An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality
Abstract
:1. Introduction
2. Results
2.1. Health Behaviors and the Brain
2.1.1. Physical Activity and the Brain
2.1.2. Sedentary Behavior and the Brain
2.1.3. Overweight, Obesity, Cardiometabolic Risk and the Brain
2.1.4. Sleep and the Brain
2.2. Nutrition and the Brain
2.2.1. Nutrients, Cognition, and Academic Achievement
2.2.2. Foods, Cognition, and Academic Achievement
2.2.3. Dietary Patterns, Diet Quality Indices, Cognition, and Academic Achievement
3. Discussion
3.1. Health Behaviors and Cogntion
3.2. Nutrition and Diet Quality.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Alatupa, S.; Pulkki-Råback, L.; Hintsanen, M.; Ravaja, N.; Raitakari, O.T.; Telama, R.; Viikari, J.S.A.; Keltikangas-Järvinen, L. School performance as a predictor of adulthood obesity: A 21-year follow-up study. Eur. J. Epidemiol. 2010, 25, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokko, K.; Pulkkinen, L. Aggression in childhood and long-term unemployment in adulthood: A cycle of maladaptation and some protective factors. Dev. Psychol. 2000, 36, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Alatupa, S.; Pulkki-Råback, L.; Hintsanen, M.; Elovainio, M.; Mullola, S.; Keltikangas-Järvinen, L. Disruptive behavior in childhood and socioeconomic position in adulthood: A prospective study over 27 years. Int. J. Public Health 2013, 58, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Sijtsma, F.; Meyer, K.; Steffen, L.; Shikany, J.; van Horn, L.; Harnack, L.; Kromhout, D.; Jacobs, D., Jr. Longitudinal trends in diet and effects of sex, race, and education on dietary quality score change: The Coronary Artery Risk Development in Young Adults study. Am. J. Clin. Nutr. 2012, 95, 580–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.; Libuda, L.; Karaolis-Danckert, N.; Alexy, U.; Bolzenius, K.; Remer, T.; Buyken, A.E. Trends in dietary carbohydrate quality during puberty from 1988 to 2007: A cause for concern? Br. J. Nutr. 2010, 104, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Bauer, K.W.; Larson, N.I.; Nelson, M.C.; Story, M.; Neumark-Sztainer, D. Fast food intake among adolescents: Secular and longitudinal trends from 1999 to 2004. Prev. Med. 2009, 48, 284–287. [Google Scholar] [CrossRef]
- Eloranta, A.M.; Lindi, V.; Schwab, U.; Kiiskinen, S.; Kalinkin, M.; Lakka, H.M.; Lakka, T.A. Dietary factors and their associations with socioeconomic background in Finnish girls and boys 6–8 years of age: The PANIC Study. Eur. J. Clin. Nutr. 2011, 65, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.I.; Neumark-Sztainer, D.; Hannan, P.J.; Story, M. Trends in adolescent fruit and vegetable consumption, 1999–2004: Project EAT. Am. J. Prev. Med. 2007, 32, 147–150. [Google Scholar] [CrossRef]
- Arundell, L.; Fletcher, E.; Salmon, J.; Veitch, J.; Hinkley, T. A systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5–18 years. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 93. [Google Scholar] [CrossRef] [Green Version]
- Colley, R.; Garriguet, D.; Janssen, I.; Craig, C.; Clarce, J.; Tremblay, M. Physical activity of Canadian children and youth: Accelometer results from the 2007–2009 Health Measures Survey. Health Rep. 2011, 22, 15–22. [Google Scholar] [PubMed]
- Carson, V.J.I.; Tremblay, C.J.-P. Health associations with meeting new 24-h movement guidelines for Canadian children and youth. Int. J. Behav. Nutr. Phys. Act. 2016, 25, 123. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.; Gray, C.E.; Poitras, V.J.; Carson, V.; Gruber, R.; Olds, T.; Weiss, S.K.; Gorber, S.C.; Kho, M.E.; Sampson, M.; et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 282, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Matricciani, L.; Olds, T.; Petkov, J. In search of lost sleep: Secular trends in the sleep time of school-aged children and adolescents. Sleep Med. Rev. 2012, 16, 203–211. [Google Scholar] [CrossRef]
- Cain, N.; Gradisar, M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010, 11, 735–742. [Google Scholar] [CrossRef]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity among Adults and Youth: United States, 2015–2016 Key findings Data from the National Health and Nutrition Examination Survey; CDC: Hyattsville, MD, USA, 2015.
- Garrido-Miguel, M.; Oliveira, A.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Pozuelo-Carrascosa, D.P.; Soriano-Cano, A.; Martínez-Vizcaíno, V. Prevalence of Overweight and Obesity among European Preschool Children: A Systematic Review and Meta-Regression by Food Group Consumption. Nutrients 2019, 11, 1698. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, W.; Breda, J.; Buoncristiano, M.; Rito, A.; Spinelli, A.; Whiting, S.; Wirsik, M. WHO European Childhood Obesity Surveillance Initiative: Overweight and obesity among 6–9-year-old children; WHO regional office Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- Kaikkonen, R.; Hakulinen-viitanen, T.; Markkula, J.; Ovaskainen, M.; Virtanen, S.; Laatikainen, T. Lasten ja lapsi- perheiden terveys- ja hyvinvointierot; National Institute for Health and Welfare (THL): Helsinki, Finland, 2012. [Google Scholar]
- Vuorela, N.; Saha, M.-T.; Salo, M. Prevalence of overweight and obesity in 5- and 12-year-old Finnish children in 1986 and 2006. Acta Paediatr. 2009, 98, 507–512. [Google Scholar] [CrossRef]
- Mäki, P.; Lehtinen-Jacks, S.; Vuorela, N.; Levälahti, E.; Koskela, T.; Saari, A.; Mölläri, K.; Mahkonen, R.; Salo, J.; Laatikainen, T. Tilastotietoa lasten ylipainoisuuden yleisyydestä saatavilla yhä useammasta kunnasta; National Institute for Health and Welfare (THL): Helsinki, Finland, 2018. [Google Scholar]
- Solfrizzi, V.; Panza, F.; Frisardi, V.; Seripa, D.; Logroscino, G.; BP, I.; Pilotto, A. Diet and Alzheimer’s disease risk factors or prevention: The current evidence. Expert. Rev. Neurother. 2011, 11, 677–708. [Google Scholar] [CrossRef]
- Kalmijn, S.; van Boxtel, M.P.J.; Ocke, M.; Verschuren, W.M.M.; Kromhout, D.; Launer, L.J. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004, 62, 275–280. [Google Scholar] [CrossRef]
- Eskelinen, M.; Ngandu, T.; Helkala, E.-L.; Tuomilehto, J.; Nissinen, A.; Soininen, H.; Kivipelto, M. Fat intake at midlife and cognitive impairment later in life: A population-based CAIDE study. Int. J. Geriatr. Psychiatry 2008, 23, 741–747. [Google Scholar] [CrossRef]
- Laitinen, M.H.; Ngandu, T.; Rovio, S.; Helkala, E.L.; Uusitalo, U.; Viitanen, M.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study. Dement. Geriatr. Cogn. Disord. 2006, 22, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Féart, C.; Samieri, C.; Allès, B.; Barberger-Gateau, P. Potential benefits of adherence to the Mediterranean diet on cognitive health. Proc. Nutr. Soc. 2013, 72, 140–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Männikkö, R.; Komulainen, P.; Schwab, U.; Heikkilä, H.M.; Savonen, K.; Hassinen, M.; Hänninen, T.; Kivipelto, M.; Rauramaa, R. The Nordic diet and cognition–The DR’s EXTRA Study. Br. J. Nutr. 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wengreen, H.; Munger, R.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.; Norton, M.; Wehls-Bohmer, K. Prospective study of Dietary Approaches to Stop Hypertension–and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study in Memory, Health and Aging. Am. J. Clin. Nutr. 2013, 98, 1263–1271. [Google Scholar] [CrossRef]
- Allès, B.; Samieri, C.; Féart, C.; Jutand, M.-A.; Laurin, D.; Barberger-Gateau, P. Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr. Res. Rev. 2012, 25, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Kivipelto, M.; Ngandu, T.; Fratiglioni, L.; Viitanen, M.; Kåreholt, I.; Winblad, B.; Helkala, E.-L.; Tuomilehto, J.; Soininen, H.; Nissinen, A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 2005, 62, 1556–1560. [Google Scholar] [CrossRef] [Green Version]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 6736, 1–9. [Google Scholar] [CrossRef]
- Meeusen, R. Exercise, nutrition and the brain. Sports Med. 2014, 44 (Suppl. 1), S47–S56. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [Green Version]
- Stringhini, S.; Dugravot, A.; Shipley, M.; Goldberg, M.; Zins, M.; Kivimäki, M.; Marmot, M.; Sabia, S.; Singh-Manoux, A. Health Behaviours, Socioeconomic Status, and Mortality: Further Analyses of the British Whitehall II and the French GAZEL Prospective Cohorts. PLoS Med. 2011, 8, e1000419. [Google Scholar] [CrossRef]
- Vaynman, S.; Gomez-pinilla, F. Review Revenge of the “Sit”: How Lifestyle Impacts Neuronal and Cognitive Health through Molecular Systems That Interface Energy Metabolism with Neuronal Plasticity. J. Neurosci. Res. 2006, 715, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, P.S.; Tovar, A.; Jayasuriya, A.T.; Welker, E.; Schober, D.J.; Copeland, K.; Dev, D.A.; Murriel, A.L.; Amso, D.; Ward, D.S. The relationship between physical activity and diet and young children’s cognitive development: A systematic review. Prev. Med. Rep. 2016, 3, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef]
- Coelho, F.G. de M.; Gobbi, S.; Andreatto, C.A.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduróz, R.F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 2013, 56, 10–15. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Voss, M.W.; Knecht, A.M.; Pontifex, M.B.; Castelli, D.M.; Hillman, C.H.; Kramer, A.F. The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front. Hum. Neurosci. 2013, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef]
- Haapala, E.A.; Väistö, J.; Lintu, N.; Tompuri, T.; Brage, S.; Westgate, K.; Ekelund, U.; Lampinen, E.-K.; Sääkslahti, A.; Lindi, V.; et al. Adiposity, physical activity and neuromuscular performance in children. J. Sports Sci. 2016, 34, 1699–1706. [Google Scholar] [CrossRef] [Green Version]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpää, A.; Kantomaa, M.T. The Associations of Objectively Measured Physical Activity and Sedentary Time with Cognitive Functions in School-Aged Children. PLoS ONE 2014, 9, e103559. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.N.; Leary, S.D.; Joinson, C.; Ness, A.R.; Tomporowski, P.D.; Boyle, J.M.; Reilly, J.J. Associations between objectively measured physical activity and academic attainment in adolescents from a UK cohort. Br. J. Sports Med. 2014, 48, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, C.; Lewis, L.; Katzmarzyk, P.T.; Dumuid, D.; Cassidy, L.; Olds, T. The associations between physical activity, sedentary behaviour and academic performance. J. Sci. Med. Sport 2016, 19, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Syväoja, H.J.; Kantomaa, M.T.; Ahonen, T.; Hakonen, H.; Kankaanpää, A.; Tammelin, T.H. Physical Activity, Sedentary Behavior, and Academic Performance in Finnish Children. Med. Sci. Sports Exerc. 2013, 45, 2098–2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Cornejo, I.; Tejero-González, C.M.; Martinez-Gomez, D.; Cabanas-Sánchez, V.; Fernández-Santos, J.R.; Conde-Caveda, J.; Sallis, J.F.; Veiga, O.L. Objectively measured physical activity has a negative but weak association with academic performance in children and adolescents. Acta Paediatr. 2014, 103, e501–e506. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, M.M.; Martin, C.K.; Han, H.; Newton, R.; Sothern, M.; Webber, L.S.; Davis, A.B.; Williamson, D.A.; Williamson, D.A. Adiposity and physical activity are not related to academic achievement in school-aged children. J. Dev. Behav. Pediatr. 2012, 33, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.-T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [Green Version]
- De Greeff, J.W.; Hartman, E.; Mullender-Wijnsma, M.J.; Bosker, R.J.; Doolaard, S.; Visscher, C. Long-term effects of physically active academic lessons on physical fitness and executive functions in primary school children. Health Educ. Res. 2016, 31, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Lees, C.; Hopkins, J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: A systematic review of randomized control trials. Prev. Chronic Dis. 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Mullender-Wijnsma, M.J.; Hartman, E.; de Greeff, J.W.; Doolaard, S.; Bosker, R.J.; Visscher, C. Physically Active Math and Language Lessons Improve Academic Achievement: A Cluster Randomized Controlled Trial. Pediatrics 2016, 137, e20152743. [Google Scholar] [CrossRef] [Green Version]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Chaddock, L.; Kim, J.S.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Cohen, N.J.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 2011, 199, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarp, J.; Domazet, S.S.L.; Froberg, K.; Hillman, C.H.; Andersen, L.L.B.L.; Bugge, A.; Trudeau, F.; Shephard, R.; Fedewa, A.; Ahn, S.; et al. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion—Learning, Cognition and Motion—A Cluster Randomized Controlled Trial. PLoS ONE 2016, 11, e0158087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gapin, J.I.; Labban, J.D.; Etnier, J.L. The effects of physical activity on attention deficit hyperactivity disorder symptoms: The evidence. Prev. Med. 2011, 52, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Gapin, J.; Etnier, J.L. The Relationship between Physical Activity and Executive Function Performance in Children with Attention-Deficit Hyperactivity Disorder. J. Sport Exerc. Psychol. 2010, 32, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Resaland, G.K.; Aadland, E.; Moe, V.F.; Aadland, K.N.; Skrede, T.; Stavnsbo, M.; Suominen, L.; Steene-Johannessen, J.; Glosvik, Ø.; Andersen, J.R.; et al. Effects of physical activity on schoolchildren’s academic performance: The Active Smarter Kids (ASK) cluster-randomized controlled trial. Prev. Med. 2016, 91, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Krafft, C.E.; Pierce, J.E.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Schaeffer, D.J.; Rodrigue, A.L.; Camchong, J.; Allison, J.D.; Yanasak, N.E.; et al. An eight months randomized controlled exercise intervention alters resting state synchrony in overweight children. Neuroscience 2014, 256, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Krafft, C.E.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Schaeffer, D.J.; Pierce, J.E.; Rodrigue, A.L.; Yanasak, N.E.; Miller, P.H.; Tomporowski, P.D.; et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity 2014, 22, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Tomporowski, P.; McDowell, J.; Austin, B.; Miller, P.; Yanasak, N.; Allison, J.; Naglieri, J. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized controlled trial. Heal. Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Tremblay, M.S.; Chaput, J.; Chastin, S.F.M. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses 1. Appl. Physiol. Nutr. Metab. 2016, 302, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Koutsandreou, F.; Wegner, M.; Niemann, C.; Budde, H. Effects of Motor versus Cardiovascular Exercise Training on Children’s Working Memory. Med. Sci. Sports Exerc. 2016, 47, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Lintu, N.; Väistö, J.; Robinson, L.E.; Viitasalo, A.; Lindi, V.; Lakka, T. Associations of Cardiovascular Fitness, Motor Performance and Adiposity with Cognition in Children. Med. Sci. Sports Exerc. 2015. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.; Lintu, N.; Vaisto, J.; Robinson, L.; Viitasalo, A.; Lindi, V.; Lakka, T. Associations of physical performance and adiposity with cognition in children. Med. Sci. Sports Exerc. 2015, 47, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F. The combined effects of exercise and foods in preventing neurological and cognitive disorders. Prev. Med. 2011, 52, S75–S80. [Google Scholar] [CrossRef] [Green Version]
- Sedentary Behaviour Research Network Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [CrossRef] [Green Version]
- Carson, V.; Kuzik, N.; Hunter, S.; Wiebe, S.A.; Spence, J.C.; Friedman, A.; Tremblay, M.S.; Slater, L.G.; Hinkley, T. Systematic review of sedentary behavior and cognitive development in early childhood. Prev. Med. 2015, 78, 115–122. [Google Scholar] [CrossRef]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, 240–265. [Google Scholar] [CrossRef]
- Wolf, C.; Wolf, S.; Weiss, M.; Nino, G. Children’s Environmental Health in the Digital Era: Understanding Early Screen Exposure as a Preventable Risk Factor for Obesity and Sleep Disorders. Children 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Poikkeus, A.-M.; Kukkonen-Harjula, K.; Tompuri, T.; Lintu, N.; Väistö, J.; Leppänen, P.H.T.; Laaksonen, D.E.; Lindi, V.; Lakka, T. Associations of Physical Activity and Sedentary Behavior with Academic Skills – A Follow-up Study among Primary School Children. PLoS ONE 2014, 10, e107031. [Google Scholar] [CrossRef]
- Haapala, E.A.; Väistö, J.; Lintu, N.; Westgate, K.; Ekelund, U.; Poikkeus, A.-M.; Brage, S.; Lakka, T.A. Physical activity and sedentary time in relation to academic achievement in children. J. Sci. Med. Sport 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, M.; Pearson, N.; Foster, P.J.; Biddle, S.J.H. Sedentary behaviour and diet across the lifespan: An update systematic review. Br. J. Sports Med. 2014, 49, 1179–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eloranta, A.M.; Schwab, U.; Venäläinen, T.; Kiiskinen, S.; Lakka, H.M. Nutrition, Metabolism & Cardiovascular Diseases Dietary quality indices in relation to cardiometabolic risk among Finnish children aged 6 e 8 years e The PANIC study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1–9. [Google Scholar]
- Eloranta, A.-M.; Lindi, V.; Schwab, U.; Tompuri, T.; Kiiskinen, S.; Lakka, H.-M.; Laitinen, T.; Lakka, T. A Dietary factors associated with overweight and body adiposity in Finnish children aged 6–8 years: The PANIC Study. Int. J. Obes. 2012, 36, 950–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veena, S.R.; Hegde, B.G.; Ramachandraiah, S.; Krishnaveni, G.V.; Fall, C.H.D.; Srinivasan, K. Relationship between adiposity and cognitive performance in 9–10-year-old children in South India. Arch. Dis. Child. 2014, 99, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo, K.; Pontifex, M.B.; Khan, N.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The negative association of childhood obesity to cognitive control of action monitoring. Cereb. Cortex 2014, 24, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, K.; Pontifex, M.B.; Khan, N.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The association of childhood obesity to neuroelectric indices of inhibition. Psychophysiology 2012, 49, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Tejero-González, C.M.; Castro-Piñero, J.; Conde-Caveda, J.; Cabanas-Sanchez, V.; Sallis, J.F.; Veiga, Ó.L. Independent and combined influence of neonatal and current body composition on academic performance in youth: The UP & DOWN Study. Pediatr. Obes. 2015, 10, 157–164. [Google Scholar]
- Kamijo, K.; Khan, N.; Pontifex, M.B.; Scudder, M.R.; Drollette, E.S.; Raine, L.B.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity 2012, 20, 2406–2411. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Davidson, T.L. Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol. Behav. 2011, 103, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Yau, P.L.; Javier, D.C.; Ryan, C.M.; Tsui, W.H.; Ardekani, B.A.; Ten, S.; Convit, a. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus. Diabetologia 2010, 53, 2298–2306. [Google Scholar] [CrossRef] [Green Version]
- Yau, P.L.; Kang, E.H.; Javier, D.C.; Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity 2014, 22, 1865–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scudder, M.R.; Khan, N.A.; Lambourne, K.; Drollette, E.S.; Herrmann, S.D.; Betts, J.L.; Washburn, R.A.; Donnelly, J.E.; Hillman, C.H.; Cognitive, A. Cognitive Control in Preadolescent Children with Risk Factors for Metabolic Syndrome. Heal. Psychol. 2015, 34, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Cornejo, I.; Martinez-Gomez, D.; Gómez-Martínez, S.; del Campo-Vecino, J.; Fernández-Santos, J.; Castro-Piñero, J.; Marcos, A.; Veiga, O.L. Inflammatory biomarkers and academic performance in youth. The UP& DOWN Study. Brain. Behav. Immun. 2016, 5, 1–6. [Google Scholar]
- Anderson, Y.C.; Kirkpatrick, K.; Dolan, G.M.S.; Wouldes, T.A.; Grant, C.C.; Cave, T.L.; Wild, C.E.K.; Derraik, J.G.B.; Cutfield, W.S.; Hofman, P.L. Do changes in weight status affect cognitive function in children and adolescents with obesity? A secondary analysis of a clinical trial. BMJ Open 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Cserjési, R.; Molnár, D.; Luminet, O.; Lénárd, L. Is there any relationship between obesity and mental flexibility in children? Appetite 2007, 49, 675–678. [Google Scholar] [CrossRef]
- Borkertienė, V.; Stasiulis, A.; Zacharienė, B.; Kyguolienė, L.; Bacevičienė, R. Association among executive function, physical activity, and weight status in youth. Medicina 2019, 55, 677. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Booth, J.N.; McGeown, S.; Niven, A.; Sproule, J.; Saunders, D.H.; Reilly, J.J. Longitudinal Associations Between Childhood Obesity and Academic Achievement: Systematic Review with Focus Group Data. Curr. Obes. Rep. 2017, 6, 297–313. [Google Scholar] [CrossRef]
- Afzal, A.S.; Gortmaker, S. The relationship between obesity and cognitive performance in children: A longitudinal study. Child. Obes. 2015, 11, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Kopasz, M.; Loessl, B.; Hornyak, M.; Riemann, D.; Nissen, C.; Piosczyk, H.; Voderholzer, U. Sleep and memory in healthy children and adolescents—A critical review. Sleep Med. Rev. 2010, 14, 167–177. [Google Scholar] [CrossRef]
- Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Med. Rev. 2010, 14, 179–189. [Google Scholar] [CrossRef]
- Buckhalt, J.A.; El-Sheikh, M.; Keller, P. Children’s sleep and cognitive functioning: Race and socioeconomic status as moderators of effects. Child. Dev. 2007, 78, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A.; Gruber, R.; Raviv, A. The Effects of Sleep Restriction and Extension on School-Age Children: What a Difference an Hour Makes. Child. Dev. 2003, 74, 444–455. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, E.J.; van Run, C.; Staaks, J.; Meijer, A.M. Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review. Sleep Med. Rev. 2017, 32, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Santisteban, J.A.; Brown, T.G.; Ouimet, M.C.; Gruber, R. Cumulative mild partial sleep deprivation negatively impacts working memory capacity but not sustained attention, response inhibition, or decision making: A randomized controlled trial. Sleep Health 2019, 5, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Ong, J.L.; Leong, R.L.F.; Gooley, J.J.; Chee, M.W.L. Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study. Sleep 2016, 39, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vriend, J.L.; Davidson, F.D.; Corkum, P.V.; Rusak, B.; Chambers, C.T.; McLaughlin, E.N. Manipulating Sleep Duration Alters Emotional Functioning and Cognitive Performance in Children. J. Pediatr. Psychol. 2013, 38, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Astill, R.G.; Van der Heijden, K.B.; Van IJzendoorn, M.H.; Van Someren, E.J.W. Sleep, cognition, and behavioral problems in school-age children: A century of research meta-analyzed. Psychol. Bull. 2012, 138, 1109–1138. [Google Scholar] [CrossRef]
- Touchette, É.; Petit, D.; Séguin, J.R.; Boivin, M.; Tremblay, R.E.; Montplaisir, J.Y. Associations Between Sleep Duration Patterns and Behavioral/Cognitive Functioning at School Entry. Sleep 2007, 30, 1213–1219. [Google Scholar] [CrossRef]
- Chuah, Y.M.L.; Venkatraman, V.; Dinges, D.F.; Chee, M.W.L. The Neural Basis of Interindividual Variability in Inhibitory Efficiency after Sleep Deprivation. J. Neurosci. 2006, 26, 7156–7162. [Google Scholar] [CrossRef]
- Drummond, S.P.A.; Paulus, M.P.; Tapert, S.F. Effects of two nights sleep deprivation and two nights recovery sleep on response inhibition. J. Sleep Res. 2006, 15, 261–265. [Google Scholar] [CrossRef]
- Molfese, D.L.; Ivanenko, A.; Key, A.F.; Roman, A.; Molfese, V.J.; O’Brien, L.M.; Gozal, D.; Kota, S.; Hudac, C.M. A One-Hour Sleep Restriction Impacts Brain Processing in Young Children across Tasks: Evidence from Event-Related Potentials. Dev. Neuropsychol. 2013, 38, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Dewald-Kaufmann, J.F.; Oort, F.J.; Meijer, A.M. The effects of sleep extension on sleep and cognitive performance in adolescents with chronic sleep reduction: An experimental study. Sleep Med. 2013, 14, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randazzo, A.C.; Muehlbach, M.J.; Schweitzer, P.K.; Waish1, J.K. Cognitive Function Following Acute Sleep Restriction in Children Ages 10–14. Sleep 1998, 21, 861–868. [Google Scholar] [PubMed]
- Fallone, G.; Acebo, C.; Arnedt, J.T.; Seifer, R.; Carskadon, M.A. Effects of Acute Sleep Restriction on Behavior, Sustained Attention, and Response Inhibition in Children. Percept. Mot. Skills 2001, 93, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Sperry, S.D.; Scully, I.D.; Gramzow, R.H.; Jorgensen, R.S. Sleep Duration and Waist Circumference in Adults: A Meta-Analysis. Sleep 2015, 38, 1269–1276. [Google Scholar] [CrossRef] [Green Version]
- Fatima, Y.; Doi, S.A.R.; Mamun, A.A. Sleep quality and obesity in young subjects: A meta-analysis. Obes. Rev. 2016, 17, 1154–1166. [Google Scholar] [CrossRef]
- Peltzer, K.; Pengpid, S. Sleep Duration, Sleep Quality, Body Mass Index, and Waist Circumference among Young Adults from 24 Low- and Middle-Income and Two High-Income Countries. Int. J. Environ. Res. Public Health 2017. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, L.; Ray, C.; Roos, E. Associations between sleeping habits and food consumption patterns among 10–11-year-old children in Finland. Br. J. Nutr. 2009, 102, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Mi, S.J.; Kelly, N.R.; Brychta, R.J.; Grammer, A.C.; Jaramillo, M.; Chen, K.Y.; Fletcher, L.A.; Bernstein, S.B.; Courville, A.B.; Shank, L.M.; et al. Associations of sleep patterns with metabolic syndrome indices, body composition, and energy intake in children and adolescents. Pediatr. Obes. 2019, 14, e12507. [Google Scholar] [CrossRef]
- Weiss, A.; Xu, F.; Storfer-Isser, A.; Thomas, A.; Ievers-Landis, C.E.; Redline, S. The Association of Sleep Duration with Adolescents’ Fat and Carbohydrate Consumption. Sleep 2010, 33, 1201–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knutson, K.L. Does inadequate sleep play a role in vulnerability to obesity? Am. J. Hum. Biol. 2012, 24, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolls, E.T. Reward Systems in the Brain and Nutrition. Annu. Rev. Nutr. 2016, 36, 435–470. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Li, Q.; Chu, J.; Zeng, W.; Yang, M.; Zhu, S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1422–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baym, C.L.; Khan, N.A.; Monti, J.M.; Raine, L.B.; Drollette, E.S.; Moore, R.D.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H.; Cohen, N.J. Dietary lipids are differentially associated with hippocampal-dependent relational memory in prepubescent children. Am. J. Clin. Nutr. 2014, 99, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hebert, J.; Muldoon, M. Dietary fat intake is associated with psychosocial and cognitive functioning of school-aged children in the United States. J. Nutr. 2005, 135, 1967–1973. [Google Scholar] [CrossRef]
- Lassek, W.D.; Gaulin, S.J.C. Sex differences in the relationship of dietary fatty acids to cognitive measures in American children. Front. Evol. Neurosci. 2011, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Burden, M.J.; Muckle, G.; Saint-amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age 1–3. Am. J. Clin. Nutr. 2011, 93, 1025–1037. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Low Blood Long Chain Omega-3 Fatty Acids in UK Children Are Associated with Poor Cognitive Performance and Behavior: A Cross-Sectional Analysis from the DOLAB Study. PLoS ONE 2013, 8, e66697. [Google Scholar] [CrossRef]
- Haapala, E.; Viitasalo, A.; Venäläinen, T.; Eloranta, A.-M.; Ågren, J.; Lindi, V.; Lakka, T. Plasma polyunsaturated fatty acids are directly associated with cognition in overweight children but not in normal weight children. Acta Paediatr. 2016, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.B.; Damsgaard, C.T.; Dalskov, S.-M.; Petersen, R.A.; Egelund, N.; Dyssegaard, C.B.; Stark, K.D.; Andersen, R.; Tetens, I.; Astrup, A.; et al. Diet-induced changes in iron and n-3 fatty acid status and associations with cognitive performance in 8–11-year-old Danish children: Secondary analyses of the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet. Br. J. Nutr. 2015, 114, 1623–1637. [Google Scholar] [CrossRef] [Green Version]
- Rask-Nissilä, L.; Jokinen, E.; Terho, P.; Tammi, A.; Lapinleimu, H.; Rönnemaa, T.; Viikari, J.; Seppänen, R.; Korhonen, T.; Tuominen, J.; et al. Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: A randomized controlled trial. JAMA 2000, 284, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef]
- Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H. Dietary fiber is positively associated with cognitive control among prepubertal children. J. Nutr. 2015, 145, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.; Fransson, G.; Östlund, S.; Areskoug, B.; Gillberg, C. Omega 3/6 fatty acids for reading in children: A randomized, double-blind, placebo-controlled trial in 9-year-old mainstream schoolchildren in Sweden. J. Child. Psychol. Psychiatry 2017, 58, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Funari, V.A.; Crandall, J.E.; Tolan, D.R. Fructose metabolism in the cerebellum. Cerebellum 2007, 6, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, P.; Salazar, P.; Serrano, F.G.; Montecinos-Oliva, C.; Arredondo, S.B.; Varela-Nallar, L.; Barja, S.; Vio, C.P.; Gomez-Pinilla, F.; Inestrosa, N.C. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pinilla, F.; Hillman, C. The Influence of Exercise on Cognitive Abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar]
- Simopoulos, A.P. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome brain, metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients 2013, 5, 2901–2923. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Ochoa, E.; Hernández-Ortega, K.; Ferrera, P.; Morimoto, S.; Arias, C. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J. Cereb. Blood Flow Metab. 2014, 34, 1001–1008. [Google Scholar] [CrossRef]
- Cao, D.; Lu, H.; Lewis, T.L.; Li, N. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J. Biol. Chem. 2007, 282, 36275–36282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, H.; Benton, D. The effect of using isomaltulose to modulate the glycaemic properties of breakfast on the cognitive performance of children. Eur. J. Nutr. 2014, 54, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, E.B.; Gadian, D.G.; Sabatini, S.; Chong, W.K.; Quinn, B.T.; Fischl, B.R.; Lucas, A. The Effect of Early Human Diet on Caudate Volumes and IQ. Pediatr. Res. 2008, 63, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Frisardi, V.; Panza, F.; Seripa, D.; Inbimbo, B.; Vendemiale, G. Nutraceutical properties of Mediterranean diet and cognitive decline: Possible underlying mechanisms. J. Alzheimer’s Dis. 2010, 22, 715–740. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; El-Obeid, T.; Li, M.; Xu, X.; Liu, J. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 48. [Google Scholar] [CrossRef] [Green Version]
- Lam, L.F.; Lawlis, T.R. Feeding the brain–The effects of micronutrient interventions on cognitive performance among school-aged children: A systematic review of randomized controlled trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef]
- Burkhalter, T.M.; Hillman, C.H. Forum on Child Obesity Interventions A Narrative Review of Physical Activity, Nutrition, and Obesity to Cognition and Scholastic Performance across the Human Lifespan 1–3. Adv. Nutr. 2011, 2, 201S–206S. [Google Scholar] [CrossRef] [Green Version]
- Taras, H. Nutrition and student performance at school. J. Sch. Health 2005, 75, 199–213. [Google Scholar] [CrossRef]
- Haapala, E.A.; Eloranta, A.-M.; Venäläinen, T.; Schwab, U.; Lindi, V.; Lakka, T.A. Associations of diet quality with cognition in children-the Physical Activity and Nutrition in Children Study. Br. J. Nutr. 2015, 114, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Burrows, T.; Goldman, S.; Pursey, K.; Lim, R. Is there an association between dietary intake and academic achievement: A systematic review. J. Hum. Nutr. Diet 2017, 30, 117–140. [Google Scholar] [CrossRef]
- Åberg, M.A.I.; Åberg, N.; Brisman, J.; Sundberg, R.; Winkvist, A.; Torén, K. Fish intake of Swedish male adolescents is a predictor of cognitive performance. Acta Paediatr. Int. J. Paediatr. 2009, 98, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Stea, T.H.; Torstveit, M.K. Association of lifestyle habits and academic achievement in Norwegian adolescents: A cross-sectional study. BMC Public Health 2014, 14, 829. [Google Scholar] [CrossRef] [Green Version]
- Florence, M.; Asbridge, M.; Veugelers, P. Diet Quality and Academic Performance. J. Sch. Health 2008, 78, 239–241. [Google Scholar] [CrossRef]
- Tangney, C.C.; Scarmeas, N. The good, bad, and ugly? How blood nutrient concentrations may reflect cognitive performance. Neurology 2012, 78, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Vassiloudis, I.; Yiannakouris, N. Academic Performance in Relation to Adherence to the Mediterranean Diet and Energy Balance Behaviors in Greek Primary Schoolchildren. J. Nutr. Educ. Behav. 2014, 46, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Izquierdo-Gomez, R.; Gómez-Martínez, S.; Padilla-Moledo, C.; Castro-Piñero, J.; Marcos, A.; Veiga, O.L. Adherence to the Mediterranean diet and academic performance in youth: The UP& DOWN study. Eur. J. Nutr. 2015, 55, 1133–1140. [Google Scholar]
- Haapala, E.A.; Eloranta, A.-M.; Venäläinen, T.; Jalkanen, H.; Poikkeus, A.-M.; Ahonen, T.; Lindi, V.; Lakka, T. Diet quality and academic achievement—A prospective study among primary school children. Eur. J. Nutr. 2017, 56, 2299–2308. [Google Scholar]
- Sørensen, L.B.; Dyssegaard, C.B.; Damsgaard, C.T.; Petersen, R.A.; Dalskov, S.-M.; Hjorth, M.F.; Andersen, R.; Tetens, I.; Ritz, C.; Astrup, A.; et al. The effects of Nordic school meals on concentration and school performance in 8- to 11-year-old children in the OPUS School Meal Study: A cluster-randomised, controlled, cross-over trial. Br. J. Nutr. 2015, 113, 1280–1291. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.B.; Damsgaard, C.T.; Petersen, R.A.; Dalskov, S.-M.; Hjorth, M.F.; Dyssegaard, C.B.; Egelund, N.; Tetens, I.; Astrup, A.; Lauritzen, L.; et al. Differences in the effects of school meals on children’s cognitive performance according to gender, household education and baseline reading skills. Eur. J. Clin. Nutr. 2016, 70, 1–7. [Google Scholar] [CrossRef]
- Gale, C.; Martyn, C.; Marriot, L.; Limond, J.; Crozier, S.; Inskip, H.; Godfrey, K.; Law, C.; Cooper, C.; Robinson, S.; et al. Dietary patterns in infancy and cognitive and neuropsychological function in childhood. J. Child. Psychol. Psychiatry 2009, 50, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Feinstein, L.; Sabates, R.; Sorhaindo, A.; Rogers, I.; Herrick, D.; Northstone, K.; Emmett, P. Dietary patterns related to attainment in school: The importance of early eating patterns. J. Epidemiol. Community Health 2008, 62, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Nyaradi, A.; Foster, J.K.; Hickling, S.; Li, J.; Ambrosini, G.L.; Jacques, A.; Oddy, W.H. Prospective associations between dietary patterns and cognitive performance during adolescence. J. Child. Psychol. Psychiatry 2014, 55, 1017–1024. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Singh, A.; Uijtdewilligen, L.; Twisk, J.W.R.; Van Mechelen, W.; Chinapaw, M.J.M. Physical activity and performance at school: A systematic review of the literature including a methodological quality assessment. Arch. Pediatr. Adolesc. Med. 2012, 166, 49–55. [Google Scholar] [CrossRef]
- Van Dijk, M.L.; de Groot, R.H.M.; Savelberg, H.H.C.M.; van Acker, F.; Kirschner, P.A. The association between objectively measured physical activity and academic achievement in dutch adolescents: Findings from the GOALS study. J. Sport Exerc. Psychol. 2014, 36, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Ardoy, D.N.; Fernández-Rodríguez, J.M.; Jiménez-Pavón, D.; Castillo, R.; Ruiz, J.R.; Ortega, F.B. A Physical Education trial improves adolescents’ cognitive performance and academic achievement: The EDUFIT study. Scand. J. Med. Sci. Sport. 2014, 24, e52–e61. [Google Scholar] [CrossRef]
- Wittberg, R.A.; Northrup, K.L.; Cottrell, L.A. Children’s aerobic fitness and academic achievement: A longitudinal examination of students during their fifth and seventh grade years. Am. J. Public Health 2012, 102, 2303–2307. [Google Scholar] [CrossRef]
- London, R.A.; Castrechini, S. A longitudinal examination of the link between youth physical fitness and academic achievement. J. Sch. Health 2011, 81, 400–408. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Marques, A.; Minderico, C.; Palmeira, A.; Martins, S.; Santos, D.A.; Ekelund, U. Longitudinal relationship between cardiorespiratory fitness and academic achievement. Med. Sci. Sports Exerc. 2016, 48, 839–844. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Francis, H.; Stevenson, R. The longer-term impacts of Western diet on human cognition and the brain. Appetite 2013, 63, 119–128. [Google Scholar] [CrossRef]
Dietary Factors | Evidence in Relation Cognitive Functions |
---|---|
Nutrients, cognition and academic achievement | |
Iron | Iron deficiency leading to anemia may negatively impact on brain and cognitive development |
Docosahexaenoic acid and eicosapentaenoic acid | Low intake during early years may attenuate brain and cognitive development |
Foods, cognition and academic achievement | |
Fish | A higher consumption of fish has been associated with better cognitive functions |
Fruit, berries, and vegetables | A higher consumption of fruit, berries, and vegetables have been associated with better cognitive functions |
Fast foods | A higher consumption of fast foods has been associated with poorer cognitive functions |
Dietary patterns, diet quality indices, cognition and academic achievement | |
Dietary patterns | Dietary patterns high in vegetables, fruits, and home-prepared foods have been associated with better cognitive functions. Dietary patterns high in fast foods, red meat, soft-drinks, and fried and refined foods have been linked to poorer cognitive functions |
Diet quality indices (DASH, BSDS, FCHEI, KIDMEX, HEI-2005) | A better adherence to pre-specified diets (i.e., higher scores) has been associated with better cognitive functions and academic performance |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveed, S.; Lakka, T.; Haapala, E.A. An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality. Int. J. Environ. Res. Public Health 2020, 17, 953. https://doi.org/10.3390/ijerph17030953
Naveed S, Lakka T, Haapala EA. An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality. International Journal of Environmental Research and Public Health. 2020; 17(3):953. https://doi.org/10.3390/ijerph17030953
Chicago/Turabian StyleNaveed, Sehrish, Timo Lakka, and Eero A. Haapala. 2020. "An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality" International Journal of Environmental Research and Public Health 17, no. 3: 953. https://doi.org/10.3390/ijerph17030953
APA StyleNaveed, S., Lakka, T., & Haapala, E. A. (2020). An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality. International Journal of Environmental Research and Public Health, 17(3), 953. https://doi.org/10.3390/ijerph17030953