Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
- Females controls.
- Males controls.
- Females receiving 2 mg/kg LCH.
- Males receiving 2 mg/kg LCH. The investigator handling the animals was blind to the treatment.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bradberry, S.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.G.E.; Field, L.M.; Usherwood, P.N.R.; Williamson, M.S. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 2007, 9, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschoyle, R.D.; Aldridge, W.N. Structure-activity relationships of some pyrethroids in rats. Arch. Toxicol. 1980, 45, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.E.; Forshaw, P.J. Pyrethroid insecticides: Poisoning syndromes, synergies, and therapy. J. Toxicol. Clin. Toxicol. 2000, 38, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gammon, D.W.; Liu, Z.; Shaaban, A.; El-Naggar, F.; Kuryshev, Y.A.; Jackson, S. Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed Type I/II mode of action. Pest Manag. Sci. 2019, 75, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Villaça, Y.; Levin, E.D. Developmental neurotoxicity of succeeding generations of insecticides. Environ. Int. 2017, 99, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Soderlund, D.M.; Clark, J.M.; Sheets, L.P.; Mullin, L.S.; Piccirillo, V.J.; Sargent, D.; Stevens, J.T.; Weiner, M.L. Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology 2002, 171, 3–59. [Google Scholar] [CrossRef]
- Wolansky, M.J.; Harrill, J.A. Neurobehavioral toxicology of pyrethroid insecticides in adult animals: A critical review. Neurotoxicol. Teratol. 2008, 30, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Tiwari, M.N.; Prakash, O.; Singh, M.P. A Current Review of Cypermethrin-Induced Neurotoxicity and Nigrostriatal Dopaminergic Neurodegeneration. Curr. Neuropharmacol. 2012, 10, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Aouey, B.; Derbali, M.; Chtourou, Y.; Bouchard, M.; Khabir, A.; Fetoui, H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ. Sci. Pollut. Res. Int. 2017, 24, 5841–5856. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Awasthi, K.K.; Rajawat, N.K.; Soni, I.; John, P.J. Curcumin modulates oxidative stress and genotoxicity induced by a type II fluorinated pyrethroid, beta-cyfluthrin. Food Chem. Toxicol. 2016, 97, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Sirisha, N.; Bhavani, M.; Rudra, J.T.; Rajavardhana, T.; Kumar, P.; Ushanandini, T.; Reddenna, L.; Sreedhar, V. Lambda-Cyhalothrin: An Unusual Pyrethroid Poisoning. EAS J. Pharm. Pharmacol. 2019, 1, 5–6. [Google Scholar]
- Pitzer, E.M.; Sugimoto, C.; Gudelsky, G.A.; Huff Adams, C.L.; Williams, M.T.; Vorhees, C.V. Deltamethrin Exposure Daily from Postnatal Day 3–20 in Sprague-Dawley Rats Causes Long-term Cognitive and Behavioral Deficits. Toxicol. Sci. 2019, 169, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Skolarczyk, J.; Pekar, J.; Nieradko Iwanicka, B. Immune disorders induced by exposure to pyrethroid insecticides. Post. Hig. Med. Dosw. 2017, 71, 446–453. [Google Scholar] [CrossRef]
- Khemiri, R.; Côté, J.; Fetoui, H.; Bouchard, M. Kinetic time courses of lambda-cyhalothrin metabolites after dermal application of Matador EC 120 in volunteers. Toxicol. Lett. 2018, 296, 132–138. [Google Scholar] [CrossRef]
- Kuder, R.S.; Gundala, H.P. Developmental toxicity of deltamethrin and 3-phenoxybenzoic acid in embryo-larval stages of zebrafish (Danio rerio). Toxicol. Mech. Methods 2018, 28, 415–422. [Google Scholar] [CrossRef]
- Wielgomas, B.; Nahorski, W.; Czarnowski, W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int. J. Hyg. Environ. Health 2013, 216, 295–300. [Google Scholar] [CrossRef]
- Wielgomas, B.; Piskunowicz, M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere 2013, 93, 2547–2553. [Google Scholar] [CrossRef]
- Özaslan, M.S.; Demir, Y.; Aksoy, M.; Küfrevioğlu, Ö.I.; Beydemir, Ş. Inhibition effects of pesticides on glutathione-S-transferase enzyme activity of Van Lake fish liver. J. Biochem. Mol. Toxicol. 2018, 32, e22196. [Google Scholar] [CrossRef]
- Drabova, L.; Alvarez-Rivera, G.; Suchanova, M.; Schusterova, D.; Pulkrabova, J.; Tomaniova, M.; Kocourek, V.; Chevallier, O.; Elliott, C.; Hajslova, J. Food fraud in oregano: Pesticide residues as adulteration markers. Food Chem. 2019, 276, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Alister, C.; Araya, M.; Becerra, K.; Volosky, C.; Saavedram, J.; Kogan, M. Industrial prune processing and its effect on pesticide residue concentrations. Food Chem. 2018, 268, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Djouaka, R.; Soglo, M.F.; Kusimo, M.O.; Adéoti, R.; Talom, A.; Zeukeng, F.; Paraïso, A.; Afari-Sefa, V.; Saethre, M.G.; Manyong, V.; et al. The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. Int. J. Environ. Res. Public Health 2018, 15, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurek, M.; Barchańsk, A.H.; Turek, M. Degradation Processes of Pesticides Used in Potato Cultivations. Rev. Environ. Contam. Toxicol. 2017, 242, 5–151. [Google Scholar]
- Gunasekaran, K.; Sahu, S.S.; Vijayakumar, T.; Subramanian, S.; Jambulingam, P. Effect of house spraying with lambdacyhalothrin 10 per cent capsule suspension (CS) formulation in comparison with 10 per cent wettable powder (WP) against malaria vector in Malkangiri district, Odisha, India. Indian J. Med. Res. 2014, 140, 538–545. [Google Scholar]
- Touré, M.; Carnevale, P.; Chandre, F. Impact retardé des moustiquaires imprégnées de lambdacyhalothrine sur la fréquence de la mutation kdr chez Anopheles gambiae s.s. (Diptera: Culicidae) au nord de la Côte-d’Ivoire [Late impact of lambdacyhalothrin-treated nets on kdr allelic frequency in Anopheles gambiae s.s. (Diptera: Culicidae) from northern Côte-d’Ivoire]. Bull. Soc. Pathol. Exot. 2012, 105, 305–310. [Google Scholar]
- Elhalwagy, M.E.; Abd-Alrahman, S.H.; Nahas, A.A.; Ziada, R.M.; Mohamady, A.H. Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats. Int. J. Clin. Exp. Med. 2015, 8, 7297–7305. [Google Scholar]
- Soltanian, S.; Fereidouni, M.S. Immunotoxic responses of chronic exposure to cypermethrin in common carp. Fish Physiol. Biochem. 2017, 43, 1645–1655. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Gónzalez-Párraga, P.; Meseguer, J.; Cuesta, A.; Esteban, M.A. Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2014, 36, 120–129. [Google Scholar] [CrossRef]
- Shen, W.; Lou, B.; Xu, C.; Yang, G.; Yu, R.; Wang, X.; Li, X.; Wang, Q.; Wang, Y. Lethal toxicity and gene expression changes in embryonic zebrafish upon exposure to individual and mixture of malathion, chlorpyrifos and lambda-cyhalothrin. Chemosphere 2020, 239, 124802. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez, M.; Martínez, M.A.; Díaz, M.J.; Martínez-Larrañaga, M.R. Toxicokinetics of lambda-cyhalothrin in rats. Toxicol. Lett. 2006, 165, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Nieradko-Iwanicka, B.; Borzęcki, A. Effect of lambda-cyhalothrin on memory and movement in mice after transient incomplete cerebral ischemia. Ann. Agric. Environ. Med. 2011, 18, 41–45. [Google Scholar] [PubMed]
- Stiedl, O. Encyclopedia of Psychopharmacology; Stolerman, I., Ed.; Springer: New York, NY, USA, 2013; Volume 2 L–Z, pp. 960–967. [Google Scholar]
- Madjid, O.; Elvander Tottie, E.; Lüttgen, M.; Meister, B.; Sandin, J.; Kuzmin, A.; Stiedl, O.; Ogren, S.O. 5-HT1Areceptor blockade facilitatesaversive learning in mice: Interactions with cholinergic and gluta-matergic mechanisms. J. Pharmacol. Exp. Ther. 2006, 316, 581–591. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J.E. Emotion circuits in the brain. Ann. Rev. Neurosci. 2000, 23, 55–184. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Ann. Rev. Neurosci. 2004, 27, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofton, K.M.; Reiter, L.W. Effects of two pyrethroid insecticides on motor activity and the acoustic startle response in the rat. Toxicol. Appl. Pharmacol. 1984, 75, 318–328. [Google Scholar] [CrossRef]
- Liao, C.H.; He, X.J.; Wang, Z.L.; Barron, A.B.; Zhang, B.; Zeng, Z.J.; Wu, X.B. Short-Term Exposure to Lambda-Cyhalothrin Negatively Affects the Survival and Memory-Related Characteristics of Worker Bees Apis mellifera. Arch. Environ. Contam. Toxicol. 2018, 75, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Bownik, A.; Kowalczyk, M.; Bańczerowski, J. Lambda-cyhalothrin affects swimming activity and physiological responses of Daphnia magna. Chemosphe 2019, 216, 805–811. [Google Scholar] [CrossRef]
- Nasuti, C.; Fattoretti, P.; Carloni, M.; Fedeli, D.; Ubaldi, M.; Ciccocioppo, R.; Gabbianelli, R. Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J. Neurodev. Disord. 2014, 6, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Pawar, N.N.; Badgujar, P.C.; Sharma, L.P.; Telang, A.G.; Singh, K.P. Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure. Toxicol. Ind. Health 2017, 33, 277–286. [Google Scholar] [CrossRef]
- Radwan, M.; Jurewicz, J.; Wielgomas, B.; Sobala, W.; Piskunowicz, M.; Radwan, P.; Hanke, W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J. Occup. Environ. Med. 2014, 56, 1113–1119. [Google Scholar] [CrossRef]
- Gargouri, B.; Yousif, N.M.; Attaai, A.; Bouchard, M.; Chtourou, Y.; Fiebich, B.L.; Fetoui, H. Pyrethroid bifenthrin induces oxidative stress, neuroinflammation, and neuronal damage, associated with cognitive and memory impairment in murine hippocampus. Neurochem. Int. 2018, 120, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Khan, A.M.; Raina, R.; Verma, P.K.; Wani, N.M. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environ. Sci. Pollut. Res. Int. 2019, 26, 9365–9370. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Capitani, M.; Fiorini, D.; Gabbianelli, R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 201, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Anitha, M.; Anitha, R.; Vijayaraghavan, R.; Senthil, K.S.; Ezhilarasan, D. Oxidative stress and neuromodulatory effects of deltamethrin and its combination with insect repellents in rats. Environ. Toxicol. 2019, 34, 753–759. [Google Scholar] [CrossRef]
- Mohi El-Din, M.M.; Mostafa, A.M.; Abd-Elkader, A. Experimental studies on the effect of (Lambda-Cyhalothrin) insecticide on lungs and the ameliorating effect of plant extracts (Ginseng (Panax Ginseng) and garlic (Allium sativum L.) on asthma development in albino rats. BMC Res. Notes 2014, 7, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Fetoui, H.; Makni, M.; Garoui, M.; Zeghal, N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp. Toxicol. Pathol. 2010, 62, 593–599. [Google Scholar] [CrossRef]
- Gargouri, B.; Bhatia, H.S.; Bouchard, M.; Fiebich, B.L.; Fetoui, H. Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicol. Lett. 2018, 294, 73–86. [Google Scholar] [CrossRef]
- 50 Gargouri, B.; Yousif, N.M.; Bouchard, M.; Fetoui, H.; Fiebich, B.L. Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. J. Neuroinflamm. 2018, 15, 159. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.R.; Yuan, Z.; Wang, X.; Martínez, M.A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef]
- Mu, X.; Shen, G.; Huang, Y.; Luo, J.; Zhu, L.; Qi, S.; Li, Y.; Wang, C.; Li, X. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish. Environ. Pollut. 2017, 229, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Martínez, M.A.; Dai, M.; Chen, D.; Ares, I.; Romero, A.; Castellano, V.; Martínez, M.; Rodríguez, J.L.; Martínez-Larrañaga, M.R.; et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ. Res. 2016, 14, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Fedeli, D.; Carloni, M.M.; Nasuti, C.N.A.; Gabbianelli, R. Leukocyte Nurr1 as peripheral biomarker of early-life environmental exposure to permethrin insecticide. Biomarkers 2012, 17, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, O.K.; Aderibigbe, F.A.; Folarin, D.T.; Arinola, A.; Wusu, A.D. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin. Heliyon 2019, 5, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Piłat, D.; Mika, J. The role of interleukin-1 family of cytokines in nociceptive transmission. BÓL 2014, 15, 39–47. [Google Scholar] [CrossRef]
Group | Day 1 [g] | Day 2 [g] | Day 3 [g] | Day 4 [g] | Day 5 [g] | Day 6 [g] | Day 7 [g] |
---|---|---|---|---|---|---|---|
Control females (mean ± SD) | 20.53 ± 0.84 | 20.61 ± 1.14 | 20.96 ± 1.40 | 21.33 ± 1.58 | 21.38 ± 1.52 | 21.79 ± 1.57 | 22.53 ± 1.52 |
LCH females (mean ± SD) | 23.88 ± 0.83 | 23.13 ± 0.64 | 23.88 ± 0.64 | 24.25 ± 0.71 | 24.25 ± 0.89 | 24.13 ± 0.64 | 24.25 ± 0.89 |
Control males (mean ± SD) | 24.41 ± 2.85 | 24.95 ± 3.66 | 25.36 ± 3.74 | 26.15 ± 3.95 | 26.56 ± 3.92 | 26.96 ± 4.01 | 27.21 ± 4.18 |
LCH males (mean ± SD) | 30.75 ± 2.82 | 31.50 ± 2.83 | 33.25 ± 3.49 | 32.25 ± 2.60 | 32.00 ± 2.77 | 32.50 ± 2.78 | 32.50 ± 2.93 |
Group | Kidney Mass [g] | Liver Mass [g] |
---|---|---|
Control females (mean ± SD) | 0.16 ± 0.02 | 1.24 ± 0.18 |
LCH females (mean ± SD) | 0.18 ± 0.01 * | 1.33 ± 0.16 |
Control males (mean ± SD) | 0.16 ± 0.02 | 1.33 ± 0.21 |
LCH males (mean ± SD) | 0.18 ± 0.01 * | 2.04 ± 0.20 * |
Group | WBC [×1000/µL] | Neutrophils [%] | Lymphocytes [%] | Monocytes [%] | Eosinophils [%] | Basophils [%] | Erythrocytes [×106/µL] | Platelets [×1000/µL] |
---|---|---|---|---|---|---|---|---|
Control females (mean ± SD) | 8.04 ± 2.72 | 10.20 ± 2.54 | 82.60 ± 8.92 | 2.48 ± 7.97 | 0.050 ± 0.107 | 0.68 ± 0.38 | 10.63 ± 0.52 | 853.88 ± 188.24 |
LCH females (mean ± SD) | 3.07 ± 1.25 * | 16.63 ± 3.87 * | 82.10 ± 3.65 | 2.89 ± 0.7 | 0.075 ± 0.149 | 0.31 ± 0.11 | 9.01 ± 1.99 * | 968.63 ± 93.23 |
Control males (mean ± SD) | 7.44 ± 4.01 | 13.13 ± 6.61 | 83.98 ± 6.97 | 2.60 ± 1.19 | 0.001 ± 0.001 | 0.30 ± 0.11 | 10.88 ± 0.64 | 1083.88 ± 204.30 |
LCH males (mean ± SD) | 5.83 ± 1.71 | 16.18 ± 2.55 | 82.00 ± 3.47 | 1.88 ± 0.4 | 0.025 ± 0.071 | 0.16 ± 0.11 | 7.29 ± 0.82 * | 993.50 ± 117.98 |
Group | TNFα in the Kidney [pg/mL] | TNFα in the Liver [pg/mL] | Il1ß in the Kidney [pg/mL] | Il1ß in the Liver [pg/mL] |
---|---|---|---|---|
Control females (mean ± SD) | 16,239.80 ± 4356.58 | 29,974.61 ± 5103.88 | 13,974.74 ± 1768.01 | 22,977.01 ± 5215.69. |
LCH females (mean ± SD) | 21,769.34 ± 6776.57 | 29,427.43 ± 6507.89 | 16,991.41 ± 3845.08 | 25,196.31 ± 13,040.87 |
Control males (mean ± SD) | 18,129.68 ± 647.14 | 3,140,680 ± 7669.35 | 14,010.55 ± 1708.89 | 22,266.82 ± 5594.18 |
LCH males (mean ± SD) | 26,465.60 ± 11,594.85 | 34,619.05 ± 10,617.62 | 27,392.20 ± 3695.44 * | 37,343.97 ± 37,343.97 * |
Group | ALT [U] | Creatinine [g] |
---|---|---|
Control females (mean ± SD) | 7537.50 ± 1890.80 | 0.11 ± 0.01 |
LCH females (mean ± SD) | 7453.75 ± 1012.35 | 0.15 ± 0.01 * |
Control males (mean ± SD) | 8155.00 ± 1149.85 | 0.12 ± 0.01 |
LCH males (mean ± SD) | 8572.50 ± 559.79 | 0.15 ± 0.03 * |
Group | Memory Retention Day 2 [Median (Q1; Q3)] | Memory Retention Day 7 [Median (Q1; Q3)] |
---|---|---|
Control females | 134 (77; 180) | 118 (80;180) |
LCH females | 105 (18; 180.00) | 97 (10;180) |
Control males | 180 (123; 180) | 180 (180;180) |
LCH males | 180 (149; 180) | 98 * (18;180) |
Group | Locomotor Activity on Day 1 (Number of Arm Entries) | Locomotor Activity on Day 7 (Number of Arm Entries) | % of Logical Alternations in the Y-Maze on Day 1 | % of Logical Alternations in the Y-Maze on Day 7 |
---|---|---|---|---|
Control females (mean ± SD) | 46 ± 9 | 33 ± 4 | 54 ± 2 | 64 ± 2 |
LCH females (mean ± SD) | 51 ± 4 | 37 ± 1 | 67 ± 8 | 51 ± 6 |
Control males (mean ± SD) | 33 ± 3 | 29 ± 3 | 60 ± 5 | 54 ± 2 |
LCH males (mean ± SD) | 35 ± 9 | 35 ± 3 | 60 ± 5 | 59 ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieradko-Iwanicka, B.; Konopelko, M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. Int. J. Environ. Res. Public Health 2020, 17, 9240. https://doi.org/10.3390/ijerph17249240
Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. International Journal of Environmental Research and Public Health. 2020; 17(24):9240. https://doi.org/10.3390/ijerph17249240
Chicago/Turabian StyleNieradko-Iwanicka, Barbara, and Michał Konopelko. 2020. "Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model" International Journal of Environmental Research and Public Health 17, no. 24: 9240. https://doi.org/10.3390/ijerph17249240
APA StyleNieradko-Iwanicka, B., & Konopelko, M. (2020). Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. International Journal of Environmental Research and Public Health, 17(24), 9240. https://doi.org/10.3390/ijerph17249240