Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution
Abstract
:1. Introduction
2. Experimental Part
2.1. Chemical Reagents and Solutions
2.2. Preparation of FM-MBC
2.3. Characterization
2.4. Batch Experiment
3. Results and Discussion
3.1. Characterization of FM-MBC
3.1.1. Elemental Analysis and Specific Surface Area
3.1.2. SEM Analysis
3.1.3. XRD Analysis
3.2. Effect of Solution pH
3.3. Effect of Adsorption Time
3.4. Adsorption Kinetics
3.5. Adsorption Isotherm
3.6. Mechanism of Cr(VI) Adsorption by FM-MBC
3.6.1. SEM-EDS Analysis
3.6.2. FTIR Analysis
3.6.3. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, K.; Huang, Z.; Zhu, S.; Luo, S.; Yan, L.; Dai, Y.; Guo, Y.; Yang, Y. Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl. Catal. B Environ. 2019, 243, 386–396. [Google Scholar] [CrossRef]
- Kretschmer, I.; Senn, A.M.; Meichtry, J.M.; Custo, G.; Halac, E.B.; Dillert, R.; Bahnemann, D.W.; Litter, M.I. Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. Appl. Catal. B Environ. 2019, 242, 218–226. [Google Scholar] [CrossRef]
- Xu, X.Y.; Huang, H.; Zhang, Y.; Xu, Z.B.; Cao, X.D. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environ. Pollut. 2019, 244, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Anandaraj, B.; Eswaramoorthi, S.; Rajesh, T.P.; Aravind, J.; Babu, S.P. Chromium(VI) adsorption by codium tomentosum: Evidence for adsorption by porous media from sigmoidal dose-response curve. Int. J. Environ. Sci. Technol. 2018, 15, 2595–2606. [Google Scholar] [CrossRef]
- Andrade, J.K.; Andrade, C.K.; Felsner, M.L.; Anjos, V.E. Ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry for the chromium speciation in water samples. Talanta 2019, 191, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, Y.G.; Liu, S.B.; Yin, Y.C.; Zeng, G.M.; Tan, X.F.; Hu, X.; Hu, X.J.; Jiang, L.H.; Ding, Y.; et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour. Technol. 2016, 218, 351–359. [Google Scholar] [CrossRef]
- An, Q.; Li, X.Q.; Nan, H.Y.; Yu, Y.; Jiang, J.N. The potential adsorption mechanism of the biochars with different modification processes to Cr(VI). Environ. Sci. Pollut. Res. 2018, 25, 31346–31357. [Google Scholar] [CrossRef]
- Tian, X.K.; Wang, W.W.; Tian, N.T.; Zhou, C.X.; Yang, C.; Komarneni, S. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. J. Hazard. Mater. 2016, 309, 151–156. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.H.; Lo, I.M. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Wang, M.C.; Sheng, G.D.; Qiu, Y.P. A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int. J. Environ. Sci. Technol. 2015, 12, 1719–1726. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chen, N.; Feng, C.Q.; Li, M.; Gao, Y. Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: Reaction pathway and contribution degree. Colloids Surf. 2018, 556, 201–209. [Google Scholar] [CrossRef]
- Myung, Y.; Jung, S.; Tung, T.T.; Tripathi, K.M.; Kim, T.Y. Graphene-Based Aerogels Derived from Biomass for Energy Storage and Environmental Remediation. ASC. Sustain. Chem. Eng. 2019, 7, 3772–3782. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.T.; Xu, C.; Liu, P.; Lv, J.; Liu, Y.Y.; Wang, Q.Y. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: Aspectroscopic study. J. Hazard. Mater. 2020, 384, 121371. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Yang, L.; Li, Q.; Li, Y.R.; Yang, L.T.; Anas, M.; Huang, D.L. Characteristics and inorganic N holding ability of biochar derived from the pyrolysis of agricultural and forestal residues in the southern China. J. Anal. Appl. Pyrol. 2018, 134, 544–551. [Google Scholar] [CrossRef]
- Correa, F.G.; Bulbulian, S. Co(II) adsorption in aqueous media by a synthetic Fe-Mn binary oxide adsorbent. Water Air Soil Pollut. 2012, 223, 4089–4100. [Google Scholar] [CrossRef]
- Taffarel, S.R.; Rubio, J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolites. Miner. Eng. 2010, 23, 1131–1138. [Google Scholar] [CrossRef]
- Aryal, M.; Ziagova, M.; Kyriakides, M.L. Comparison of Cr(VI) and As(V) removal in single and binary mixtures with Fe(III)-treated Staphylococcus xylosus biomass: Thermodynamic studies. Chem. Eng. J. 2011, 169, 100–106. [Google Scholar] [CrossRef]
- Cui, H.J.; Cai, J.K.; Zhao, H.; Yuan, B.L.; Ai, C.L.; Fu, M.L. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water. J. Hazard. Mater. 2014, 279, 26–31. [Google Scholar] [CrossRef]
- Wang, W.L.; Fu, X.B. Efficient Removal of Cr(VI) with Fe/Mn Mixed Metal Oxide Nanocomposites Synthesized by a Grinding Method. J. Nanomater. 2013, 2013, 7. [Google Scholar]
- Wen, Z.P.; Zhang, Y.L.; Guo, S.; Chen, R. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J. Colloid Interface Sci. 2017, 486, 211–218. [Google Scholar] [CrossRef]
- Du, X.L.; Yu, Z.Y.; Zhu, Y.J. Cr(VI) adsorption from aqueous solution and its reactions behavior on the surfaces of granular Fe-Mn binary oxides. Environ. Prog. Sustain. 2019, 38, S176–S184. [Google Scholar] [CrossRef]
- Lu, J.B.; Liu, H.J.; Zhao, X.; Jefferson, W.; Cheng, F.; Qu, J.H. Phosphate removal from water using freshly formed Fe-Mn binary oxide: Adsorption behaviors and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 11–18. [Google Scholar] [CrossRef]
- Wu, Z.B.; Zhong, H.; Yuan, X.Z.; Wang, H.; Wang, L.L.; Chen, X.H.; Zeng, G.M.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Marmiroli, M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Tong, Q.; Shan, W.J.; Xing, Z.Q.; Wang, Y.J.; Wen, S.Q. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Appl. Surf. Sci. 2017, 416, 618–627. [Google Scholar] [CrossRef]
- Joshi, T.P.; Zhang, G.; Koju, R.; Qi, Z.L.; Liu, R.P.; Liu, H.J.; Qu, J.H. The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn framework. Sci. Total Environ. 2017, 601, 713–722. [Google Scholar] [CrossRef]
- Zhu, Y.E.; Li, H.; Zhang, G.X.; Meng, F.J.; Li, L.F.; Wu, S. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresour. Technol. 2018, 261, 142–150. [Google Scholar] [CrossRef]
- Lian, F.; Xing, B.S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environ. Sci. Technol. 2017, 51, 13517–13532. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman Jr, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Wang, J.; Wang, M.; He, Q.L.; Song, J.Y.; Wang, H.Y.; Zhou, J.P. Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption. Chemosphere 2018, 203, 188–198. [Google Scholar] [CrossRef]
- Brandão, P.C.; Souza, T.C.; Ferreira, C.A.; Hori, C.E.; Romanielo, L.L. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J. Hazard. Mater. 2010, 175, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.N.; Wang, D.Q.; Zhu, Y.N.; Zhu, Z.Q.; Li, Y.H.; Huang, C.P. Nano-hematite bagasse composite (n-HBC) for the removal of Pb(II) from dilute aqueous solutions. J. Water Process Eng. 2018, 21, 69–76. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.Y.; Liu, F.; Wang, L.G.; Ouyang, T.; Chang, C.T. Facile one-step synthesis of magnetically modified biochar with enhanced removal capacity for hexavalent chromium from aqueous solution. J. Taiwan Inst. Chem. Eng. 2017, 81, 414–418. [Google Scholar] [CrossRef]
- Hu, Z.L.; Cai, L.M.; Liang, J.M.; Guo, X.T.; Li, W.; Huang, Z.J. Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution. J. Clean. Prod. 2019, 209, 1216–1227. [Google Scholar] [CrossRef]
- Sheikhmohammadi, A.; Hashemzadeh, B.; Alinejad, A.; Mohseni, S.M.; Sardar, M.; Sharafkhani, R.; Sarkhosh, M.; Asgari, E.; Bay, A. Application of graphene oxide modified with the phenopyridine and 2-mercaptobenzothiazole for the adsorption of Cr(VI) from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. J. Mol. Liq. 2019, 285, 586–597. [Google Scholar] [CrossRef]
- Rossi, A.D.; Rigon, M.R.; Zaparoli, M.; Braido, R.D.; Colla, L.M.; Dotto, G.L.; Piccin, J.F. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ. Sci. Pollut. Res. 2018, 25, 19179–19186. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Z.Y.; Xu, S.; Wang, H.T.; Lu, W.J. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015, 190, 388–394. [Google Scholar] [CrossRef]
- Choudhary, B.; Paul, D. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J. Environ. Chem. Eng. 2018, 6, 2335–2343. [Google Scholar] [CrossRef]
- Gode, F.; Pehlivan, E. Removal of Cr(VI) from aqueous solution by two Lewatit anion exchange resins. J. Hazard. Mater. 2005, 119, 175–182. [Google Scholar] [CrossRef]
- Song, Z.G.; Lian, F.; Yu, Z.H.; Zhu, L.Y.; Xing, B.S.; Qiu, W.W. Synthesis and characterization of a novel MnOx -loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem. Eng. J. 2014, 242, 36–42. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Zhu, Y.N.; Yang, F.; Zhang, X.H.; Qin, H.; Liang, Y.P.; Liu, J. Sorption-reduction removal of Cr(VI) from aqueous solution by the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood hierarchical microstructure. Desalin. Water Treat. 2014, 52, 3133–3146. [Google Scholar] [CrossRef]
- Crini, G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye. Pigment 2008, 77, 415–426. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S.; Dobhal, R.; Uniyal, D.P.; Singh, P. Arsenic speciation analysis and remediation techniques in drinking water. Desalin. Water Treat. 2012, 40, 231–243. [Google Scholar] [CrossRef]
- Chen, B.L.; Chen, Z.M.; Lv, S.F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; An, S.W.; Ding, J.; Jiang, D.; Hong, W.; Jin, Y.D.; Liu, L.; Wang, R.B.; Zhang, D.; Xia, C.Q. Adsorption and desorption of uranium(VI) by Fe-Mn binary oxide in aqueous solutions. J. Radioanal. Nucl. Chem. 2016, 308, 545–554. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.J.; Liu, R.P.; Zhao, X.; Qu, J.H. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn Binary Oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef]
- Wang, X.S.; Chen, L.F.; Li, F.Y.; Chen, K.L.; Wan, W.Y.; Tang, Y.J. Removal of Cr(VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. J. Hazard. Mater. 2010, 175, 816–822. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhang, X.D.; Huang, Y.M. Magnetic chitosan-iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Ind. Eng. Chem. Res. 2013, 52, 11956–11966. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Lisha, K.P.; Pradeep, T. A novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water. J. Hazard. Mater. 2010, 181, 986–995. [Google Scholar] [CrossRef]
Concentration (mg/L) | qe | Pseudo-First-Order Equation | Pseudo-Second-Order Kinetic Equation | ||||
(mg/g) | R2 | k1 | qm | R2 | k2 | qm | |
20 (298 K) | 9.72 | 0.858 | 0.0010 | 8.71 | 0.999 | 0.1002 | 9.68 |
50 (298 K) | 24.39 | 0.786 | 0.0020 | 23.02 | 0.999 | 0.0447 | 24.27 |
50 (308 K) | 24.57 | 0.913 | 0.0023 | 23.22 | 0.999 | 0.0420 | 24.43 |
Concentration (mg/L) | Bangham Kinetic Equation | Elovich Kinetic Equation | |||||
R2 | k3 | R2 | k4 | ||||
20 (298 K) | 0.674 | 0.091 | 0.869 | 0.858 | |||
50 (298 K) | 0.938 | 0.021 | 0.943 | 0.444 | |||
50 (308 K) | 0.923 | 0.032 | 0.925 | 0.723 |
Temperature °C | Langmuir Equation | Freundlich Equation | ||||
---|---|---|---|---|---|---|
R2 | KL | Qmax (mg/g) | R2 | KF | 1/n | |
25 (298 K) | 0.999 | 1.107 | 28.49 | 0.875 | 17.274 | 0.357 |
35 (308 K) | 0.999 | 1.215 | 31.21 | 0.866 | 19.038 | 0.350 |
45 (318 K) | 0.999 | 1.224 | 37.62 | 0.871 | 22.301 | 0.341 |
Element | C | O | Mn | Fe | Cr | Other |
---|---|---|---|---|---|---|
FM-MBC (wt. %) | 24.33 | 28.10 | 7.62 | 38.01 | - | 1.94 |
FM-MBC after Cr(VI) adsorption (wt. %) | 13.89 | 4.21 | 6.42 | 49.32 | 22.32 | 3.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Xu, S.; Zhu, Y.; Chen, X.; Deng, Z.; Yan, L.; He, H. Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution. Int. J. Environ. Res. Public Health 2020, 17, 676. https://doi.org/10.3390/ijerph17030676
Liang M, Xu S, Zhu Y, Chen X, Deng Z, Yan L, He H. Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution. International Journal of Environmental Research and Public Health. 2020; 17(3):676. https://doi.org/10.3390/ijerph17030676
Chicago/Turabian StyleLiang, Meina, Shuiping Xu, Yinian Zhu, Xu Chen, Zhenliang Deng, Liling Yan, and Huijun He. 2020. "Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution" International Journal of Environmental Research and Public Health 17, no. 3: 676. https://doi.org/10.3390/ijerph17030676
APA StyleLiang, M., Xu, S., Zhu, Y., Chen, X., Deng, Z., Yan, L., & He, H. (2020). Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution. International Journal of Environmental Research and Public Health, 17(3), 676. https://doi.org/10.3390/ijerph17030676