Problematic Smartphone Use and Mental Health in Chinese Adults: A Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measurements
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De-Sola Gutiérrez, J.; Rodríguez de Fonseca, F.; Rubio, G. Cell−phone addiction: A review. Front. Psychiatry 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, R. Adolescent girls and young adult men: Two sub−cultures of the mobile telephone. Revista de Estudios de juventud 2002, 52, 33–46. [Google Scholar]
- Thomée, S. Mobile phone use and mental health. A review of the research that takes a psychological perspective on exposure. Int. J. Environ. Res. Public Health 2018, 15, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chóliz, M. Mobile phone addiction: A point of issue. Addiction 2010, 105, 373–374. [Google Scholar] [PubMed]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Dong, Y.; Wang, J. Sleep quality as a mediator of problematic smartphone use and clinical health symptoms. J. Behav. Addict. 2018, 7, 466–472. [Google Scholar] [CrossRef]
- Liu, S.; Wing, Y.K.; Hao, Y.; Li, W.; Zhang, J.; Zhang, B. The associations of long−time mobile phone use with sleep disturbances and mental distress in technical college students: A prospective cohort study. Sleep 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Thomée, S.; Eklöf, M.; Gustafsson, E.; Nilsson, R.; Hagberg, M. Prevalence of perceived stress, symptoms of depression and sleep disturbances in relation to information and communication technology (ICT) use among young adults—an explorative prospective study. Comput. Hum. Behav. 2007, 23, 1300–1321. [Google Scholar] [CrossRef]
- Guo, N.; Wang, M.P.; Luk, T.T.; Ho, S.Y.; Fong, D.Y.T.; Chan, S.S.; Lam, T.H. The association of problematic smartphone use with family well−being mediated by family communication in Chinese adults: A population−based study. J. Behav. Addict. 2019, 8, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Luk, T.T.; Wang, M.P.; Shen, C.; Wan, A.; Chau, P.H.; Oliffe, J.; Viswanath, K.; Chan, S.S.; Lam, T.H. Short version of the Smartphone Addiction Scale in Chinese adults: Psychometric properties, sociodemographic, and health behavioral correlates. J. Behav. Addict. 2018, 7, 1157–1165. [Google Scholar] [CrossRef]
- De-Sola, J.; Talledo, H.; de Fonseca, F.R.; Rubio, G. Prevalence of problematic cell phone use in an adult population in Spain as assessed by the Mobile Phone Problem Use Scale (MPPUS). PLoS ONE 2017, 12, e0181184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Fernandez, O. Short version of the Smartphone Addiction Scale adapted to Spanish and French: Towards a cross−cultural research in problematic mobile phone use. Addict. Behav. 2017, 64, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Nahas, M.; Hlais, S.; Saberian, C.; Antoun, J. Problematic smartphone use among Lebanese adults aged 18–65 years using MPPUS−10. Comput. Hum. Behav. 2018, 87, 348–353. [Google Scholar] [CrossRef]
- World Health Organization. Promoting mental health: Concepts, emerging evidence, practice: Summary report. Available online: https://apps.who.int/iris/bitstream/handle/10665/42940/9241591595.pdf (accessed on 11 November 2019).
- Sun, Y.; Luk, T.T.; Wang, M.P.; Shen, C.; Ho, S.Y.; Viswanath, K.; Chan, S.S.C.; Lam, T.H. The reliability and validity of the Chinese short Warwick−Edinburgh Mental Well−being Scale in the general population of Hong Kong. Qual. Life Res. 2019, 28, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, G.J.; Keyes, C.L.M. Mental illness and mental health: The two continua model across the lifespan. J. Adult. Dev. 2010, 17, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Seow, L.S.E.; Vaingankar, J.A.; Abdin, E.; Sambasivam, R.; Jeyagurunathan, A.; Pang, S.; Chong, S.A.; Subramaniam, M. Positive mental health in outpatients with affective disorders: Associations with life satisfaction and general functioning. J. Affect. Disord. 2016, 190, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Keyes, C.L.M. Mental illness and/or mental health? Investigating axioms of the complete state model of health. J. Consult. Clin. Psychol. 2005, 73, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Horwood, S.; Anglim, J. Problematic smartphone usage and subjective and psychological well−being. Comput. Hum. Behav. 2019, 97, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Census and Statistics Department. Thematic household survey report No. 64. Available online: https://www.statistics.gov.hk/pub/B11302642018XXXXB0100.pdf (accessed on 11 November 2019).
- Kwon, M.; Kim, D.-J.; Cho, H.; Yang, S. The Smartphone Addiction Scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Löwe, B. An ultra−brief screening scale for anxiety and depression: The PHQ–4. Psychosomatics 2009, 50, 613–621. [Google Scholar] [PubMed]
- Löwe, B.; Wahl, I.; Rose, M.; Spitzer, C.; Glaesmer, H.; Wingenfeld, K.; Schneider, A.; Brähler, E. A 4−item measure of depression and anxiety: Validation and standardization of the Patient Health Questionnaire−4 (PHQ−4) In the general population. J. Affect. Disord. 2010, 122, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Stewart, S.M.; Wong, P.T.K.; Lam, T.H. Screening for depression with the Patient Health Questionnaire−2 (PHQ−2) among the general population in Hong Kong. J. Affect. Disord. 2011, 134, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Lyubomirsky, S.; Lepper, H.S. A measure of subjective happiness: Preliminary reliability and construct validation. Soc. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
- Nan, H.; Ni, M.Y.; Lee, P.H.; Tam, W.W.S.; Lam, T.H.; Leung, G.M.; McDowell, I. Psychometric evaluation of the Chinese version of the Subjective Happiness Scale: Evidence from the Hong Kong FAMILY Cohort. Int. J. Behav. Med. 2014, 21, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart-Brown, S.; Tennant, A.; Tennant, R.; Platt, S.; Parkinson, J.; Weich, S. Internal construct validity of the Warwick-Edinburgh Mental Well−being Scale (WEMWBS): A rasch analysis using data from the Scottish health education population survey. Health Qual. Life Outcomes 2009, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.E.; Kim, S.-H.; Ha, T.-Y.; Yoo, Y.-M.; Han, J.-J.; Jung, J.-H.; Jang, J.-Y. Dependency on smartphone use and its association with anxiety in Korea. Public Health Rep. 2016, 131, 411–419. [Google Scholar] [CrossRef] [Green Version]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural Equation Models with Non-Normal Variables: Problems and Remedies; SAGE Publishing: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Izrael, D.; Hoaglin, D.C.; Battaglia, M.P. To rake or not to rake is not the question anymore with the enhanced raking macro. In Proceedings of the Twenty−Ninth Annual SAS Users Group International Conference, Montreal, QC, Canada, 9–12 May 2004. [Google Scholar]
- Kraut, R.; Patterson, M.; Lundmark, V.; Kiesler, S.; Mukophadhyay, T.; Scherlis, W. Internet paradox: A social technology that reduces social involvement and psychological well-being? Am. Psychol. 1998, 53, 1017. [Google Scholar] [CrossRef]
- Priel, B.; Shamai, D. Attachment style and perceived social support: Effects on affect regulation. Pers. Individ. Dif. 1995, 19, 235–241. [Google Scholar] [CrossRef]
- Adams, S.K.; Kisler, T.S. Sleep quality as a mediator between technology-related sleep quality, depression, and anxiety. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 25–30. [Google Scholar] [CrossRef]
- Shensa, A.; Escobar-Viera, C.G.; Sidani, J.E.; Bowman, N.D.; Marshal, M.P.; Primack, B.A. Problematic social media use and depressive symptoms among U.S. young adults: A nationally−representative study. Soc. Sci. Med. 2017, 182, 150–157. [Google Scholar] [PubMed]
- Vannucci, A.; Flannery, K.M.; Ohannessian, C.M. Social media use and anxiety in emerging adults. J. Affect. Disord. 2017, 207, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Boers, E.; Afzali, M.H.; Newton, N.; Conrod, P. Association of screen time and depression in adolescence. JAMA Pediatr. 2019, 173, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Yang, H.; Montag, C. Cognitive− and emotion−related dysfunctional coping processes: Transdiagnostic mechanisms explaining depression and anxiety’s relations with problematic smartphone use. Curr. Addict. Rep. 2019, 6, 410–417. [Google Scholar] [CrossRef]
- Li, J.-B.; Mo, P.K.H.; Lau, J.T.F.; Su, X.-F.; Zhang, X.; Wu, A.M.S.; Mai, J.-C.; Chen, Y.-X. Online social networking addiction and depression: The results from a large−scale prospective cohort study in Chinese adolescents. J. Behav. Addict. 2018, 7, 686–696. [Google Scholar] [CrossRef]
- Akın, A. The relationships between internet addiction, subjective vitality, and subjective happiness. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 404–410. [Google Scholar] [CrossRef]
- Lachmann, B.; Sindermann, C.; Sariyska, R.Y.; Luo, R.; Melchers, M.C.; Becker, B.; Cooper, A.J.; Montag, C. The role of empathy and life satisfaction in internet and smartphone use disorder. Front. Psychol. 2018, 9, 398. [Google Scholar] [CrossRef]
- Hughes, N.; Burke, J. Sleeping with the frenemy: How restricting ‘bedroom use’ of smartphones impacts happiness and wellbeing. Comput. Hum. Behav. 2018, 85, 236–244. [Google Scholar] [CrossRef]
- Magsamen-Conrad, K.; Billotte-Verhoff, C.; Greene, K. Technology addiction’s contribution to mental wellbeing: The positive effect of online social capital. Comput. Hum. Behav. 2014, 40, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Council on communications and media. Media use in school−aged children and adolescents. Pediatrics 2016, 138, e20162592. [Google Scholar] [CrossRef] [PubMed]
- Sambasivam, R.; Vaingankar, J.A.; Chong, S.A.; Abdin, E.; Jeyagurunathan, A.; Seow, L.S.E.; Pang, S.; Subramaniam, M. Positive mental health in outpatients: Comparison within diagnostic groups. BMC Psychiatry 2016, 16, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orben, A.; Przybylski, A.K. The association between adolescent well−being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Characteristics | Non-Weighted n (%) | Weighted a n (%) |
---|---|---|
Sex | ||
Male | 1535 (37.9) | 1826 (45.0) |
Female | 2519 (62.1) | 2228 (55.0) |
Age, years | ||
18–24 | 417 (10.3) | 370 (9.1) |
25–44 | 573 (14.1) | 1436 (35.4) |
45–64 | 1437 35.5) | 1498 (37.0) |
≥ 65 | 1627 (40.1) | 750 (18.5) |
Marital status | ||
Unmarried | 852 (21.0) | 1164 (28.7) |
Cohabitated/married | 2577 (63.6) | 2478 (61.1) |
Divorced/separated/widowed | 625 (15.4) | 413 (10.2) |
Employment status | ||
Unemployment | 128 (3.2) | 221 (5.5) |
In paid employment | 1279 (31.6) | 1935 (47.7) |
Retired | 1632 (40.3) | 919 (22.7) |
Housekeeper | 732 (18.1) | 722 (17.8) |
Full-time student | 283 (7.0) | 257 (6.3) |
Educational attainment | ||
Primary or below | 959 (23.7) | 959 (23.7) |
Secondary | 1730 (42.7) | 1949 (48.1) |
Tertiary | 1365 (33.7) | 1145 (28.3) |
Monthly household income (HK $ b) | ||
≤19999 | 1671 (41.2) | 1465 (36.1) |
≥20000 | 2258 (55.7) | 2486 (61.3) |
Unsteady | 125 (3.1) | 103 (2.5) |
Smoking | ||
Never | 3368 (83.1) | 3211 (79.2) |
Former | 435 (10.7) | 467(11.5) |
Current | 251 (6.2) | 376 (9.3) |
Alcohol drinking | ||
Never | 2065 (51.0) | 1908 (47.1) |
Former | 256 (6.3) | 228 (5.6) |
Current | 1731 (42.7) | 1916 (47.3) |
Smartphone ownership | ||
No | 1126 (27.8) | 811 (20.0) |
Yes | 2928 (72.2) | 3243 (80.0) |
SAS-SV score (range 10–60; mean ± SD) | 28.2 ± 10.0 | 28.9 ± 10.1 |
Anxiety | ||
Negative (GAD-2 < 3) | 3655 (90.2) | 3611 (89.1) |
Positive (GAD-2 ≥ 3) | 397 (9.8) | 442 (10.9) |
Depression | ||
Negative (PHQ-2 < 3) | 3777 (93.4) | 3718 (91.9) |
Positive (PHQ-2 ≥ 3) | 269 (6.7) | 327 (8.1) |
SHS score (range 1–7; mean ± SD) | 5.2 ± 1.0 | 5.2 ± 1.0 |
SWEMWBS score c (range 7–35; mean ± SD) | 23.4 ± 4.5 | 23.0 ± 4.2 |
Outcomes Associated with SAS-SV Score | SAS-SV Score (Mean ± SD) a | Unadjusted Association | Adjusted b Association | ||
---|---|---|---|---|---|
Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | ||
Anxiety | |||||
Negative (GAD-2 < 3) | 28.5 ± 10.2 | 1 | 1 | ||
Positive (GAD-2 ≥ 3) | 31.9 ± 9.4 | 1.03 (1.02, 1.04) | <0.001 | 1.03 (1.01, 1.04) | <0.001 |
Depression | |||||
Negative (PHQ-2 < 3) | 28.5 ± 10.0 | 1 | 1 | ||
Positive (PHQ-2 ≥ 3) | 33.2 ± 10.2 | 1.04 (1.03, 1.06) | <0.001 | 1.04 (1.03, 1.06) | <0.001 |
Outcomes Associated with SAS-SV Score | Stratification | Unadjusted Association | Adjusted a Association | p for Interaction a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B (SE) | p | F (df = 1) | r2 | B (SE) | p | F (df = 21) | R2 | |||
SHS score (range 1–7) | Overall | −0.08 (0.002) | <0.001 | 16.99 | 0.01 | −0.07 (0.002) | <0.001 | 9.26 | 0.06 | − |
Anxiety | 0.197 | |||||||||
Negative (GAD−2 < 3) | −0.04 (0.002) | 0.023 | 5.15 | 0.002 | −0.04 (0.002) | 0.040 | 7.16 | 0.06 | ||
Positive (GAD−2 ≥ 3) | −0.11 (0.01) | 0.076 | 3.17 | 0.01 | −0.16 (0.01) | 0.013 | 0.88 | 0.07 | ||
Depression | 0.626 | |||||||||
Negative (PHQ−2 < 3) | −0.05 (0.002) | 0.008 | 7.13 | 0.003 | −0.05 (0.002) | 0.014 | 7.89 | 0.06 | ||
Positive (PHQ−2 ≥ 3) | −0.01 (0.01) | 0.864 | 0.03 | 0.0002 | −0.03 (0.01) | 0.707 | 0.61 | 0.07 | ||
SWEMWBS score (range 7–35) b | Overall | −0.11 (0.01) | 0.001 | 10.84 | 0.01 | −0.10 (0.01) | 0.002 | 5.72 | 0.12 | − |
Anxiety | 0.565 | |||||||||
Negative (GAD−2 < 3) | −0.09 (0.01) | 0.014 | 6.10 | 0.01 | −0.08 (0.01) | 0.022 | 4.54 | 0.11 | ||
Positive (GAD−2 ≥ 3) | 0.01 (0.03) | 0.950 | 0 | 0 | 0.02 (0.04) | 0.866 | 1.00 | 0.19 | ||
Depression | 0.982 | |||||||||
Negative (PHQ−2 < 3) | −0.07 (0.01) | 0.028 | 4.87 | 0.01 | −0.06 (0.01) | 0.054 | 4.85 | 0.11 | ||
Positive (PHQ−2 ≥ 3) | −0.03 (0.03) | 0.826 | 0.05 | 0.001 | −0.02 (0.04) | 0.895 | 1.75 | 0.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Luk, T.T.; Ho, S.Y.; Lee, J.J.; Shen, C.; Oliffe, J.; Chan, S.S.-C.; Lam, T.H.; Wang, M.P. Problematic Smartphone Use and Mental Health in Chinese Adults: A Population-Based Study. Int. J. Environ. Res. Public Health 2020, 17, 844. https://doi.org/10.3390/ijerph17030844
Guo N, Luk TT, Ho SY, Lee JJ, Shen C, Oliffe J, Chan SS-C, Lam TH, Wang MP. Problematic Smartphone Use and Mental Health in Chinese Adults: A Population-Based Study. International Journal of Environmental Research and Public Health. 2020; 17(3):844. https://doi.org/10.3390/ijerph17030844
Chicago/Turabian StyleGuo, Ningyuan, Tzu Tsun Luk, Sai Yin Ho, Jung Jae Lee, Chen Shen, John Oliffe, Sophia Siu-Chee Chan, Tai Hing Lam, and Man Ping Wang. 2020. "Problematic Smartphone Use and Mental Health in Chinese Adults: A Population-Based Study" International Journal of Environmental Research and Public Health 17, no. 3: 844. https://doi.org/10.3390/ijerph17030844
APA StyleGuo, N., Luk, T. T., Ho, S. Y., Lee, J. J., Shen, C., Oliffe, J., Chan, S. S. -C., Lam, T. H., & Wang, M. P. (2020). Problematic Smartphone Use and Mental Health in Chinese Adults: A Population-Based Study. International Journal of Environmental Research and Public Health, 17(3), 844. https://doi.org/10.3390/ijerph17030844