Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Statistical Models and Discovery of Association Rules
2.2.1. Rank—frequency Analysis
2.2.2. Discovery of Association Rules
- Support measures the co-occurrence frequency of X and Y in the patient dataset, i.e., the number of patients having both X and Y divided by the total number of patients, denoted as P(X, Y).
- Confidence measures the reliability of a rule—namely, the probability of seeing Y among patients with X, denoted as P(Y|X).
- Lift measures the significance of the support P(X, Y) of a rule by calculating the ratio between the observed co-occurrence frequency P(X, Y) and the expected co-occurrence frequency ) when X and Y are independent—namely, . If the ratio is close to 1, then little information is provided by this rule. If the ratio is greater than 1, then X and Y are positively correlated; otherwise, they are negatively correlated. Overall, this method is often used to measure the interest of a rule [42].
3. Results
3.1. Patient Statistics
3.2. Network-Based Analysis
3.3. Derivation of the Association Rules
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolff, J.L.; Starfield, B.; Anderson, G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch. Intern. Med. 2002, 162, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Yancik, R.; Ries, L.A.G. Cancer and aging in America—Demographic and epidemiologic perspectives. Hematol. Oncol. Clin. N. Am. 2000, 14, 17–23. [Google Scholar] [CrossRef]
- Ritchie, C.S.; Kvale, E.; Fisch, M.J. Multimorbidity: An issue of growing importance for oncologists. J. Oncol. Pract. 2011, 7, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellemgaard, A.; Luechtenborg, M.; Iachina, M.; Jakobsen, E.; Green, A.; Krasnik, M.; Moller, H. Role of Comorbidity on Survival after Radiotherapy and Chemotherapy for Nonsurgically Treated Lung Cancer. J. Thorac. Oncol. 2015, 10, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Ogle, K.S.; Swanson, G.M.; Woods, N.; Azzouz, F. Cancer and comorbidity—Redefining chronic diseases. Cancer 2000, 88, 653–663. [Google Scholar] [CrossRef]
- Marengoni, A.; Rizzuto, D.; Wang, H.X.; Winblad, B.; Fratiglioni, L. Patterns of Chronic Multimorbidity in the Elderly Population. J. Am. Geriatr. Soc. 2009, 57, 225–230. [Google Scholar] [CrossRef]
- Griffith, L.E.; Gilsing, A.; Mangin, D.; Patterson, C.; van den Heuvel, E.; Sohel, N.; St John, P.; van den Akker, M.; Raina, P. Multimorbidity Frameworks Impact Prevalence and Relationships with Patient-Important Outcomes. J. Am. Geriatr. Soc. 2019, 67, 1632–1640. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.C.; Zheng, J.Z.; Hou, L.H.; Xue, Y.Q.; Li, M.M. Prevalence and Related Factors of Comorbidity of Chronic Diseases among Elderly in Taiyuan, China. J. Am. Geriatr. Soc. 2019, 67, S663. [Google Scholar]
- Pengpid, S.; Peltzer, K. Multimorbidity in Chronic Conditions: Public Primary Care Patients in Four Greater Mekong Countries. Int. J. Environ. Res. Public Health 2017, 14, 1019. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Rodriguez, J.; Martinez-Almazan, E. Predictors of early readmissions in elderly patients with multimorbidity admitted to an intermediate care unit. J. Am. Geriatr. Soc. 2016, 64, S67–S68. [Google Scholar]
- Pes, G.M.; Licheri, G.; Soro, S.; Longo, N.P.; Salis, R.; Tomassini, G.; Niolu, C.; Errigo, A.; Dore, M.P. Overweight: A Protective Factor against Comorbidity in the Elderly. Int. J. Environ. Res. Public Health 2019, 16, 3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, D.E.V.; Chambi, F.R.V.; Chani, E.M.M.; Craig, W.J.; Pacheco, S.O.S.; Pacheco, F.J. Risk Factors for Chronic Diseases and Multimorbidity in a Primary Care Context of Central Argentina: A Web-Based Interactive and Cross-Sectional Study. Int. J. Environ. Res. Public Health 2017, 14, 251. [Google Scholar] [CrossRef] [PubMed]
- Bynum, J.P.W.; Chang, C.H.; Austin, A.; Carmichael, D.; Meara, E. Outcomes in Older Adults with Multimorbidity Associated with Predominant Provider of Care Specialty. J. Am. Geriatr. Soc. 2017, 65, 1916–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joao Forjaz, M.; Rodriguez-Blazquez, C.; Guerrero-Fernandez de Alba, I.; Gimeno-Miguel, A.; Bliek-Bueno, K.; Prados-Torres, A.; Culig, J.; Jureviciene, E.; Maggini, M.; Maguire, P.; et al. Application of the JA-CHRODIS Integrated Multimorbidity Care Model (IMCM) to a Case Study of Diabetes and Mental Health. Int. J. Environ. Res. Public Health 2019, 16, 5151. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.; Carfi, A.; Angioletti, C.; Di Paola, A.; Navickas, R.; Dambrauskas, L.; Jureviciene, E.; Joao Forjaz, M.; Rodriguez-Blazquez, C.; Prados-Torres, A.; et al. A Methodological Approach for Implementing an Integrated Multimorbidity Care Model: Results from the Pre-Implementation Stage of Joint Action CHRODIS-PLUS. Int. J. Environ. Res. Public Health 2019, 16, 5044. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Mariotto, A.B.; Mann, B.S.; Klabunde, C.N.; Feuer, E.J. Assessing non-cancer-related health status of US cancer patients: Other-cause survival and comorbidity prevalence. Am. J. Epidemiol. 2013, 178, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Huang, J.S.; Yen, C.L.; Wang, C.H.; Lai, C.H.; Wu, T.H.; Lan, Y.J.; Chang, P.H.; Yeh, K.Y. The Charlson Comorbidity Index is an Independent Prognostic Factor for Treatment-Naive Hepatocellular Carcinoma Patients with Extrahepatic Metastases. Hepato-Gastroenterology 2015, 62, 1011–1015. [Google Scholar]
- Iachina, M.; Green, A.; Jakobsen, E. The direct and indirect impact of comorbidity on the survival of patients with non-small cell lung cancer: A combination of survival, staging and resection models with missing measurements in covariates. BMJ Open 2014, 4, e003846. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.L.; McMurry, T.L.; Stukenborg, G.J.; Francescatti, A.B.; Amato-Martz, C.; Schumacher, J.R.; Chang, G.J.; Greenberg, C.C.; Winchester, D.P.; McKellar, D.P.; et al. Impact of age and comorbidity on treatment of non-small cell lung cancer recurrence following complete resection: A nationally representative cohort study. Lung Cancer 2016, 102, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.D.; Stechuchak, K.M.; Zullig, L.L.; Provenzale, D.; Kelley, M.J. Influence of comorbidity on racial differences in receipt of surgery among US veterans with early-stage non-small-cell lung cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.M.; Wang, W.; Wu, F.Y.; Jiang, Y.Y.; Ma, L.L.; Feng, J. Comorbidity in Older Patients Hospitalized with Cancer in Northeast China based on Hospital Discharge Data. Int. J. Environ. Res. Public Health 2020, 17, 8028. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Kerby, D.S.; Hennessy, C.H. Patterns and impact of comorbidity and multimorbidity among community-resident American Indian elders. Gerontologist 2003, 43, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbrugge, L.M.; Lepkowski, J.M.; Imanaka, Y. Comorbidity and its impact on disability. Milbank Q. 1989, 67, 450–484. [Google Scholar] [CrossRef] [PubMed]
- Goldstein-Piekarski, A.N.; Williams, L.M.; Humphreys, K. A trans-diagnostic review of anxiety disorder comorbidity and the impact of multiple exclusion criteria on studying clinical outcomes in anxiety disorders. Transl. Psychiatry 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Rendas-Baum, R. Health state utility for comorbid conditions: evaluating the impact of different estimation methods. Value Health 2018, 21, S322. [Google Scholar] [CrossRef] [Green Version]
- Rief, W.; Nanke, A.; Emmerich, J.; Bender, A.; Zech, T. Causal illness attributions in somatoforin disorders—Associations with comorbidity and illness behavior. J. Psychosom. Res. 2004, 57, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Schiotz, M.L.; Stockmarr, A.; Host, D.; Glumer, C.; Frolich, A. Social disparities in the prevalence of multimorbidity—A register-based population study. BMC Public Health 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.K.; Holden, L.; Sun, J. Identifying comorbidity patterns of health conditions via cluster analysis of pairwise concordance statistics. Stat. Med. 2012, 31, 3393–3405. [Google Scholar] [CrossRef]
- Nicholson, K.; Bauer, M.; Terry, A.; Fortin, M.; Williamson, T.; Thind, A. The Multimorbidity Cluster Analysis Tool: Identifying Combinations and Permutations of Multiple Chronic Diseases Using a Record-Level Computational Analysis. J. Innov. Health Inform. 2017, 24, 962. [Google Scholar] [CrossRef] [Green Version]
- Pintelas, E.G.; Kotsilieris, T.; Livieris, I.E.; Pintelas, P. A review of machine learning prediction methods for anxiety disorders. In Proceedings of the 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, Thessaloniki, Greece, 20–22 June 2018; pp. 8–15. [Google Scholar] [CrossRef]
- Zandvakili, A.; Philip, N.S.; Jones, S.R.; Tyrka, A.R.; Greenberg, B.D.; Carpenter, L.L. Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: A resting state electroencephalography study. J. Affect. Disord. 2019, 252, 47–54. [Google Scholar] [CrossRef]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, Washington, DC, USA, 26–28 May 1993; pp. 207–216. [Google Scholar] [CrossRef]
- Cheng, C.W.; Chanani, N.; Venugopalan, J.; Maher, K.; Wang, M.D. icuARM-An ICU Clinical Decision Support System Using Association Rule Mining. IEEE J. Transl. Eng. Health Med. 2013, 1, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Nahar, J.; Imam, T.; Tickle, K.S.; Chen, Y.P.P. Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 2013, 40, 1086–1093. [Google Scholar] [CrossRef]
- Pattanaprateep, O.; McEvoy, M.; Attia, J.; Thakkinstian, A. Evaluation of rational nonsteroidal anti-inflammatory drugs and gastro-protective agents use; association rule data mining using outpatient prescription patterns. BMC Med. Inform. Decis. Mak. 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.M.; Chiu, H.W. Comorbidity study of ADHD: Applying association rule mining (ARM) to National Health Insurance Database of Taiwan. Int. J. Med. Inform. 2009, 78, E75–E83. [Google Scholar] [CrossRef]
- Kim, H.S.; Shin, A.M.; Kim, M.K.; Kim, Y.N. Comorbidity Study on Type 2 Diabetes Mellitus Using Data Mining. Korean J. Intern. Med. 2012, 27, 197–202. [Google Scholar] [CrossRef]
- Wang, C.H.; Lee, T.Y.; Hui, K.C.; Chung, M.H. Mental disorders and medical comorbidities: Association rule mining approach. Perspect. Psychiatr. Care 2019, 55, 517–526. [Google Scholar] [CrossRef]
- Chen, W.; Sun, K.; Zheng, R.; Zeng, H.; Zhang, S.; Xia, C.; Yang, Z.; Li, H.; Zou, X.; He, J. Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- The Measures for the Administration of the Hospital Grade; National Health Commission of The People’s Republic of China: Beijing, China, 1989.
- Sanders, R. The pareto principle: Its use and abuse. J. Serv. Mark. 1987, 1, 37–40. [Google Scholar] [CrossRef]
- McNicholas, P.D.; Murphy, T.B.; O’Regan, M. Standardising the lift of an association rule. Comput. Stat. Data Anal. 2008, 52, 4712–4721. [Google Scholar] [CrossRef]
- Yao, S.S.; Cao, G.Y.; Han, L.; Chen, Z.S.; Huang, Z.T.; Gong, P.; Hu, Y.; Xu, B. Prevalence and Patterns of Multimorbidity in a Nationally Representative Sample of Older Chinese: Results From the China Health and Retirement Longitudinal Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1974–1980. [Google Scholar] [CrossRef]
- Hu, X.; Huang, J.; Lv, Y.; Li, G.; Peng, X. Status of prevalence study on multimorbidity of chronic disease in China: Systematic review. Geriatr. Gerontol. Int. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Poling, J.; Kelly, L.; Chan, C.; Fisman, D.; Ulanova, M. Hospital admission for community-acquired pneumonia in a First Nations population. Can. J. Rural Med. Off. J. Soc. Rural Physicians Can. 2014, 19, 135–141. [Google Scholar]
- Cangemi, R.; Calvieri, C.; Falcone, M.; Bucci, T.; Bertazzoni, G.; Scarpellini, M.G.; Barilla, F.; Taliani, G.; Violi, F. Relation of Cardiac Complications in the Early Phase of Community-Acquired Pneumonia to Long-Term Mortality and Cardiovascular Events. Am. J. Cardiol. 2015, 116, 647–651. [Google Scholar] [CrossRef]
- Islam, K.M.M.; Jiang, X.; Anggondowati, T.; Lin, G.; Ganti, A.K. Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Al-Kindi, S.G.; Oliveira, G.H. Prevalence of Preexisting Cardiovascular Disease in Patients with Different Types of Cancer: The Unmet Need for Onco-Cardiology. Mayo Clin. Proc. 2016, 91, 81–83. [Google Scholar] [CrossRef]
- Iachina, M.; Jakobsen, E.; Moller, H.; Luechtenborg, M.; Mellemgaard, A.; Krasnik, M.; Green, A. The Effect of Different Comorbidities on Survival of Non-small Cells Lung Cancer Patients. Lung 2015, 193, 291–297. [Google Scholar] [CrossRef]
- Wei, Y.F.; Wu, J.T.; Chen, J.Y.; Hsu, C.K.; Lee, H.S.; Hsu, Y.C. Chronic Kidney Disease Is Associated With Mortality Risk In Patients With Lung Cancer: A Nationwide Population-Based Cohort Study. Am. J. Respir. Crit. Care Med. 2016, 193. [Google Scholar] [CrossRef]
- Wei, Y.F.; Chen, J.Y.; Lee, H.S.; Wu, J.T.; Hsu, C.K.; Hsu, Y.C. Association of chronic kidney disease with mortality risk in patients with lung cancer: A nationwide Taiwan population-based cohort study. BMJ Open 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liao, H.; Ye, W.; Li, X.; Zhang, J.; Bu, J. Fatty liver is a risk factor for liver metastasis in Chinese patients with non-small cell lung cancer. Peerj 2019, 7. [Google Scholar] [CrossRef]
- Dominguez-Ventura, A.; Allen, M.S.; Cassivi, S.D.; Nichols, F.C., III; Deschamps, C.; Pairolero, P.C. Lung cancer in octogenarians: Factors affecting morbidity and mortality after pulmonary resection. Ann. Thorac. Surg. 2006, 82, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, J.; Berry, M.; Arbeev, K.; Lyerly, H.K.; Yashin, A.; Akushevich, I. Cardiovascular comorbidities and survival of lung cancer patients: Medicare data based analysis. Lung Cancer 2015, 88, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Shukuya, T.; Mori, K.; Kanemaru, R.; Honma, Y.; Nanjo, Y.; Muraki, K.; Shibayama, R.; Koyama, R.; Shimada, N.; et al. Cerebral infarction in advanced non-small cell lung cancer: A case control study. BMC Cancer 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Han, Y.; Zhou, Y. Research progress of cancer related ischemic stroke. Chin. J. Cerebrovasc. Dis. 2018, 15, 206–211. [Google Scholar]
- Mancuso, A.; Migliorino, M.; De Santis, S.; Saponiero, A.; De Marinis, F. Correlation between anemia and functional/cognitive capacity in elderly lung cancer patients treated with chemotherapy. Ann. Oncol. 2006, 17, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Balducci, L. Anemia, fatigue and aging. Transfus. Clin. Biol. 2010, 17, 375–381. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.J.; Prybylowski, A.C. Anemia in the Patient with Chronic Lung Disease. In Management of Anemia: A Comprehensive Guide for Clinicians; Provenzano, R., Lerma, E.V., Szczech, L., Eds.; Springer: New York, NY, USA, 2018; pp. 143–155. [Google Scholar] [CrossRef]
- Li, Y.N.; Zhang, L.; Li, X.L.; Cui, D.J.; Zheng, H.D.; Yang, S.Y.; Yang, W.L. Glycoprotein nonmetastatic B as a prognostic indicator in small cell lung cancer. APMIS 2014, 122, 140–146. [Google Scholar] [CrossRef]
- Wang, L.H.; Yang, J.Y.; Yang, S.N.; Li, Y.; Ping, G.F.; Hou, Y.; Cui, W.; Wang, Z.Z.; Xiao, W.; Wu, C.F. Suppression of NF-κB signaling and P-glycoprotein function by gambogic acid Synergistically Potentiates Adriamycin -induced Apoptosis in Lung Cancer. Curr. Cancer Drug Targets 2014, 14, 91–103. [Google Scholar] [CrossRef]
Characteristics | N | Percentage (%) |
---|---|---|
Total | 1510 | 100 |
Age(years) | ||
65–74 | 1124 | 74.4 |
75–84 | 329 | 21.8 |
85 + | 57 | 3.8 |
Gender | ||
Male | 909 | 60.2 |
Female | 601 | 39.8 |
Nationality | ||
Han | 1416 | 93.8 |
Korean | 68 | 4.5 |
Other | 25 | 1.7 |
Occupation | ||
Farmers | 246 | 16.3 |
Retired | 337 | 22.3 |
Unemployed | 84 | 5.6 |
Workers | 55 | 3.6 |
Staff | 23 | 1.5 |
Other | 33 | 2.2 |
Unspecified | 732 | 48.5 |
Marital status | ||
Unmarried | 9 | 0.6 |
Married | 1375 | 91.0 |
Death of a spouse | 59 | 3.8 |
Divorce | 11 | 0.7 |
Other | 56 | 3.7 |
No. of comorbidities | ||
0 | 339 | 22.5 |
1 | 230 | 15.2 |
2 | 262 | 17.3 |
3 | 203 | 13.5 |
>3 | 496 | 31.5 |
Disease | All Cases (n) | Single Comorbidity (%) | Multiple Comorbidities (%) |
---|---|---|---|
Pneumonia | 299 | 11.7 | 88.3 |
Cerebral infarction | 230 | 10.9 | 89.1 |
Hypertension | 202 | 8.4 | 91.6 |
Pleural conditions | 174 | 11.5 | 88.5 |
Heart failure | 112 | 0.0 | 100.0 |
Atherosclerotic heart disease | 102 | 3.9 | 96.1 |
Disorders of glycoprotein metabolism | 98 | 1.0 | 99.0 |
Type 2 diabetes mellitus | 93 | 10.8 | 89.2 |
Emphysema | 90 | 4.4 | 95.6 |
Cardiac arrhythmias | 70 | 1.4 | 98.6 |
Chronic ischemic heart disease | 69 | 0.0 | 100.0 |
Pericardium diseases | 65 | 10.8 | 89.2 |
Cyst of kidney | 65 | 1.5 | 98.5 |
Pulmonary collapse | 62 | 4.8 | 95.2 |
Anemia | 59 | 3.4 | 96.6 |
Respiratory failure | 51 | 7.8 | 92.2 |
Hypokalemia | 42 | 0.0 | 100.0 |
Chronic obstructive pulmonary disease | 41 | 7.3 | 92.7 |
Cholelithiasis | 41 | 2.4 | 97.6 |
Hyponatremia | 36 | 5.6 | 94.4 |
Fatty liver | 30 | 0.0 | 100.0 |
Thyroid nodule | 29 | 3.4 | 96.6 |
Angina pectoris | 29 | 0.0 | 100.0 |
Ischemic cardiomyopathy | 28 | 3.6 | 96.4 |
Hyperplasia of the prostate | 28 | 3.6 | 96.4 |
Disorders of calcium metabolism | 27 | 0.0 | 100.0 |
Atrial fibrillation and flutter | 27 | 3.7 | 96.3 |
Degenerative diseases of the nervous system | 24 | 0.0 | 100.0 |
Interstitial pulmonary diseases | 22 | 13.6 | 86.4 |
Chronic sinusitis | 21 | 4.8 | 95.2 |
Calculus of the kidney | 21 | 0.0 | 100.0 |
No. | Rules | Sup | Con | Lift | ||
---|---|---|---|---|---|---|
1 | (Degenerative diseases of the nervous system) | => | (Cerebral infarction) | 0.02 | 0.71 | 2.60 |
2 | (Disorders of calcium metabolism) | => | (Disorders of glycoprotein metabolism) | 0.02 | 0.56 | 4.78 |
3 | (Ischemic cardiomyopathy) | => | (Heart failure) | 0.02 | 0.61 | 4.58 |
4 | (Angina pectoris) | => | (Atherosclerotic heart disease) | 0.02 | 0.55 | 4.57 |
5 | (Angina pectoris) | => | (Heart failure) | 0.02 | 0.69 | 5.20 |
6 | (Anemias) | => | (Disorders of glycoprotein metabolism) | 0.04 | 0.53 | 4.53 |
7 | (Chronic ischemic heart disease) | => | (Heart failure) | 0.05 | 0.62 | 4.70 |
8 | (Atherosclerotic heart disease) | => | (Heart failure) | 0.06 * | 0.51 | 3.84 |
9 | (Atherosclerotic heart disease, Ischemic cardiomyopathy) | => | (Heart failure) | 0.01 | 0.92 | 6.96 |
10 | (Ischemic cardiomyopathy, Heart failure) | => | (Atherosclerotic heart disease) | 0.01 | 0.71 | 5.84 |
11 | (Ischemic cardiomyopathy, Heart failure) | => | (Hypertension) | 0.01 | 0.59 | 2.46 |
12 | (Hypertension, Ischemic cardiomyopathy) | => | (Heart failure) | 0.01 | 0.83 | 6.28 |
13 | (Anemias, Hyponatremia) | => | (Disorders of glycoprotein metabolism) | 0.01 | 0.60 | 5.17 |
14 | (Disorders of glycoprotein metabolism, Hyponatremia) | => | (Anemias) | 0.01 | 0.60 | 8.58 |
15 | (Angina pectoris, Chronic ischemic heart disease) | => | (Pneumonia) | 0.01 | 0.90 | 2.54 |
16 | (Angina pectoris, Pneumonia) | => | (Chronic ischemic heart disease) | 0.01 | 0.53 | 6.48 |
17 | (Angina pectoris, Atherosclerotic heart disease) | => | (Heart failure) | 0.01 | 0.69 | 5.18 |
18 | (Angina pectoris, Heart failure) | => | (Atherosclerotic heart disease) | 0.01 | 0.55 | 4.55 |
19 | (Hypertension, Angina pectoris) | => | (Heart failure) | 0.01 | 0.82 | 6.17 |
20 | (Angina pectoris, Pneumonia) | => | (Heart failure) | 0.01 | 0.65 | 4.88 |
21 | (Anemias, Hypokalemia) | => | (Disorders of glycoprotein metabolism) | 0.01 | 0.69 | 5.92 |
22 | (Disorders of glycoprotein metabolism, Hypokalemia) | => | (Anemias) | 0.01 | 0.58 | 8.28 |
23 | (Hypokalemia, Pleural conditions) | => | (Disorders of glycoprotein metabolism) | 0.01 | 0.64 | 5.54 |
24 | (Anemias, Pleural conditions) | => | (Disorders of glycoprotein metabolism) | 0.01 | 0.56 | 4.84 |
25 | (Pericardium diseases, Pneumonia) | => | (Pleural conditions) | 0.02 | 0.52 | 2.51 |
26 | (Atherosclerotic heart disease, Cardiac arrhythmias) | => | (Heart failure) | 0.02 | 0.67 | 5.02 |
27 | (Cardiac arrhythmias, Heart failure) | => | (Atherosclerotic heart disease) | 0.02 | 0.58 | 4.83 |
28 | (Type 2 diabetes mellitus, Chronic ischemic heart disease) | => | (Heart failure) | 0.01 | 0.73 | 5.53 |
29 | (Type 2 diabetes mellitus, Heart failure) | => | (Chronic ischemic heart disease) | 0.01 | 0.52 | 6.41 |
30 | (Chronic ischemic heart disease, Pleural conditions) | => | (Heart failure) | 0.01 | 0.59 | 4.43 |
31 | (Hypertension, Chronic ischemic heart disease) | => | (Heart failure) | 0.02 | 0.67 | 5.02 |
32 | (Chronic ischemic heart disease, Cerebral infarction) | => | (Heart failure) | 0.01 | 0.50 | 3.77 |
33 | (Chronic ischemic heart disease, Pneumonia) | => | (Heart failure) | 0.02 | 0.53 | 4.00 |
34 | (Heart failure, Pneumonia) | => | (Chronic ischemic heart disease) | 0.02 | 0.55 | 6.71 |
35 | (Type 2 diabetes mellitus, Atherosclerotic heart disease) | => | (Heart failure) | 0.01 | 0.53 | 3.99 |
36 | (Type 2 diabetes mellitus, Heart failure) | => | (Hypertension) | 0.02 | 0.62 | 2.59 |
37 | (Atherosclerotic heart disease, Pleural conditions) | => | (Heart failure) | 0.02 | 0.59 | 4.45 |
38 | (Hypertension, Atherosclerotic heart disease) | => | (Heart failure) | 0.03 | 0.67 | 5.02 |
39 | (Hypertension, Heart failure) | => | (Atherosclerotic heart disease) | 0.03 | 0.50 | 4.14 |
40 | (Atherosclerotic heart disease, Cerebral infarction) | => | (Heart failure) | 0.02 | 0.50 | 3.77 |
41 | (Heart failure, Cerebral infarction) | => | (Atherosclerotic heart disease) | 0.02 | 0.58 | 4.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Mu, X.-m.; Ma, L.-l.; Wang, W. Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records. Int. J. Environ. Res. Public Health 2020, 17, 9119. https://doi.org/10.3390/ijerph17239119
Feng J, Mu X-m, Ma L-l, Wang W. Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records. International Journal of Environmental Research and Public Health. 2020; 17(23):9119. https://doi.org/10.3390/ijerph17239119
Chicago/Turabian StyleFeng, Jia, Xiao-min Mu, Ling-ling Ma, and Wei Wang. 2020. "Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records" International Journal of Environmental Research and Public Health 17, no. 23: 9119. https://doi.org/10.3390/ijerph17239119
APA StyleFeng, J., Mu, X. -m., Ma, L. -l., & Wang, W. (2020). Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records. International Journal of Environmental Research and Public Health, 17(23), 9119. https://doi.org/10.3390/ijerph17239119