Anthropometric and Biochemical Parameters in Relation to Dietary Habits as Early Indicator of Cardiovascular Impairment in Young Adult Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. Laboratory Testing, Dietary Habits, and Anthropometric Measurements
2.4. Statistical Analysis
3. Results
3.1. General and Biochemical Characteristics of Study Population
3.2. Lipid Profile of Study Population
3.3. Comparison of the Students Based on Lipid Profile
3.4. Dietary Habits of Study Population
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibney, J.M.; Lanham-New, S.A.; Cassidy, A.; Vorster, H.H. Introduction to Human Nutrition, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Du Plessis, K. Diet and nutrition: A literature review of factors influencing blue-collar apprentices. In Apprentices—Young People in Transition; Incolink & Australian Clearinghouse for Youth Studies: Melbourne, Australia, 2011. [Google Scholar]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Castell, G.S.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-h dietary recall method. Nutr. Hosp. 2015, 31, 46–48. [Google Scholar]
- Yunsheng, M.A.; Olendzki, B.C.; Pagoto, S.L.; Hurley, T.G.; Magner, R.P.; Ockene, I.S.; Schneider, K.L.; Merriam, P.A.; Hebert, J.R. Number of 24-Hour Diet Recalls Needed to Estimate Energy Intake. Am. Epidemiol. 2009, 19, 553–559. [Google Scholar]
- Altemani, A. Prevalence of Diabetes Mellitus, Hypertension and Hyperlipidemia among Students and Employees in University of Tabuk, Saudi Arabia. Eur. Sci. J. ESJ 2016, 12, 67–82. [Google Scholar] [CrossRef]
- Lanoye, A.; Gorin, A.A.; LaRose, J.G. Young Adults’ Attitudes and Perceptions of Obesity and Weight Management: Implications for Treatment Development. Curr. Obes. Rep. 2016, 5, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, A.T.; Daviglus, M.L.; Chan, C.; Kiefe, C.I.; Jacobs, D.R., Jr.; Liu, K. Relationship of Body Mass Index in Young Adulthood and Health-Related Quality of Life Two Decades Later: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Int. J. Obes. 2011, 35, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Wade, K.H.; Chiesa, S.T.; Hughes, A.D.; Chaturvedi, N.; Charakida, M.; Rapala, A.; Muthurangu, V.; Khan, T.; Finer, N.; Sattar, N.; et al. Assessing the Casual Role of Body Mass Index on Cardiovascular Health in Young Adults: Mendelian Randomization and Recall-by- Genotype Analyses. Circulation 2018, 138, 2187–2201. [Google Scholar] [CrossRef]
- Lupi, S.; Bagordo, F.; Stefanati, A.; Grassi, T.; Piccinni, L.; Bergamini, M.; De Donno, A. Assessment of lifestyle and eating habits among undergraduate students in northern Italy. Ann. dell’Istituto Super. di Sanità 2015, 51, 154–161. [Google Scholar]
- Cavka, A.; Cosic, A.; Grizelj, I.; Koller, A.; Jelaković, B.; Drenjančević, I.; Lombard, J.; Phillips, S. Effects of AT1 Receptor Blockade on Plasma Thromboxane A2(TXA2) Level and Skin Microcirculation in Young Healthy Women on Low Salt Diet. Kidney Blood Press. Res. 2013, 37, 432–442. [Google Scholar] [CrossRef]
- Cavka, A.; Jukic, I.; Ali, M.; Goslawski, M.; Bian, J.-T.; Wang, E.; Drenjancevic, I.; Phillips, S.A. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure. J. Hypertens. 2016, 34, 676–684. [Google Scholar] [CrossRef]
- Jelinić, J.D.; Pucarin-Cvetković, J.; Nola, I.A.; Senta, A.; Milošević, M.; Kern, J. Regional Differences in Dietary Habits of Adult Croatian Population. Coll. Antropol. 2009, 33, 31–34. [Google Scholar] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacatusu, C.M.; Grigorescu, E.D.; Floria, M.; Onofriescu, A.; Mihai, B.M. The Mediterranean Diet: From an Environment-Driven Food Culture to an Emerging Medical Prescription. Int. J. Environ. Res. Public Health 2019, 16, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franquesa, M.; Pujol-Busquets, G.; Garcia-Fernandez, E.; Rico, L.; Shamirian-Pulido, L.; Aguilar-Martinez, A.; Medina, F.X.; Serra-Majem, L.; Bach-Faig, A. Mediterranean Diet and Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical Questions. Nutrition 2019, 11, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzales, M.A.; Gea, A.; Ruiz-Canela, M. Mediterranean Diet and Cardiovascular Health: A Critical Review. Cir. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Boskou, D. Mediterranean Diet Food: Strategies to Preserve a Healthy Tradition. J. Exp. Food Chem. 2015, 1, 1–4. [Google Scholar] [CrossRef]
- Missoni, S. Nutritional habits of Croatian Island populations--recent insights. Coll. Antropol. 2012, 36, 1139–1142. [Google Scholar]
- Satalić, Z.; Barić, I.C.; Keser, I. Diet quality in Croatian university students: Energy, macronutrient and micronutrient intakes according to gender. Int. J. Food Sci. Nutr. 2007, 58, 398–410. [Google Scholar] [CrossRef]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018. [Google Scholar]
- Schröder, H.; Covas, M.I.; Marrugat, J.; Vila, J.; Pena, A.; Alcántara, M.; Masiá, R. Use of a three-day estimated food record, a 72-h recall and a food-frequency questionnaire for dietary assessment in Mediterranean Spanish population. Clin. Nutr. 2001, 20, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Kristal, A.R.; Peters, U.; Potter, J.D. Is It Time to Abandon the Food Frequency Questionnaire? Cancer Epidemiol. Biomark. Prev. 2005, 14, 2826–2828. [Google Scholar] [CrossRef] [Green Version]
- Barić, I.C.; Šatalić, Z.; Lukešić, Ž. Nutritive value of meals, dietary habits and nutritive status in Croatian university students according to gender. Int. Food Sci. Nutr. 2003, 54, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Krešić, G.; Jovanović, G.K.; Žeželj, S.P.; Cvijanović, O.; Ivezić, G. The Effect of Nutrition Knowledge on Dietary Intake among Croatian University Students. Coll. Antropol. 2009, 33, 1047–1056. [Google Scholar] [PubMed]
- World Health Organization. 2018 Healthy Diet, Factsheet No 394; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- World Health Organization. Food Based Dietary Guidelines in the WHO European Region. Nutrition and Security Programme; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Arca, M.; Borghi, C.; Pontremoli, R.; De Ferrari, G.M.; Colivicchi, F.; Desideri, G.; Temporelli, P.L. Hypertrygliceridemia and omega-3 fatty acids: Their often overlooked role in cardiovascular disease prevention. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupin, M.; Kibel, A.; Stupin, A.; Selthofer-Relatić, K.; Matić, A.; Mihalj, M.; Mihaljević, Z.; Jukić, I.; Drenjančević, I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front. Physiol. 2019, 10, 1129. [Google Scholar]
- Stupin, A.; Rasic, L.; Matic, A.; Stupin, M.; Kralik, Z.; Kralik, G.; Grčević, M.; Drenjančević, I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl. Physiol. Nutr. Metab. 2018, 43, 988–995. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Mullie, P.; Godderis, L.; Clarys, P. Determinants and nutritional implications associated with low-fat food consumption. Appetite 2012, 58, 34–38. [Google Scholar] [CrossRef]
- Bagordo, F.; Grassi, T.; Serio, F.; Idolo, A.; De Donno, A. Dietary habits and health among university students living at or away from home in southern Italy. J. Food Nutr. Res. 2013, 52, 164–171. [Google Scholar]
- Sogari, G.; Velez-Argumedo, C.; Gomez, M.I.; Mora, C. College Students and Eating Habits: A Study Using An Ecological Model for Healthy Behaviour. Nutrients 2018, 10, 1823. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Brug, J. Determinants of healthy eating: Motivation, abilities and environmental opportunities. Fam. Pract. 2008, 25, i50–i55. [Google Scholar] [CrossRef]
- Yahia, N.; Wang, D.; Rapley, M.; Dey, R. Assessment of weight status, dietary habits and beliefs, physical activity and nutritional knowledge among university students. Perspect. Public Health 2016, 136, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Davy, S.R.; Benes, B.A.; Driskell, J.A. Sex Differences in Dieting Trends, Eating Habitsand Nutrition Beliefs of a Group of Midwestern College Students. J. Am. Diet. Assoc. 2006, 106, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Ganasegeran, K.; Al-Dubai, S.A.R.; Qureshi, A.M.; Al-Abed, A.A.A.; Rizal, A.M.; Aljunid, S.M. Social and psychological factors affecting eating habits among university students in a Malaysian medical school: A cross- sectional study. Nutr. J. 2012, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahia, N.; Achkar, A.; Abdallah, A.; Rizk, S. Eating habits among Lebanese university students. Nutr. J. 2008, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamaki, R.; Toyama, K.; Amamoto, R.; Liu, C.J.; Shinfuku, N. Nutritional knowledge, food habits and health attitude of Chinese university students—A cross sectional study. Nutr. J. 2005, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.J.; Jian, D.Y.; Lin, M.W.; Zhao, J.Z.; Ho, L.T.; Juan, C.J. Evidence in Obese Children: Contribution of Hyperlipidemia, Obesity-Inflammation, and Insulin Sensitivity. PLoS ONE 2015, 10, e0125935. [Google Scholar] [CrossRef] [PubMed]
- Nouh, F.; Omar, M.; Younis, M. Risk Factors and Management of Hyperlipidemia. AJCR 2019, 2, 1–10. [Google Scholar]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care Clin. Off. Pract. 2013, 40, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Al-Duais, M.; Al-Awthan, Y.S. Prevalence of dysplipidemia among students of Yemeni University. J. Taibah Univ. Med. Sci. 2019, 14, 163–171. [Google Scholar]
- Tsai, M.-C.; Lee, C.-C.; Liu, S.-C.; Tseng, P.-J.; Chien, K.-L. Combined healthy lifestyle factors are more beneficial in reducing cardiovascular disease in younger adults: A meta-analysis of prospective cohort studies. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Pletcher, M.J.; Bibbins-Domingo, K.; Liu, K.; Sidney, S.; Lin, F.; Vittinghoff, E.; Hulley, S.B. Non-Optimal Lipids Commonly Present in Young Adults and Coronary Calcium Later in Life: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Ann. Intern. Med. 2010, 153, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Vittinghoff, E.; Pletcher, M.J.; Allen, N.B.; Al Hazzouri, A.Z.; Yaffe, K.; Balte, P.P.; Alonso, A.; Newman, A.B.; Ives, D.G.; et al. Associations of Blood Pressure and Cholesterol Levels During Young Adulthood With Later Cardiovascular Events. J. Am. Coll. Cardiol. 2019, 74, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Igl, W.; Eldin, A.K.; Johansson, A.; Liebisch, G.; Gnewuch, C.; Schmitz, G.; Gyllensten, U. Animal source food intake and association with blood cholesterol, glyserophospholipids and sphingolipids in a northern Swedish population. Int. J. Circumpolar Health 2013, 72, 21162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlsson, L. Dairy products and plasma cholesterol levels. Food Nutr. Res. 2010, 54, 5124. [Google Scholar] [CrossRef] [Green Version]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to Be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Nwaiwu, O.; Ibe, B.C. Relationship between Serum Cholesterol and body mass index in Nigeria schoolchildren aged 2–15 years. J. Trop. Pediatr. 2015, 61, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Laclaustra, M.; Garcia, E.L.; Civeira, F.; Garcia-Esquinas, E.; Graciani, A.; Guallar-Castillon, P.; Banegas, J.R.; Rodriguez-Artalejo, F. LDL Cholesterol Rises with BMI Only in Lean Individuals: Cross-sectional U.S. and Spanish Representative Data. Diabetes Care 2018, 41, 2195–2201. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. [Google Scholar] [CrossRef]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Munter, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Dietz, W.H. Obesity and Excessive Weight Gain in Young Adults: New Targets for Prevention. JAMA 2017, 318, 241–242. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, M.-K.; Hwang, S.H.; Ahn, Y.; Shim, J.E.; Kim, D.H. Relative validities of 3-day food records and the food frequency questionnaire. Nutr. Res. Pract. 2010, 4, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Avila, M.; Romieu, I.; Parra, S.; Hernández-Avila, J.; Madrigal, H.; Willett, W. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 1998, 40, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Toumilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-K.; Chiu, H.-F.; Wang, C.K. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct. 2019, 10, 2313–2329. [Google Scholar]
- Hasler, C.M. Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [Green Version]
- Maksan, M.T.; Marija, C.; Ida, R. Functional Foods and the Young. J. Food Prod. Mark. 2014, 20, 441–451. [Google Scholar]
- Mihalj, M.; Stupin, A.; Kolobarić, N.; Šušnjara, P.; Kolar, L.; Mihaljević, Z.; Matić, A.; Stupin, M.; Jukić, I.; Kralik, Z.; et al. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals—Clinical Trial. Int. J. Mol. Sci. 2020, 21, 4149. [Google Scholar] [CrossRef]
Parameter | All Participants | Women | Men | p | Native | Non-Native | p |
---|---|---|---|---|---|---|---|
n | 37 | 19 | 18 | - | 22 | 15 | - |
Age (years) | 23.9 ± 2.4 | 24.4 ± 2.3 | 23.4 ± 2.5 | 0.315 | 25 ± 2.3 | 22.2 ± 1.3 | 0.0005 * |
Weight (kg) | 72.7 ± 13.2 | 63.21 ± 8.85 | 82.78 ± 8.74 | <0.0001 * | 73.27 ± 12.45 | 71.93 ± 14.58 | 0.777 |
Height (m) | 1.75 ± 0.09 | 1.68 ± 0.06 | 1.83 ± 0.06 | <0.0001 * | 1.74 ± 0.09 | 1.77 ± 0.09 | 0.485 |
BMI (kg/m2) | 23.6 ± 3.29 | 22.5 ± 3.24 | 24.7 ± 3.02 | 0.007 * | 24.1 ± 3.63 | 22.7 ± 2.62 | 0.395 |
Underweight | 18.3 | 18.3 | - | - | - | 18.3 | - |
Pre-obesity | 28.9 ± 3.24 (n = 7) | 29.8 ± 3.63 (n = 2) | 29.3 ± 2.75 (n = 5) | 0.571 | 29.7 ± 2.98 (n = 5) | 27 ± 2.62 (n = 2) | 0.285 |
Parameter | All Participants | Women | Men | p * | Native | Non-Native | p * | Reference Range |
---|---|---|---|---|---|---|---|---|
n | 32 | 15 | 17 | - | 19 | 11 | - | - |
Urea (mmol/L) | 5.5 ± 1.31 | 4.8 ± 0.94 | 6.08 ± 1.34 | 0.009 * | 5.13 ± 1.13 | 6.11 ± 1.46 | 0.067 | 2.8–8.3 |
Creatinine (µmol/L) | 81.41 ± 17.34 | 67.13 ± 8.83 | 94 ± 14.43 | <0.0001 * | 78.16 ± 15.63 | 89.27 ± 18.12 | 0.121 | 49–90 |
Sodium (mmol/L) | 138.03 ± 2.06 | 137.33 ± 2.02 | 138.65 ± 1.93 | 0.139 | 138.05 ± 1.96 | 138 ± 2.45 | 0.457 | 137–146 |
Potassium (mmol/L) | 4.18 ± 0.24 | 4.23 ± 0.24 | 4.14 ± 0.24 | 0.295 | 4.18 ± 0.27 | 4.16 ± 0.22 | 0.948 | 3.9–5.1 |
Calcium (mmol/L) | 2.43 ± 0.07 | 2.41 ± 0.06 | 2.45 ± 0.07 | 0.071 | 2.45 ± 0.06 | 2.42 ± 0.07 | 0.262 | 2.14–2.53 |
Iron (umol/L) | 18.22 ± 5.97 | 18.51 ± 5.85 | 17.96 ± 6.25 | 0.395 | 18.18 ± 6.74 | 17.3 ± 4.69 | 0.88 | 8.0–30.0 |
Transferrin (g/L) | 2.84 ± 0.45 | 2.94 ± 0.51 | 2.74 ± 0.38 | 0.299 | 2.91 ± 0.47 | 2.68 ± 0.42 | 0.168 | 2.00–3.60 |
Fasting blood glucose (mmol/L) | 4.76 ± 0.68 | 4.66 ± 0.42 | 4.84 ± 0.84 | 0.758 | 4.88 ± 0.78 | 4.56 ± 0.47 | 0.299 | 4.2–6.0 |
hsCRP (mg/L) | 1.73 ± 2.06 | 2.09 ± 2.75 | 1.41 ± 1.18 | 0.933 | 1.79 ± 2.16 | 1.85 ± 2.09 | 0.846 | <5.00 |
Cholesterol (mmol/L) | 4.94 ± 0.97 | 5.15 ± 1.04 | 4.75 ± 0.89 | 0.439 | 5.21 ± 0.89 | 4.65 ± 1.01 | 0.127 | <5.00 |
Triglycerides (mmol/L) | 1.15 ± 0.75 | 1.03 ± 0.33 | 1.25 ± 0.98 | 0.948 | 1.08 ± 0.27 | 1.32 ± 1.24 | 0.321 | <1.70 |
HDL cholesterol (mmol/L) | 1.52 ± 0.36 | 1.59 ± 0.31 | 1.46 ± 0.39 | 0.265 | 1.59 ± 0.36 | 1.45 ± 0.37 | 0.491 | >1.20 |
LDL cholesterol (mmol/L) | 3.06 ± 0.75 | 3.2 ± 0.77 | 2.93 ± 0.73 | 0.275 | 3.25 ± 0.71 | 2.84 ± 0.79 | 0.143 | <3.00 |
Leukocytes (x10E9/L) | 6.15 ± 1.38 | 6.52 ± 1.35 | 5.82 ± 1.36 | 0.167 | 6.36 ± 1.29 | 6.09 ± 1.49 | 0.504 | 4.4–11.6 |
Platelets (x10E9/L) | 245.81 ± 57.68 | 271.25 ± 66.76 | 219.06 ± 31.66 | 0.003 * | 255.84 ± 65.35 | 232.09 ± 46.35 | 0.197 | 178–420 |
Erythrocytes (x10E12/L) | 4.75 ± 0.34 | 4.53 ± 0.23 | 4.94 ± 0.31 | 0.0002 * | 4.74 ± 0.34 | 4.82 ± 0.35 | 0.532 | 4.07–5.42 |
Hemoglobin (g/L) | 141.16 ± 11.27 | 133.13 ± 8.07 | 148.24 ± 8.7 | <0.0001 * | 141.63 ± 11.12 | 142.91 ± 11.22 | 0.747 | 118–149 |
Hematocrit | 0.41 ± 0.03 | 0.39 ± 0.02 | 0.43 ± 0.02 | <0.0001 * | 0.41 ± 0.03 | 0.41 ± 0.03 | 0.796 | 0.354–0.450 |
MCV (fL) | 87.08 ± 3.69 | 86.56 ± 3.46 | 87.54 ± 3.94 | 0.449 | 87.45 ± 3.66 | 86.85 ± 4.09 | 0.714 | 76.5–92.1 |
MCH (pg) | 29.74 ± 1.4 | 29.42 ± 1.36 | 30.02 ± 1.42 | 0.219 | 29.89 ± 1.45 | 29.63 ± 1.45 | 0.59 | 24.3–31.5 |
MCHC (g/L) | 341.5 ± 5.79 | 339.93 ± 5.16 | 342.88 ± 6.12 | 0.114 | 341.68 ± 6.11 | 341.27 ± 5.92 | 0.948 | 304–346 |
RDW-CV (%) | 13.9 ± 0.79 | 13.63 ± 0.96 | 14.15 ± 0.52 | 0.281 | 13.74 ± 0.86 | 14.19 ± 0.69 | 0.342 | 9.0–15.0 |
MPV (fL) | 10.54 ± 0.54 | 10.33 ± 0.47 | 10.72 ± 0.54 | 0.059 | 10.49 ± 0.62 | 10.61 ± 0.45 | 0.635 | 7.0–10.4 |
Parameter | High-Cholesterol Subgroup | Low-Cholesterol Subgroup | Reference Range | p |
---|---|---|---|---|
n | 15 | 17 | - | - |
BMI (kg/m2) | 25.3 ± 3.27 | 22.7 ± 2.84 | 18.5–24.9 | 0.013 * |
Cholesterol (mmol/L) | 5.78 ± 0.61 | 4.19 ± 0.49 | <5.00 | <0.0001 * |
Triglycerides (mmol/L) | 1.33 ± 0.95 | 0.99 ± 0.49 | <1.70 | 0.035 * |
HDL cholesterol (mmol/L) | 1.57 ± 0.37 | 1.48 ±0.35 | >1.20 | 0.569 |
LDL cholesterol (mmol/L) | 3.72 ± 0.49 | 2.47 ±0.33 | <3.00 | <0.0001 * |
Parameter | Study Population | Women | Men | p | Native | Non-Native | p | HC | LC | p |
---|---|---|---|---|---|---|---|---|---|---|
Average meals per day ± SD | 3.49 ± 0.77 | 3.32 ± 0.75 | 3.66 ± 0.77 | - | 3.36 ± 0.66 | 3.67 ± 0.89 | - | 3.47 ± 0.83 | 3.65 ± 0.79 | - |
Five or more meals per day | 10.81 | 10.53 | 11.11 | 0.954 | 4.55 | 20 | 0.137 | 7.69 | 17.65 | 0.349 |
At least four meals per day | 32.43 | 15.79 | 50 | 0.027 * | 31.82 | 33.33 | 0.923 | 53.84 | 29.41 | 0.314 |
Three or less meals per day | 56.76 | 73.68 | 38.89 | 0.033 * | 63.64 | 46.67 | 0.306 | 38.46 | 52.94 | 0.723 |
Adherence to the recommended guidelines for daily intake of fruit units | 27.03 | 21.05 | 33.33 | 0.400 | 27.27 | 26.67 | 0.967 | 20 | 29.41 | 0.539 |
Adherence to the recommended guidelines for daily intake of protein units | 64.86 | 42.11 | 77.78 | 0.027 * | 59.09 | 66.67 | 0.641 | 66.67 | 58.82 | 0.647 |
Adherence to the recommended guidelines for daily intake of carbohydrate units | 86.49 | 78.95 | 83.33 | 0.733 | 86.36 | 86.67 | 0.979 | 60 | 94.12 | 0.019 * |
Adherence to the recommended daily fluid intake guidelines | 48.65 | 42.11 | 55.56 | 0.413 | 50 | 46.67 | 0.842 | 40 | 52.94 | 0.464 |
Adherence to the recommended guidelines for daily intake of dairy products | 51.35 | 52.63 | 52.94 | 0.872 | 45.45 | 60 | 0.385 | 66.67 | 41.18 | 0.469 |
Adherence to the recommended guidelines for daily intake of vegetable units | 81.08 | 94.74 | 66.67 | 0.063 | 90.91 | 66.67 | 0.065 | 80 | 82.35 | 0.865 |
Adherence to the recommended guidelines for daily intake of whole grains | 43.24 | 42.11 | 44.44 | 0.886 | 31.82 | 60 | 0.089 | 46.67 | 35.29 | 0.513 |
Adherence to the recommended guidelines for daily intake of fish | 24 | 15.8 | 33.3 | 0.214 | 22.73 | 26.67 | 0.784 | 13.33 | 29.41 | 0.272 |
Adherence to the recommended guidelines for daily intake of nuts | 45.95 | 36.84 | 55.56 | 0.254 | 18.18 | 26.67 | 0.538 | 53.33 | 47.06 | 0.723 |
Failure to adhere to the recommended guidelines for daily intake of sweets | 75.68 | 73.68 | 77.78 | 0.772 | 86.36 | 60 | 0.066 | 66.67 | 70.59 | 0.811 |
Failure to adhere to the recommended guidelines for daily intake of sodas | 51.35 | 42.11 | 61.11 | 0.248 | 59.09 | 40 | 0.254 | 46.67 | 64.71 | 0.305 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolobarić, N.; Gradinjan Centner, M.; Šušnjara, P.; Matić, A.; Drenjančević, I. Anthropometric and Biochemical Parameters in Relation to Dietary Habits as Early Indicator of Cardiovascular Impairment in Young Adult Cohort. Int. J. Environ. Res. Public Health 2020, 17, 9208. https://doi.org/10.3390/ijerph17249208
Kolobarić N, Gradinjan Centner M, Šušnjara P, Matić A, Drenjančević I. Anthropometric and Biochemical Parameters in Relation to Dietary Habits as Early Indicator of Cardiovascular Impairment in Young Adult Cohort. International Journal of Environmental Research and Public Health. 2020; 17(24):9208. https://doi.org/10.3390/ijerph17249208
Chicago/Turabian StyleKolobarić, Nikolina, Maja Gradinjan Centner, Petar Šušnjara, Anita Matić, and Ines Drenjančević. 2020. "Anthropometric and Biochemical Parameters in Relation to Dietary Habits as Early Indicator of Cardiovascular Impairment in Young Adult Cohort" International Journal of Environmental Research and Public Health 17, no. 24: 9208. https://doi.org/10.3390/ijerph17249208
APA StyleKolobarić, N., Gradinjan Centner, M., Šušnjara, P., Matić, A., & Drenjančević, I. (2020). Anthropometric and Biochemical Parameters in Relation to Dietary Habits as Early Indicator of Cardiovascular Impairment in Young Adult Cohort. International Journal of Environmental Research and Public Health, 17(24), 9208. https://doi.org/10.3390/ijerph17249208