Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Design
2.2. Study Site
2.3. Field Data Collection Procedures
2.3.1. Anthropometric Measurements
2.3.2. Dietary Micronutrient Intake Assessment
2.3.3. Blood and Urine Sample Collection
2.4. Data Analysis
2.4.1. Dietary Micronutrient Intake Analysis
2.4.2. Laboratory Analysis of Micronutrients in the Blood and Urine
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the E-Waste Recyclers and Controls
3.2. Dietary Micronutrient Intake (Based on Food Models) of the E-Waste Recyclers and the Controls
3.3. Micronutrient Biomarker Levels (Descriptive Summary)
3.4. Relationship between Dietary Micronutrient Intake and Micronutrient Levels in the Blood and Urine of E-Waste Recyclers
3.5. Association of Sociodemographic Characteristics and Other Work-Related Factors with Dietary Micronutrient Intake among E-Waste Recyclers
4. Discussion
4.1. Dietary Micronutrient Intake (Based on Estimates Using Food Models) of E-Waste Recyclers and Controls
4.2. Micronutrient Levels in Blood and Urine of E-Waste Recyclers and Controls
4.3. Relationship between Dietary Micronutrient Intake and Micronutrient Levels in the Blood and Urine of the E-Waste Recyclers
4.4. The Relationship of Selected Work-Related Factors and Sociodemographic Characteristics with Dietary Micronutrient Intake and Micronutrient Levels in Blood and Urine of E-Waste Recyclers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2016, 390, 1345–1422. [Google Scholar]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Heacock, M.; Kelly, C.B.; Asante, K.A.; Birnbaum, L.S.; Bergman, Å.L.; Bruné, M.-N.; Buka, I.; Carpenter, D.O.; Chen, A.; Huo, X. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 2016, 124, 550–555. [Google Scholar] [CrossRef]
- Heacock, M.; Trottier, B.; Adhikary, S.; Asante, K.A.; Basu, N.; Brune, M.-N.; Caravanos, J.; Carpenter, D.; Cazabon, D.; Chakraborty, P. Prevention-intervention strategies to reduce exposure to e-waste. Rev. Environ. Health 2018, 33, 219–228. [Google Scholar] [CrossRef]
- Basu, N.; Ayelo, P.A.; Djogbénou, L.S.; Kedoté, M.; Lawin, H.; Tohon, H.; Oloruntoba, E.O.; Adebisi, N.A.; Cazabon, D.; Fobil, J. Occupational and environmental health risks associated with informal sector activities—Selected case studies from West Africa. New Solut. A J. Environ. Occup. Health Policy 2016, 26, 253–270. [Google Scholar] [CrossRef]
- Srigboh, R.K.; Basu, N.; Stephens, J.; Asampong, E.; Perkins, M.; Neitzel, R.L.; Fobil, J. Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere 2016, 164, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Wittsiepe, J.; Feldt, T.; Till, H.; Burchard, G.; Wilhelm, M.; Fobil, J.N. Pilot study on the internal exposure to heavy metals of informal-level electronic waste workers in Agbogbloshie, Accra, Ghana. Environ. Sci. Pollut. Res. 2017, 24, 3097–3107. [Google Scholar] [CrossRef]
- Singh, M.; Thind, P.S.; John, S. Health risk assessment of the workers exposed to the heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. Chemosphere 2018, 203, 426–433. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, L.; Mu, X.; Li, Y.; Mao, X.; Huang, T.; Ma, J.; Gao, H. Pollution Characteristics and Occupational Exposure Risk of Heavy Metals in Indoor and Outdoor Ambient Particles at a Scaled Electronic Waste Dismantling Plant, Northwest China. Huan Jing Ke Xue 2019, 40, 1101–1110. [Google Scholar]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, essential minerals, and toxic elements: Exploring interactions between nutrients and toxicants in clinical medicine. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordas, K.; Roy, A.; López, P.; García-Vargas, G.; Cebrián, M.E.; Vera-Aguilar, E.; Rosado, J.L. Iron and zinc supplementation does not impact urinary arsenic excretion in Mexican school children. J. Pediatrics 2017, 185, 205–210.e201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 133–164. [Google Scholar]
- Erickson, A.C.; Arbour, L. The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development. J. Environ. Public Health 2014. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.N.; Rayalam, S. The role of micronutrients in the response to ambient air pollutants: Potential mechanisms and suggestions for research design. J. Toxicol. Environ. Health Part B 2017, 20, 38–53. [Google Scholar] [CrossRef]
- Hennig, B.; Ettinger, A.S.; Jandacek, R.J.; Koo, S.; McClain, C.; Seifried, H.; Silverstone, A.; Watkins, B.; Suk, W.A. Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ. Health Perspect. 2007, 115, 493–495. [Google Scholar] [CrossRef]
- Kannan, S.; Misra, D.P.; Dvonch, J.T.; Krishnakumar, A. Exposures to airborne particulate matter and adverse perinatal outcomes: A biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ. Health Perspect. 2006, 114, 1636–1642. [Google Scholar] [CrossRef]
- Prakash, S.; Manhart, A.; Amoyaw-Osei, Y.; Agyekum, O.O. Socio-economic assessment and feasibility study on sustainable e-waste management in Ghana. In Öko-Institut eV in cooperation with Ghana Environmental Protection Agency (EPA) & Green Advocacy Ghana, Ministry of Housing, Spatial Planning and the Environment, VROM-Inspectorate; SRI Publications: St. Gallen, Switzerland, 2010. [Google Scholar]
- Amoabeng Nti, A.A.; Arko-Mensah, J.; Botwe, P.K.; Dwomoh, D.; Kwarteng, L.; Takyi, S.A.; Acquah, A.A.; Tettey, P.; Basu, N.; Batterman, S. Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 3042. [Google Scholar] [CrossRef]
- Takyi, S.A.; Basu, N.; Arko-Mensah, J.; Botwe, P.; Nti, A.A.A.; Kwarteng, L.; Acquah, A.; Tettey, P.; Dwomoh, D.; Batterman, S. Micronutrient-Rich Dietary Intake Is Associated with a Reduction in the Effects of Particulate Matter on Blood Pressure among Electronic Waste Recyclers at Agbogbloshie, Ghana. 2020. Available online: https://assets.researchsquare.com/files/rs-18829/v1/manuscript.pdf (accessed on 10 January 2020).
- Kwarteng, L.; Baiden, E.A.; Fobil, J.; Arko-Mensah, J.; Robins, T.; Batterman, S. Air Quality Impacts at an E-Waste Site in Ghana using Flexible, Moderate—Cost and Quality—Assured Measurements. GeoHealth 2020, 4, e2020GH000247. [Google Scholar] [CrossRef]
- Laskaris, Z.; Milando, C.; Batterman, S.; Mukherjee, B.; Basu, N.; O’Neill, M.S.; Robins, T.G.; Fobil, J.N. Derivation of Time-Activity Data Using Wearable Cameras and Measures of Personal Inhalation Exposure among Workers at an Informal Electronic-Waste Recovery Site in Ghana. Ann. Work Expo Health 2019. [Google Scholar] [CrossRef]
- Wittsiepe, J.; Fobil, J.N.; Till, H.; Burchard, G.-D.; Wilhelm, M.; Feldt, T. Levels of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and biphenyls (PCBs) in blood of informal e-waste recycling workers from Agbogbloshie, Ghana, and controls. Environ. Int. 2015, 79, 65–73. [Google Scholar] [CrossRef]
- Diggle, P.; Diggle, P.J.; Heagerty, P.; Liang, K.-Y.; Heagerty, P.J.; Zeger, S. Analysis of Longitudinal Data; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Feldt, T.; Fobil, J.N.; Wittsiepe, J.; Wilhelm, M.; Till, H.; Zoufaly, A.; Burchard, G.; Goen, T. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana. Sci. Total Environ. 2014, 466, 369–376. [Google Scholar] [CrossRef]
- Asampong, E.; Dwuma-Badu, K.; Stephens, J.; Srigboh, R.; Neitzel, R.; Basu, N.; Fobil, J.N. Health seeking behaviours among electronic waste workers in Ghana. BMC Public Health 2015, 15, 1065. [Google Scholar] [CrossRef] [Green Version]
- United Nations Population Fund. Reaching the Underserved: UNFPA Youth Fellows Organizes Outreach at Old Fadama. 2018. Available online: https://ghana.unfpa.org/en/news/reaching-underserved-unfpa-youth-fellows-organizes-outreach-old-fadama (accessed on 20 January 2020).
- Alkhajah, T.A.; Reeves, M.M.; Eakin, E.G.; Winkler, E.A.; Owen, N.; Healy, G.N. Sit–stand workstations: A pilot intervention to reduce office sitting time. Am. J. Prev. Med. 2012, 43, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Zeba, A.N.; Delisle, H.F.; Renier, G. Dietary patterns and physical inactivity, two contributing factors to the double burden of malnutrition among adults in Burkina Faso, West Africa. J. Nutr. Sci. 2014, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boateng, G.P. The Development of a Photographic Food Atlas with Portion Sizes of Commonly Consumed Carbohydrate Foods in Accra, Ghana; University of Ghana: Legon Boundary, Accra, Ghana, 2014. [Google Scholar]
- Nti, A.A.A. Effects of E-Waste on Respiratory Function among E-Waste Workers Engaged in Burning at Agbogbloshie, Accra; University of Ghana: Legon Boundary, Accra, Ghana, 2015. [Google Scholar]
- Hansen, A.W.; Christensen, D.L.; Larsson, M.W.; Eis, J.; Christensen, T.; Friis, H.; Mwaniki, D.L.; Kilonzo, B.; Boit, M.K.; Borch-Johnsen, K. Dietary patterns, food and macronutrient intakes among adults in three ethnic groups in rural Kenya. Public Health Nutr. 2011, 14, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- FAO. A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018. [Google Scholar]
- Mahan, L.K.; Raymond, J.L. Krause’s Food & the Nutrition Care Process; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Basu, N.; Nam, D.-H.; Kwansaa-Ansah, E.; Renne, E.P.; Nriagu, J.O. Multiple metals exposure in a small-scale artisanal gold mining community. Environ. Res. 2011, 111, 463–467. [Google Scholar] [CrossRef]
- Moore, L.L.; Singer, M.R.; Qureshi, M.M.; Bradlee, M.L.; Daniels, S.R. Food group intake and micronutrient adequacy in adolescent girls. Nutrients 2012, 4, 1692–1708. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, V.; Woittiez, J. Trace elements in human clinical specimens: Evaluation of literature data to identify reference values. Clin. Chem. 1988, 34, 474–481. [Google Scholar] [CrossRef]
- Alimonti; Bocca, B.; Mannella, E.; Petrucci, F.; Zennaro, F.; Cotichini, R.; D’ippolito, C.; Agresti, A.; Caimi, S.; Forte, G. Assessment of reference values for selected elements in a healthy urban population. Ann. Ist. Super Sanita 2005, 41, 181–187. [Google Scholar]
- Joy, E.J.; Kumssa, D.B.; Broadley, M.R.; Watts, M.J.; Young, S.D.; Chilimba, A.D.; Ander, E.L. Dietary mineral supplies in Malawi: Spatial and socioeconomic assessment. BMC Nutr. 2015, 1, 42. [Google Scholar] [CrossRef] [Green Version]
- Kolahdooz, F.; Spearing, K.; Sharma, S. Dietary adequacies among South African adults in rural KwaZulu-Natal. PLoS ONE 2013, 8, e67184. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Grijota, F.; Muñoz, D.; Maynar-Mariño, M. Effect of heat exposure and physical exercise until exhaustion in normothermic and hyperthermic conditions on serum, sweat and urinary concentrations of magnesium and phosphorus. J. Therm. Biol. 2019, 84, 176–184. [Google Scholar] [CrossRef]
- Tang, Y.-M.; Wang, D.-G.; Li, J.; Li, X.-H.; Wang, Q.; Liu, N.; Liu, W.-T.; Li, Y.-X. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. Ind. Health 2016, 54, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Bharatraj, D.K.; Yathapu, S.R. Nutrition-pollution interaction: An emerging research area. Indian J. Med. Res. 2018, 148, 697. [Google Scholar] [CrossRef]
- Schulz, A.J.; Mentz, G.B.; Sampson, N.R.; Dvonch, J.T.; Reyes, A.G.; Izumi, B. Effects of particulate matter and antioxidant dietary intake on blood pressure. Am. J. Public Health 2015, 105, 1254–1261. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune System–Working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Orisakwe, O.E.; Frazzoli, C.; Ilo, C.E.; Oritsemuelebi, B. Public health burden of e-waste in Africa. J. Health Pollut. 2019, 9, 190610. [Google Scholar] [CrossRef] [Green Version]
- Sembratowicz, I.; Rusinek-Prystupa, E. Effects of Brewing Time on the Content of Minerals in Infusions of Medicinal Herbs. Pol. J. Environ. Stud. 2014, 23. Corpus ID: 36552420. [Google Scholar]
- Karak, T.; Paul, R.K.; Kutu, F.R.; Mehra, A.; Khare, P.; Dutta, A.K.; Bora, K.; Boruah, R.K. Comparative assessment of copper, iron, and zinc contents in selected indian (Assam) and south African (thohoyandou) tea (Camellia sinensis L.) samples and their infusion: A quest for health risks to consumer. Biol. Trace Elem. Res. 2017, 175, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Guarnotta, V.; Riela, S.; Massaro, M.; Bonventre, S.; Inviati, A.; Ciresi, A.; Pizzolanti, G.; Benvenga, S.; Giordano, C. The daily consumption of cola can determine hypocalcemia: A case report of postsurgical hypoparathyroidism-related hypocalcemia refractory to supplemental therapy with high doses of oral calcium. Front. Endocrinol. 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Ogur, R.; Uysal, B.; Ogur, T.; Yaman, H.; Oztas, E.; Ozdemir, A.; Hasde, M. Evaluation of the effect of cola drinks on bone mineral density and associated factors. Basic Clin. Pharmacol. Toxicol. 2007, 100, 334–338. [Google Scholar] [CrossRef]
- Salles, M.S.V.; Zanetti, M.A.; Salles, F.A.; Titto, E.A.L.; Conti, R.M.C. Changes in ruminal fermentation and mineral serum level in animals kept in high temperature environments. Rev. Bras. Zootec. 2010, 39, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Keen, C.L. 7 The Effect of Exercise and Heat on Mineral Metabolism and Requirements. In Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations; National Academies Press: Washington, DC, USA, 1993; pp. 117–135. [Google Scholar]
- Peraza, M.A.; Ayala-Fierro, F.; Barber, D.S.; Casarez, E.; Rael, L.T. Effects of micronutrients on metal toxicity. Environ. Health Perspect. 1998, 106, 203. [Google Scholar]
- Goyer, R.A. Toxic and essential metal interactions. Annu. Rev. Nutr. 1997, 17, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Goyer, R.A. Nutrition and metal toxicity. Am. J. Clin. Nutr. 1995, 61, 646S–650S. [Google Scholar] [CrossRef]
- Hunt, J.R.; Beiseigel, J.M. Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. Am. J. Clin. Nutr. 2009, 89, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.J.; Zheng, J.J. High dietary calcium intakes reduce zinc absorption and balance in humans. The Am. J. Clin. Nutr. 1997, 65, 1803–1809. [Google Scholar] [CrossRef]
- Bulat, Z.; Đukić-Ćosić, D.; Antonijević, B.; Bulat, P.; Vujanović, D.; Buha, A.; Matović, V. Effect of magnesium supplementation on the distribution patterns of zinc, copper, and magnesium in rabbits exposed to prolonged cadmium intoxication. Sci. World J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, H.; Yamada, U. Iron deficiency anemia induced by magnesium overuse: A case report. Biopsychosoc. Med. 2019, 13, 18. [Google Scholar] [CrossRef]
- Cinar, V.; Nizamlioglu, M.; Mogulkoc, R.; Baltaci, A.K. Effects of magnesium supplementation on blood parameters of athletes at rest and after exercise. Biol. Trace Elem. Res. 2007, 115, 205–212. [Google Scholar] [CrossRef]
- Kimura, M.; Yokoi, K. Iron accumulation in tissues of magnesium-deficient rats with dietary iron overload. Biol. Trace Elem. Res. 1996, 51, 177–197. [Google Scholar] [CrossRef] [PubMed]
- Borquaye, L.S.; Darko, G.; Laryea, M.K.; Gasu, E.N.; Amponsah, N.A.A.; Appiah, E.N. Nutritional and anti-nutrient profiles of some Ghanaian spices. Cogent Food Agric. 2017, 3, 1348185. [Google Scholar] [CrossRef]
- Mayen, A.-L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low-and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Chávez, C.G.; Rodríguez-Ramírez, S.; Rivera, J.A.; Monterrubio-Flores, E.; Tucker, K.L. Sociodemographic factors are associated with dietary patterns in Mexican schoolchildren. Public Health Nutr. 2018, 21, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, X.; Pedram, P.; Shahidi, M.; Du, J.; Yi, Y.; Gulliver, W.; Zhang, H.; Sun, G. Significant beneficial association of high dietary selenium intake with reduced body fat in the CODING Study. Nutrients 2016, 8, 24. [Google Scholar] [CrossRef]
- Castellanos-Gutiérrez, A.; Sánchez-Pimienta, T.G.; Carriquiry, A.; da Costa, T.H.; Ariza, A.C. Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr. J. 2018, 17, 114. [Google Scholar] [CrossRef]
- Gonoodi, K.; Moslem, A.; Darroudi, S.; Ahmadnezhad, M.; Mazloum, Z.; Tayefi, M.; Zadeh, S.A.T.; Eslami, S.; Shafiee, M.; Khashayarmanesh, Z. Serum and dietary zinc and copper in Iranian girls. Clin. Biochem. 2018, 54, 25–31. [Google Scholar] [CrossRef]
- Antipatis, V.J.; Gill, T.P. Obesity as a global problem. In International Textbook of Obesity; John Wiley & Son Ltd.: Washington, DC, USA, 2001; pp. 3–22. [Google Scholar]
- Urbano, M.R.; Vitalle, M.S.; Juliano, Y.; Amancio, O. Iron, copper and zinc in adolescents during pubertal growth spurt. J. Pediatr. 2002, 78, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Messner, B.; Bernhard, D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Afridi, H.I.; Talpur, F.N.; Kazi, T.G.; Brabazon, D. Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers. Environ. Monit. Assess. 2015, 187, 157. [Google Scholar] [CrossRef] [Green Version]
- Jenifer, H.D.; Bhola, S.; Kalburgi, V.; Warad, S.; Kokatnur, V.M. The influence of cigarette smoking on blood and salivary super oxide dismutase enzyme levels among smokers and nonsmokers—A cross sectional study. J. Tradit. Complementary Med. 2015, 5, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungtrongchitr, R.; Pongpaew, P.; Phonrat, B.; Tungtrongchitr, A.; Viroonudomphol, D.; Vudhivai, N.; Schelp, F.P. Serum copper, zinc, ceruloplasmin and superoxide dismutase in Thai overweight and obese. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2003, 86, 543–551. [Google Scholar]
- Kim, C.-H.; Park, J.Y.; Kim, J.Y.; Choi, C.S.; Kim, Y.I.; Chung, Y.E.; Lee, M.S.; Hong, S.K.; Lee, K.-U. Elevated serum ceruloplasmin levels in subjects with metabolic syndrome: A population-based study. Metab. Clin. Exp. 2002, 51, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Ghayour-Mobarhan, M.; Taylor, A.; New, S.; Lamb, D.; Ferns, G. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 2005, 42, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011. [Google Scholar] [CrossRef]
- Marra, M.V.; Bailey, R.L. Position of the Academy of Nutrition and Dietetics: Micronutrient supplementation. J. Acad. Nutr. Diet. 2018, 118, 2162–2173. [Google Scholar] [CrossRef] [Green Version]
- Harvey, L.J.; Dainty, J.R.; Hollands, W.J.; Bull, V.J.; Hoogewerff, J.A.; Foxall, R.J.; McAnena, L.; Strain, J.; Fairweather-Tait, S.J. Effect of high-dose iron supplements on fractional zinc absorption and status in pregnant women. Am. J. Clin. Nutr. 2007, 85, 131–136. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Du, C.; Ng, Q.X.; Hu, C.; He, Y.; Ong, C.N. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Res. 2017, 114, 135–143. [Google Scholar] [CrossRef]
Demographics | Total N | E-Waste Recyclers n (%) | Controls n (%) | X2 | p-Value |
---|---|---|---|---|---|
Socio-demographic characteristics | |||||
Marital Status | 150 | 4.43 | 0.06 | ||
Single | 44 (44.4) | 31 (60.8) | |||
Married | 55 (55.6) | 20 (39.2) | |||
Daily Income | 149 | 5.12 | 0.16 | ||
≤GHS 20 | 24 (24.2) | 9 (18.0) | |||
GHS 21–100 | 63 (63.6) | 30 (60.0) | |||
GHS 101–200 | 8 (8.1) | 4 (8.0) | |||
GHS > 200 | 4(4.0) | 7 (14.0) | |||
Education | 145 | 23.82 | <0.01 | ||
None | 25 (25.2) | 6 (13.0) | |||
Primary | 26 (26.3) | 4 (8.7) | |||
Middle/JSS | 32 (32.3) | 12 (26.1) | |||
Secondary/SSS & Higher | 16 (16.2) | 24 (52.3) | |||
Religion | 150 | 3.45 | 0.18 | ||
Muslim | 92 (92.9) | 43 (84.3) | |||
Christian | 5 (5.1) | 7 (13.7) | |||
Others | 2 (2) | 1 (2) | |||
Smoking | 36 | 27 (27.8) | 6 (12.4) | 4.52 | 0.03 |
Alcohol intake | 26 | 17 (17.0) | 9 (17.7) | 0.01 | 0.92 |
E-waste Job-task | 100 | NA | NA | ||
Burners | 32 (32) | NA | |||
Dismantlers | 49 (49) | NA | |||
Collectors/Sorters | 19 (19) | NA | |||
Anthropometric Measures | |||||
Mean ± SD | Mean ± SD | p-value | |||
Weight (kg) | 63.4 ± 9.5 | 71.6 ±12.6 | <0.01 | ||
Height (m) | 1.71 ± 0.1 | 1.73 ± 0.1 | 0.07 | ||
BMI (kg/m3) | 21.8 ± 2.7 | 23.9 ± 3.5 | <0.01 |
Dietary Micronutrient Intake of E-Waste Recyclers and Controls | ||||||||
Dietary Micronutrient Intake (mg) | E-Waste Recyclers (n = 100) | Controls (n = 51) | ||||||
RDA (mg) | Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | p-Value | |||
Ca | 1000 | 534.4 ± 352.3 | 449 (375.1) | 557.0 ± 369.6 | 497 (321) | 0.47 | ||
Mg | 350 | 45.7 ± 44.2 | 33.3 (38.1) | 84.7 ± 67.3 | 59.6 (86.8) | <0.01 | ||
Se | 55 | 22.8 ± 18.0 | 17.9 (20.4) | 32.2 ± 39.9 | 19.8 (36.2) | 0.50 | ||
Zn | 11 | 11.3 ± 4.1 | 10.6 (4.6) | 9.7 ± 4.7 | 8.7 (5.9) | 0.01 | ||
Cu | 2 | 1.1 ± 0.6 | 1.0 (0.6) | 1.0 ± 0.7 | 1.1 (0.6) | 0.12 | ||
Fe | 8 | 26.5 ± 13.0 | 24.2 (15.9) | 22.4 ± 10.5 | 24.8 (14.4) | 0.04 | ||
Dietary Micronutrient Intake Per E-Waste Recycler-Group | ||||||||
Dietary Micronutrient Intake (mg) | Burner (n = 32) | Dismantler (n = 49) | Collector/Sorter (n = 19) | |||||
RDA (mg) | Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | p-Value | |
Ca | 1000 | 453.3 ± 164.8 | 418.3 (202.5) | 582.8 ± 439.1 | 468.5 (400.6) | 546.3 ± 321.5 | 534.5 (376) | 0.67 |
Mg | 350 | 46.1 ± 38.4 | 39.9 (50.6) | 49.7 ± 52.5 | 34.3 (32.7) | 34.1 ± 24.7 | 26.9 (38.3) | 0.48 |
Se | 55 | 21.8 ± 18.3 | 16.3 (21.4) | 24.3 ± 18.7 | 19.0 (18.1) | 20.9 ± 16.3 | 16.4 (24.6) | 0.57 |
Zn | 11 | 10.5 ± 4.2 | 10.3 (5.7) | 11.9 ± 4.3 | 11.4 (5.1) | 11.2 ± 3.3 | 10.6 (4.3) | 0.61 |
Cu | 2 | 1.0 ± 0.5 | 1.0 (0.7) | 1.2 ± 0.7 | 1.1 (0.6) | 1.1 ± 0.5 | 1.0 (0.8) | 0.79 |
Fe | 8 | 23.9 ± 12.9 | 22.7 (13.3) | 27.7 ± 13.1 | 24.8 (14.4) | 27.8 ± 12.9 | 25.4 (18.6) | 0.35 |
Blood and Urinary Micronutrient Levels Analyzed among E-Waste Recyclers and Controls | ||||||||
Micronutrient Levels (µg/L) | Reference Range (µg/L) | E-Waste Recyclers (n = 100) | Controls (n = 51) | |||||
Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | p-Value | ||||
Whole blood levels | ||||||||
Ca | 59,028–72,193 | 61,992.1 ± 13,610.6 | 63,155.9 (16,083.2) | 65,851.8 ± 9270.3 | 65,629.4 (8835.7) | 0.07 | ||
Mg | 36,951–43,276 | 33,717.2 ± 5694.1 | 34,581.0 (6703.3) | 38,363.8 ± 4653.1 | 38,560.7 (6481.2) | <0.01 | ||
Se | 58–234 | 152.9 ± 39.8 | 145.9 (56.9) | 194.9 ± 44.1 | 193.1 (49.4) | <0.01 | ||
Zn | 4837–7980 | 7879.3 ± 2782.3 | 7242.9 (3267.6) | 8355.2 ± 2466.9 | 8057.9 (2043.2) | 0.09 | ||
Cu | 683–1036 | 1107.9 ± 222.6 | 1110.9 (233.5) | 1143.0 ± 234.1 | 1107.7 (259.6) | 0.72 | ||
Fe | 390,000–550,000 | 370,697.2 ± 68,181.2 | 381,307.2 (77,495.4) | 404,169.7 ± 65,185.7 | 427,274.6 (88,040.3) | <0.01 | ||
Urinary levels | ||||||||
Ca | 67,000–200,000 | 66,419.2 ± 75,335.6 | 40,243.9 (62,094.9) | 90,814.3 ± 69,028.3 | 71,103.2 (96,152.5) | <0.01 | ||
Mg | 15,000–120,000 | 82,220.5 ± 55,215 | 71,291.8 (72,978.9) | 82,000.5 ± 56,931.5 | 76,954.6 (63,733.0) | 0.98 | ||
Se | 7–160 | 29.7 ± 18.8 | 26.7 (22.3) | 44.5 ± 25.8 | 39.9 (31.1) | <0.01 | ||
Zn | 700–2500 | 3718.7 ± 7942.6 | 1044.4 (5022.0) | 1561.8 ± 1294.2 | 1253.0 (1195.7) | 0.89 | ||
Cu | 12–80 | 63.7 ± 53.8 | 38.1 (76.6) | 110.5 ± 567.8 | 25.6 (16.0) | <0.01 | ||
Fe | 1.2–600 | 181.4 ± 351.8 | 95.4 (79.8) | 114.4 ± 97.8 | 85.2 (52.3) | 0.08 | ||
Blood and Urinary Micronutrient Levels Analyzed between E-Waste Recycler-Groups | ||||||||
Micronutrient Levels (µg/L) | Reference Range (µg/L) | Burner (n = 32) | Dismantler (n = 49) | Collector/Sorter (n = 19) | ||||
Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | p-Value | ||
Whole blood levels | ||||||||
Ca | 59,028–72,193 | 55,577.0 ± 13,646.0 | 55,429.0 (18,578.1) | 62,995.2 ± 11,426.7 | 63,719.6 (12,923.5) | 70,209.5 ± 14,240.9 | 68,755.8 (11,117.3) | <0.01 |
Mg | 36,951–43,276 | 30,991.6 ± 6462.2 | 32,633.0 (7851.5) | 34,903.6 ± 5403.7 | 35,413.4 (6951.0) | 35,248.3 ± 5132.2 | 36,003.3 (6693.6) | 0.02 |
Se | 58–234 | 135.1± 34.1 | 129.5 (33.8) | 158.5 ± 41.8 | 159.7 (63.3) | 168.6 ± 33.9 | 162.4 (51.5) | <0.01 |
Zn | 4837–7980 | 6496.3 ± 2114.9 | 6667.9 (2356.9) | 8105.2 ± 2594.0 | 7571.8 (2747.2) | 9626.1 ± 3189.2 | 10,069 (4126.8) | <0.01 |
Cu | 683–1036 | 1038.4 ± 249.3 | 1028.6 (324.4) | 1126.5 ± 218.5 | 1107.8 (217.7) | 1173.6 ± 155.2 | 1131.6 (198.1) | 0.12 |
Fe | 390,000–550,000 | 350,216.2 ± 78,098.1 | 368,696.2 (120,304.8) | 382,397.1 ± 58,722.5 | 384,963.9 (67,423.7) | 375,166.5 ± 68,887.8 | 389,211.4 (75,233.2) | 0.19 |
Urinary Levels | ||||||||
Ca | 67,000–200,000 | 61,621.6 ± 73,714.8 | 34,674.6 (67,557.2) | 58,091.7 ± 47,212.3 | 53,992.3 (60,345.3) | 95,099.1 ± 120,164.4 | 40,548.7 (79,110.5) | 0.44 |
Mg | 15,000–120,000 | 85,002.8 ± 62,528.2 | 66,585.8 (81,500.2) | 78,503.6 ± 53,177.6 | 71,412.0 (67,174.9) | 86,729.0 ± 48,965.0 | 86,529.7 (59,442.0) | 0.70 |
Se | 7–160 | 26.3 ± 20.2 | 20.7 (19.9) | 32.3 ± 19.2 | 27.1 (22.9) | 31.6 ± 15.1 | 32.3 (23.3) | 0.15 |
Zn | 700–2500 | 1548.1 ± 2012.8 | 784.5 (769.1) | 5368.0 ± 11,138.6 | 1047.6 (5022) | 3468.2 ± 2729.4 | 4597.4 (5473.2) | <0.01 |
Cu | 12–80 | 87.7 ± 57.6 | 97.6 (87.3) | 48.3 ± 57.6 | 87.3 (82.6) | 61.2 ± 64.8 | 33.8 (43.0) | <0.01 |
Fe | 1.2–600 | 108.9 ± 69.4 | 87.3 (82.6) | 108.9 ± 69.4 | 100.4 (68.9) | 426.5 ± 744.7 | 100.4 (153.6) | 0.19 |
Biomarkers (µg/L) | D-Ca (mg) | D-Mg (mg) | D-Fe (mg) | D-Se (mcg) | D-Cu (mg) | D-Zn (mg) |
---|---|---|---|---|---|---|
B-Ca | 0.15 | 0.17 | 0.06 | 0.11 | −0.04 | −0.002 |
B-Mg | 0.11 | 0.27 ** | 0.04 | 0.09 | −0.03 | 0.002 |
B-Fe | 0.17 | 0.17 * | 0.10 | 0.10 | 0.001 | 0.06 |
B-Cu | −0.02 | 0.17 | 0.04 | 0.02 | −0.04 | 0.001 |
B-Zn | 0.29 ** | 0.18 * | 0.11 | 0.13 | −0.03 | 0.08 |
B-Se | 0.16 | 0.21 * | 0.07 | 0.07 | −0.06 | 0.002 |
U-Ca | 0.04 | −0.09 | −0.06 | 0.07 | 0.21 ** | −0.10 |
U-Mg | −0.003 | −0.10 | −0.07 | 0.03 | −0.06 | −0.10 |
U-Fe | 0.11 | −0.04 | 0.07 | 0.01 | −0.02 | 0.09 |
U-Cu | −0.05 | −0.21 ** | −0.09 | 0.05 | 0.09 | −0.11 |
U-Zn | 0.07 | 0.09 | 0.02 | 0.12 | −0.04 | −0.01 |
U-Se | 0.06 | −0.11 | −0.12 | 0.12 | 0.01 | −0.09 |
Variables | D-Ca (mg) β [95% CI] | D-Mg (mg) β [95% CI] | D-Fe (mg) β [95% CI] | D-Zn (mg) β [95% CI] | D-Cu (mg) β [95% CI] | D-Se (mcg) β [95% CI] |
Daily duration (hours) of e-waste work activity | −0.05 * [−0.09, −0.01] | 0.05 [−0.02, 0.12] | −0.05 * [−0.08, −0.01] | −0.01 [−0.05, 0.02] | 0.07 [−0.02, 0.16] | 0.08 [−0.03, 0.18] |
Educational Status | −0.06 [−0.16, 0.04] | −0.19 * [−0.36, −0.02] | −0.01 [−0.10, 0.09] | −0.02 [−0.11, 0.07] | −0.10 [−0.31, 0.11] | −0.07 [−0.33, 0.19] |
Daily Income earned | 0.11 * [0.01, 0.21] | −0.05 [−0.21, 0.12] | 0.15 * [0.01, 0.30] | 0.10 [−0.04, 0.24] | −0.16 [−0.50, 0.17] | −0.07 [−0.47, 0.34] |
Age (years) | 0.02 [0.002, 0.04] | 0.03 [−0.002, 0.07] | 0.02 [−0.003, 0.03] | 0.001 [−0.02, 0.02] | −0.0003 [−0.04, 0.04] | −0.03 [−0.08, 0.02] |
BMI (kg/m3) | −0.01 [−0.05, 0.04] | 0.08 * [−0.002, 0.16] | −0.01 [−0.05, 0.04] | 0.03 [−0.01, 0.07] | 0.11 * [0.02, 0.21] | 0.15 * [0.03, 0.26] |
Cigarette smoking | 0.06 [−0.19, 0.30] | −0.20 [−0.62, 0.22] | −0.06 [−0.29, 0.17] | 0.04 [−0.18, 0.26] | −0.01 [−0.53, 0.51] | −0.15 [−0.77, 0.48] |
Biomass exposure | 0.14 [−0.08, 0.36] | −0.06 [−0.46, 0.33] | 0.13 [−0.07, 0.34] | 0.06 [−0.14, 0.25] | 0.20 [−0.26, 0.66] | −0.37 [−0.92, 0.19] |
Alcohol intake | −0.07 [−0.37, 0.23] | −0.03 [−0.57, 0.51] | 0.01 [−0.07, 0.09] | −0.02 [−0.09, 0.06] | 0.01 [−0.17, 0.19] | −0.13 [−0.11, 0.36] |
Job task | −0.06 [−0.23, 0.11] | −0.19 [−0.48, 0.10] | −0.01 [−0.17, 0.15] | 0.09 [−0.07, 0.24] | 0.01 [−0.35, 0.37] | 0.17 [−0.26, 0.60] |
Variables | B-Ca (µg/L) β [95% CI] | B-Mg (µg/L) β [95% CI] | B-Fe (µg/L) β [95% CI] | B-Zn (µg/L) β [95% CI] | B-Cu(µg/L) β [95% CI] | B-Se (µg/L) β [95% CI] |
Daily duration (hours) of e-waste work activity | 0.10 [−0.01, 0.03] | 0.01 [−0.01, 0.03] | 0.003 [−0.01, 0.02] | −0.001 [−0.03, 0.03] | 0.002 [−0.01, 0.03] | −0.003 [−0.02, 0.02] |
Years of performing e-waste activities (years) | −0.003 [−0.02, 0.01] | −0.01 * [−0.02, −0.001] | −0.01 [−0.02, 0.01] | −0.01 [−0.02, 0.01] | −0.01 [−0.02, 0.002] | −0.004 [−0.02, 0.01] |
Cigarette smoking | −0.07 [0.20, 0.05] | −0.07 [−0.19, 0.04] | −0.05 [−0.17, 0.07] | −0.10 [−0.28, 0.08] | −0.07 [−0.19, 0.05] | −0.10 [−0.23, 0.03] |
Biomass exposure | −0.01 [−0.11, 0.09] | −0.10 * [−0.20, 0.003] | −0.15 ** [−0.25, −0.05] | −0.24 ** [−0.40, −0.09] | −0.03 [−0.14, 0.06] | −0.01 [−0.12, 0.11] |
Age (years) | −0.004 [−0.01, 0.01] | 0.01 [−0.004, 0.02] | 0.003 [−0.01, 0.01] | −0.002 [−0.02, 0.01] | 0.002 [−0.01, 0.01] | 0.01 [−0.01, 0.02] |
BMI (kg/m3) | 0.01 [−0.01, 0.03] | 0.001 [−0.02, 0.02] | 0.01 [−0.02, 0.03] | 0.01 [−0.02, 0.04] | −0.001 [−0.02, 0.02] | 0.01 [−0.01, 0.03] |
Alcohol intake | −0.10 [−0.25, 0.05] | −0.06 [−0.20, 0.08] | −0.05 [−0.19, 0.10] | −0.07 [−0.28, 0.15] | −0.02 [−0.17, 0.12] | −0.05 [−0.21, 0.11] |
Job task | 0.14 ** [0.06, 0.23] | 0.09 * [0.01, 0.17] | 0.03 [−0.05, 0.12] | 0.18 ** [0.05, 0.30] | 0.10 * [0.01, 0.18] | 0.09 [−0.003, 0.18] |
Variables | U-Ca (µg/L) β [95% CI] | U-Mg (µg/L) β [95% CI] | U-Fe (µg/L) β [95% CI] | U-Zn (µg/L) β [95% CI] | U-Cu (µg/L) β [95% CI] | U-Se (µg/L) β [95% CI] |
Daily duration (hours) of e-waste work activity | −0.07 [−0.18, 0.04] | −0.05 [−0.12, 0.02] | 0.01 [−0.07, 0.09] | 0.03 [−0.09, 0.16] | −0.01 [−0.08, 0.07] | −0.03 [−0.09, 0.02] |
Years of performing e-waste activities (years) | 0.08 * [−0.02, 0.15] | 0.02 [−0.02, 0.06] | 0.03 [−0.02, 0.08] | −0.02 [−0.09, 0.05] | 0.07 * [0.02, 0.12] | −0.003 [−0.04, 0.03] |
Cigarette smoking | −0.77 * [−1.42, −0.12] | −0.60 * [−1.00, 0.19] | 0.02 [−0.36, 0.59] | −0.85 * [−1.58, −0.13] | 0.16 [−0.30, 0.63] | −0.33 [−0.67, 0.003] |
Biomass exposure | −0.06 [−0.62, 0.50] | −0.25 [−0.60, 0.10] | −0.20 [−0.61, 0.20] | 0.01 [−0.61, 0.64] | 0.06 [−0.33, 0.46] | 0.05 [−0.25, 0.32] |
Age (years) | −0.04 [−0.10, 0.02] | −0.02 [−0.05, 0.02] | −0.01 [−0.05, 0.03] | 0.001 [−0.06, 0.07] | −0.06 * [−0.10, −0.02] | −0.02 [−0.05, 0.01] |
BMI (kg/m3) | 0.01 [−0.10, 0.02] | −0.02 [−0.10, 0.05] | 0.01 [−0.07, 0.98] | −0.02 [−0.15, 0.11] | 0.05 [−0.03, 0.13] | 0.05 [−0.01, 0.11] |
Alcohol intake | 0.21 [−0.57, 1.00] | 0.06 [−0.43, 0.55] | −0.31 [−0.88, 0.27] | 0.06 [−0.82, 0.93] | 0.07 [−0.49, 0.63] | 0.29 [−0.12, 0.70] |
Job task/recycler group | 0.125 [−0.30, 0.61] | −0.01 [−0.29, 0.27] | 0.25 [−0.08, 0.59] | 0.41 [−0.09, 0.92] | −0.11 [−0.43, 0.21] | 0.21 [0.03, 0.44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takyi, S.A.; Basu, N.; Arko-Mensah, J.; Dwomoh, D.; Nti, A.A.A.; Kwarteng, L.; Acquah, A.A.; Robins, T.G.; Fobil, J.N. Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 9575. https://doi.org/10.3390/ijerph17249575
Takyi SA, Basu N, Arko-Mensah J, Dwomoh D, Nti AAA, Kwarteng L, Acquah AA, Robins TG, Fobil JN. Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. International Journal of Environmental Research and Public Health. 2020; 17(24):9575. https://doi.org/10.3390/ijerph17249575
Chicago/Turabian StyleTakyi, Sylvia A., Niladri Basu, John Arko-Mensah, Duah Dwomoh, Afua Asabea Amoabeng Nti, Lawrencia Kwarteng, Augustine A. Acquah, Thomas G. Robins, and Julius N. Fobil. 2020. "Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana" International Journal of Environmental Research and Public Health 17, no. 24: 9575. https://doi.org/10.3390/ijerph17249575
APA StyleTakyi, S. A., Basu, N., Arko-Mensah, J., Dwomoh, D., Nti, A. A. A., Kwarteng, L., Acquah, A. A., Robins, T. G., & Fobil, J. N. (2020). Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. International Journal of Environmental Research and Public Health, 17(24), 9575. https://doi.org/10.3390/ijerph17249575