Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy
Abstract
:1. Introduction
2. Materials and Methods
- The European Environment Agency website was used to extrapolate the average weekly levels of PM2.5 and NO2, stratified by provinces and metropolitan cities [16]. Data on PM2.5 and NO2 concentrations were available for 62 and 67 provinces out of a total of 110, respectively. Three periods were considered: 2016–2020 years, to evaluate historical data, March–May 2020, to assess current concentrations during the months of the first wave of coronavirus, and March-October 2020, to analyze pollutant levels for the entire epidemic period. The average concentrations for the periods under review were calculated and expressed as mean with a 95% confidence interval (95% CI).
- The website of the Department of Civil Protection was checked in order to extract the number of COVID-19 cases, stratified by provinces, updated on 24 June 2020, for the first wave of coronavirus infection, and on 3 November 2020, to consider the entire epidemic period [17]. Data were released every day at 6 PM (UTC +1 h) and archived on GitHub.
- The national database of the Italian Institute of Statistics (ISTAT) was used to extract the annual resident population on 1 January 2019, for the calculation of COVID-19 incidence rates expressed for 10,000 people, also stratified by provinces [18]. Confidence intervals of 95% were reported for the overall incidence rates.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Italian Ministry of Health. Covid 19-What Is the New Coronavirus. Available online: http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioFaqNuovoCoronavirus.jsp?id=228&lingua=italiano (accessed on 9 June 2020).
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, D.J.; Busse, W.W.; Bacharier, L.B.; Kattan, M.; O’Connor, G.T.; Wood, R.A.; Visness, C.M.; Durham, S.R.; Larson, D.; Esnault, S.; et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020, 146, 203–206.e3. [Google Scholar] [CrossRef] [PubMed]
- Hastie, A.T.; Moore, W.C.; Meyers, D.A.; Vestal, P.L.; Li, H.; Peters, S.P.; Bleecker, E.R. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J. Allergy Clin. Immunol. 2010, 125, 1028–1036.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontempi, E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 2020, 186, 109639. [Google Scholar] [CrossRef] [PubMed]
- Carugno, M.; Dentali, F.; Mathieu, G.; Fontanella, A.; Mariani, J.; Bordini, L.; Milani, G.P.; Consonni, D.; Bonzini, M.; Bollati, V.; et al. PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy. Environ. Res. 2018, 166, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Cianfanelli, L.; Vlachos, K.; Landoni, G.; Cremona, G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J. Infect. 2020, 81, 255–259. [Google Scholar] [CrossRef]
- Lin, C.-I.; Tsai, C.-H.; Sun, Y.-L.; Hsieh, W.-Y.; Lin, Y.-C.; Chen, C.-Y.; Lin, C.-S. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int. J. Biol. Sci. 2018, 14, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, L.; Foley, G.; Semple, S.; Grigg, J. Traffic-derived particulate matter and angiotensin-converting enzyme 2 expression in human airway epithelial cells. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Ancona, C.; Angelini, P.; Bauleo, L.; Bianchi, F.; Bisceglia, L.; Cadum, E.; Carducci, A.; Clementi, M.L.; Colacci, A.; Di Benedetto, A.; et al. Inquinamento Atmosferico e Epidemia COVID-19: La Posizione Della Rete Italiana Ambiente e Salute E&P Repository 2020. Available online: https://repo.epiprev.it/1145 (accessed on 12 August 2020).
- Chen, W.; Pouyan, S.; Heidari, B.; Farajzadeh, Z.; Shamsi, S.R.F.; Babaei, S.; Khosravi, R.; Etemadi, M.; Ghanbarian, G.; Farhadi, A.; et al. Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between 19 February and 14 June 2020). Int. J. Infect. Dis. 2020, 98, 90–108. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Monitoring COVID-19 Impacts on Air Pollution. Available online: https://www.eea.europa.eu/themes/air/air-quality-and-covid19/monitoring-covid-19-impacts-on (accessed on 30 October 2020).
- Department of Civil Protection. Summary Sheets. Available online: https://github.com/pcm-dpc/COVID-19/tree/master/schede-riepilogative (accessed on 3 November 2020).
- Italian Institute of Statistics (ISTAT). Resident Population. Available online: http://demo.istat.it/pop2019/index.html (accessed on 4 November 2020).
- Watnik, M. Advanced Statistics from an Elementary Point of View. J. Am. Stat. Assoc. 2007, 102, 766–767. [Google Scholar] [CrossRef]
- Benmarhnia, T. Linkages Between Air Pollution and the Health Burden From COVID-19: Methodological Challenges and Opportunities. Am. J. Epidemiol. 2020, 189, 1238–1243. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin–Angiotensin–Aldosterone System Blockers and the Risk of Covid-19. N. Engl. J. Med. 2020, 382, 2431–2440. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Tuscany Regional Health Agency. Available online: https://www.ars.toscana.it/2-articoli/4265-nuovo-coronavirus-in-toscana-situazione-interventi-raccomandazioni.html (accessed on 27 November 2020).
Provinces | Incidence Rates (Update on 24 June 2020) | Incidence Rates (Update on 3 November 2020) | Old-Age Index (%) | Population Density (People/km2) |
---|---|---|---|---|
Piedmont | ||||
Turin (metropolitan city) | 70.71 | 190.38 | 201 | 331 |
Novara | 75.91 | 167.91 | 183 | 275 |
Asti * | 88.08 | 179.03 | 215 | 142 |
Biella | 59.81 | 144.44 | 268 | 192 |
Liguria | ||||
Savona | 56.21 | 129.82 | 265 | 179 |
Genova (metropolitan city) | 66.16 | 225.88 | 257 | 459 |
La Spezia | 39.05 | 187.27 | 242 | 249 |
Lombardy | ||||
Varese | 43.71 | 198.57 | 175 | 743 |
Como | 68.39 | 193.72 | 169 | 468 |
Milan (metropolitan city) | 75.13 | 246.93 | 167 | 2,063 |
Bergamo | 128.97 | 172.28 | 145 | 405 |
Brescia | 124.11 | 178.66 | 151 | 265 |
Pavia | 102.69 | 204.98 | 198 | 184 |
Cremona | 187.02 | 254.01 | 189 | 203 |
Lecco | 84.29 | 178.17 | 175 | 419 |
Trentino South Tyrol | ||||
Bolzano/Bozen * | 49.84 | 188.90 | 124 | 72 |
Trento | 90.48 | 181.52 | 154 | 87 |
Veneto | ||||
Verona | 55.60 | 125.83 | 158 | 299 |
Vicenza | 33.27 | 124.17 | 159 | 317 |
Treviso | 30.15 | 145.65 | 157 | 358 |
Venice (metropolitan city) | 31.52 | 109.97 | 198 | 345 |
Padova | 42.23 | 133.95 | 170 | 437 |
Friuli Venzia Giulia | ||||
Udine | 18.89 | 84.20 | 224 | 106 |
Trieste | 59.76 | 168.56 | 259 | 1,103 |
Pordenone | 22.42 | 69.14 | 177 | 137 |
Emlia Romagna | ||||
Piacenza | 156.40 | 257.66 | 196 | 111 |
Parma | 81.21 | 133.87 | 175 | 131 |
Reggio nell’Emilia | 93.04 | 182.13 | 150 | 232 |
Modena | 55.11 | 129.83 | 164 | 262 |
Bologna (metropolitan city) | 50.81 | 126.20 | 190 | 274 |
Ferrara | 29.77 | 84.72 | 256 | 131 |
Ravenna | 26.28 | 86.35 | 201 | 209 |
Forlì-Cesena | 43.88 | 114.70 | 184 | 166 |
Rimini | 63.41 | 144.80 | 173 | 392 |
Marche | ||||
Pesaro e Urbino | 77.44 | 109.61 | 186 | 140 |
Ancona | 39.95 | 95.62 | 195 | 240 |
Tuscany | ||||
Massa-Carrara | 54.17 | 160.96 | 241 | 169 |
Lucca | 34.95 | 127.18 | 214 | 219 |
Florence (metropolitan city) | 31.59 | 152.56 | 201 | 288 |
Livorno | 14.24 | 110.21 | 228 | 276 |
Pisa | 22.12 | 155.05 | 188 | 171 |
Prato | 20.61 | 165.47 | 158 | 705 |
Umbria | ||||
Perugia | 15.38 | 130.48 | 194 | 104 |
Terni | 16.65 | 114.40 | 238 | 106 |
Lazio | ||||
Rome (metropolitan city) | 13.40 | 88.99 | 157 | 810 |
Latina | 10.48 | 69.72 | 155 | 255 |
Campania | ||||
Caserta | 5.24 | 126.88 | 117 | 348 |
Benevento | 7.55 | 40.16 | 186 | 133 |
Naples (metropolitan city) | 8.58 | 139.03 | 117 | 2,617 |
Avellino | 13.21 | 79.44 | 179 | 149 |
Salerno | 6.30 | 63.97 | 154 | 222 |
Abruzzo | ||||
Pescara | 49.95 | 94.64 | 179 | 259 |
Molise | ||||
Campobasso | 16.43 | 53.17 | 215 | 76 |
Apulia | ||||
Foggia | 18.84 | 79.79 | 155 | 89 |
Bari (metropolitan city) | 11.92 | 70.46 | 163 | 324 |
Taranto | 4.86 | 35.67 | 174 | 234 |
Lecce | 6.54 | 18.80 | 195 | 284 |
Barletta-Andria-Trani | 9.75 | 59.43 | 138 | 253 |
Calabria | ||||
Cosenza | 6.64 | 26.61 | 175 | 105 |
Catanzaro | 5.98 | 25.26 | 169 | 148 |
Reggio Calabria (metropolitan city) | 5.28 | 39.63 | 155 | 171 |
Sicily | ||||
Palermo (metropolitan city) | 3.98 | 61.62 | 144 | 250 |
Messina (metropolitan city) * | 7.54 | 35.23 | 186 | 192 |
Catania (metropolitan city) * | 7.02 | 58.37 | 135 | 310 |
Siracusa * | 8.05 | 39.68 | 159 | 188 |
Sardinia | ||||
Sassari | 17.79 | 91.85 | 194 | 64 |
Cagliari (metropolitan city) | 5.80 | 49.59 | 196 | 345 |
Air Pollutants | Mean (95% CI) µg/m3 | Univariate Linear Regression | Multivariate Linear Regression | ||||||
---|---|---|---|---|---|---|---|---|---|
β Coefficient | 95% CI | p-Value | R2 | β Coefficient * | 95% CI | p-Value | Adjusted R2 | ||
PM2.5 (2016–2020 years) | 16.84 (15.61–18.07) | 1.99 | 1.28–2.69 | <0.001 | 0.35 | 1.56 | 0.83–2.29 | <0.001 | 0.51 |
NO2 (2016–2020 years) | 27.97 (26.10–29.83) | 1.63 | 0.83–2.44 | <0.001 | 0.20 | 1.24 | 0.40–2.07 | 0.004 | |
PM2.5 (March–May 2020) | 12.94 (12.05–13.84) | 3.26 | 1.93–4.60 | <0.001 | 0.41 | 2.79 | 1.74–3.83 | <0.001 | 0.68 |
NO2 (March-May 2020) | 15.18 (13.75–16.61) | 1.36 | 0.80–1.91 | <0.001 | 0.29 | 1.24 | 0.70–1.79 | <0.001 | |
PM2.5 (March–October 2020) | 11.32 (10.55–12.09) | 1.07 | 0.07–2.06 | 0.037 | 0.12 | 1.05 | 0.33–1.78 | 0.006 | 0.59 |
NO2 (March–October 2020) | 16.94 (15.30–18.58) | 0.83 | 0.51–1.16 | <0.001 | 0.30 | 1.01 | 0.63–1.39 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiasca, F.; Minelli, M.; Maio, D.; Minelli, M.; Vergallo, I.; Necozione, S.; Mattei, A. Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy. Int. J. Environ. Res. Public Health 2020, 17, 9318. https://doi.org/10.3390/ijerph17249318
Fiasca F, Minelli M, Maio D, Minelli M, Vergallo I, Necozione S, Mattei A. Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy. International Journal of Environmental Research and Public Health. 2020; 17(24):9318. https://doi.org/10.3390/ijerph17249318
Chicago/Turabian StyleFiasca, Fabiana, Mauro Minelli, Dominga Maio, Martina Minelli, Ilaria Vergallo, Stefano Necozione, and Antonella Mattei. 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy" International Journal of Environmental Research and Public Health 17, no. 24: 9318. https://doi.org/10.3390/ijerph17249318
APA StyleFiasca, F., Minelli, M., Maio, D., Minelli, M., Vergallo, I., Necozione, S., & Mattei, A. (2020). Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy. International Journal of Environmental Research and Public Health, 17(24), 9318. https://doi.org/10.3390/ijerph17249318