogi of Uke by bending the right arm | 0, 1 or 2 | |
3-Placement of the right arm under the armpit of Uke | 0, 1 or 2 | |
Placement | 1-Complete the body rotation | 0, 1 or 2 |
2-Foot placement (i.e., spreading, bending, on the same line) | 0, 1 or 2 | |
3-Contact between the back of Tori and the body of Uke | 0, 1 or 2 | |
Projection | 1-The liberation of the armpit of Uke by the right arm | 0, 1 or 2 |
2-Direction of the projection of Uke | 0, 1 or 2 | |
3-Maintaining balance by Tori during the projection phase | 0, 1 or 2 | |
4-Continuity of the projection movement | 0, 1 or 2 |
Static Simultaneous Permanent Pictures | Sequential Transient Pictures | Sequential Permanent Pictures | Continuous Video | |
---|---|---|---|---|
Mental Effort | 4.80 ± 1.52 *,ɞ | 4.86 ± 1.25 *,ɞ | 3.94 ± 1.35 * | 3.00 ± 1.51 |
Perceived Difficulty | 4.90 ± 1.35 *,ɞ | 4.83 ± 1.42 *,ɞ | 3.92 ± 1.23 * | 3.05 ± 1.49 |
Cognitive Load | 4.85 ± 1.39 *,ɞ | 4.84 ± 1.26 *,ɞ | 3.93 ± 1.22 * | 3.03 ± 1.42 |
Static Simultaneous Permanent Pictures | Sequential Transient Pictures | Sequential Permanent Pictures | Continuous Video | |
---|---|---|---|---|
Interest/enjoyment | 2.69 ± 1.09 *,ɞ | 2.78 ± 0.73 * | 3.40 ± 1.00 * | 4.01 ± 1.25 |
Perceived competence | 2.71 ± 1.08 *,ɞ | 2.75 ± 0.75 * | 3.37 ± 0.95 * | 3.94 ± 1.15 |
Effort/importance | 2.71 ± 1.05 *,ɞ | 2.79 ± 0.64 * | 3.39 ± 0.97 * | 4.04 ± 1.16 |
Intrinsic motivation | 8.11 ± 3.2 *,ɞ | 8.32 ± 2.04 * | 10.16 ± 2.87 * | 11.09 ± 3.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H’mida, C.; Degrenne, O.; Souissi, N.; Rekik, G.; Trabelsi, K.; Jarraya, M.; Bragazzi, N.L.; Khacharem, A. Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. Int. J. Environ. Res. Public Health 2020, 17, 9067. https://doi.org/10.3390/ijerph17239067
H’mida C, Degrenne O, Souissi N, Rekik G, Trabelsi K, Jarraya M, Bragazzi NL, Khacharem A. Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. International Journal of Environmental Research and Public Health. 2020; 17(23):9067. https://doi.org/10.3390/ijerph17239067
Chicago/Turabian StyleH’mida, Cyrine, Olivier Degrenne, Nafaa Souissi, Ghazi Rekik, Khaled Trabelsi, Mohamed Jarraya, Nicola Luigi Bragazzi, and Aïmen Khacharem. 2020. "Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load" International Journal of Environmental Research and Public Health 17, no. 23: 9067. https://doi.org/10.3390/ijerph17239067
APA StyleH’mida, C., Degrenne, O., Souissi, N., Rekik, G., Trabelsi, K., Jarraya, M., Bragazzi, N. L., & Khacharem, A. (2020). Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. International Journal of Environmental Research and Public Health, 17(23), 9067. https://doi.org/10.3390/ijerph17239067