Active and Fit Communities. Associations between Neighborhood Walkability and Health-Related Fitness in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Neighborhood Correlates of Perceived Cardiorespiratory Fitness
3.3. Neighborhood Correlates of Perceived Muscular Strength
3.4. Neighborhood Correlates of Perceived Flexibility
3.5. Neighborhood Correlates of Overall Perceived Fitness
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lamb, K.; Brodie, D.; Roberts, K. Physical fitness and health-related fitness as indicators of a positive health state. Health Promot. Int. 1988, 3, 171–182. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical-Activity, Exercise, and Physical-Fitness—Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Vanhees, L.; Lefevre, J.; Philippaerts, R.; Martens, M.; Huygens, W.; Troosters, T.; Beunen, G. How to assess physical activity? How to assess physical fitness? Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Lamoureux, N.R.; Fitzgerald, J.S.; Norton, K.I.; Sabato, T.; Tremblay, M.S.; Tomkinson, G.R. Temporal Trends in the Cardiorespiratory Fitness of 2,525,827 Adults Between 1967 and 2016: A Systematic Review. Sports Med. 2019, 49, 41–55. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, J.; Schaper, N.C.; Stehouwer, C.D.A.; van der Kallen, C.J.H.; Sep, S.J.S.; Schram, M.T.; Henry, R.M.A.; Dagnelie, P.C.; Eussen, S.; van Dongen, M.; et al. Which is more important for cardiometabolic health: Sedentary time, higher intensity physical activity or cardiorespiratory fitness? The Maastricht Study. Diabetologia 2018, 61, 2561–2569. [Google Scholar] [CrossRef] [Green Version]
- LaMonte, M.J.; Barlow, C.E.; Jurca, R.; Kampert, J.B.; Church, T.S.; Blair, S.N. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: A prospective study of men and women. Circulation 2005, 112, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.-J.; Kang, S.-J.; Lee, K.-S. Association between cardiorespiratory, muscular fitness and metabolic syndrome in Korean men. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 536–541. [Google Scholar] [CrossRef]
- Zaccardi, F.; O’Donovan, G.; Webb, D.R.; Yates, T.; Kurl, S.; Khunti, K.; Davies, M.J.; Laukkanen, J.A. Cardiorespiratory fitness and risk of type 2 diabetes mellitus: A 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis 2015, 243, 131–137. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Barlow, C.E.; LaMonte, M.J.; Fitzgerald, S.J.; Kampert, J.B.; Perrin, J.L.; Blair, S.N. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am. J. Epidemiol. 2006, 163, 142–150. [Google Scholar] [CrossRef]
- Jackson, A.S.; Sui, X.; Hebert, J.R.; Church, T.S.; Blair, S.N. Role of Lifestyle and Aging on the Longitudinal Change in Cardiorespiratory Fitness. Arch. Intern. Med. 2009, 169, 1781–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Laditka, J.N.; Church, T.S.; Hardin, J.W.; Chase, N.; Davis, K.; Blair, S.N. Prospective study of cardiorespiratory fitness and depressive symptoms in women and men. J. Psychiatr. Res. 2009, 43, 546–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzmarzyk, P.T.; Craig, C.L. Musculoskeletal fitness and risk of mortality. Med. Sci. Sports Exerc. 2002, 34, 740–744. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Halle, M.; Meisinger, C. Muscular strength as a strong predictor of mortality: A narrative review. Eur. J. Intern. Med. 2015, 26, 303–310. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.-C.; Martinez-Vizcaino, V. Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113. [Google Scholar] [CrossRef]
- Mason, C.; Brien, S.E.; Craig, C.L.; Gauvin, L.; Katzmarzyk, P.T. Musculoskeletal Fitness and Weight Gain in Canada. Med. Sci. Sports Exerc. 2007, 39, 38–43. [Google Scholar] [CrossRef]
- Artero, E.G.; Lee, D.-C.; Lavie, C.J.; Espana-Romero, V.; Sui, X.; Church, T.S.; Blair, S.N. Effects of muscular strength on cardiovascular risk factors and prognosis. J. Cardiopulm. Rehabil. Prev. 2012, 32, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Jurca, R.; Lamonte, M.J.; Barlow, C.E.; Kampert, J.B.; Church, T.S.; Blair, S.N. Association of muscular strength with incidence of metabolic syndrome in men. Med. Sci. Sports Exerc. 2005, 37, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- De La Motte, S.J.; Gribbin, T.C.; Lisman, P.; Murphy, K.; Deuster, P.A. Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 2-Muscular Endurance and Muscular Strength. J. Strength Cond. Res. 2017, 31, 3218–3234. [Google Scholar] [CrossRef]
- Payne, N.; Gledhill, N.; Katzmarzyk, P.T.; Jamnik, V.; Ferguson, S. Health implications of musculoskeletal fitness. Can. J. Appl. Physiol. 2000, 25, 114–126. [Google Scholar] [CrossRef]
- Warburton, D.E.; Gledhill, N.; Quinney, A. Musculoskeletal fitness and health. Can. J. Appl. Physiol. 2001, 26, 217–237. [Google Scholar] [CrossRef]
- Séguin, R. The benefits of strength training for older adults. Am. J. Prev. Med. 2003, 25, 141–149. [Google Scholar] [CrossRef]
- Stathokostas, L.; Little, R.M.D.; Vandervoort, A.A.; Paterson, D.H. Flexibility Training and Functional Ability in Older Adults: A Systematic Review. J. Aging Res. 2012, 2012, 1–30. [Google Scholar] [CrossRef] [Green Version]
- De La Motte, S.J.; Lisman, P.; Gribbin, T.C.; Murphy, K.; Deuster, P.A. A Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 3—Flexibility, Power, Speed, Balance, and Agility. J. Strength Cond. Res. 2017, 33, 1. [Google Scholar] [CrossRef]
- McCormack, G.R.; Cabaj, J.; Orpana, H.; Lukic, R.; Blackstaffe, A.; Goopy, S.; Hagel, B.; Keough, N.; Martinson, R.; Chapman, J.; et al. Evidence synthesis A scoping review on the relations between urban form and health: A focus on Canadian quantitative evidence. Health Promot. Chronic Dis. Prev. Can. 2019, 39, 187–200. [Google Scholar] [CrossRef]
- Schulz, M.; Romppel, M.; Grande, G. Built environment and health: A systematic review of studies in Germany. J. Public Health 2016, 40, 8–15. [Google Scholar] [CrossRef]
- Krefis, A.C.; Augustin, M.; Schlünzen, K.H.; Oßenbrügge, J.; Augustin, J. How Does the Urban Environment Affect Health and Well-Being? A Systematic Review. Urban Sci. 2018, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Shiell, A. In search of causality: A systematic review of the relationship between the built environment and physical activity among adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Ferdinand, A.O.; Sen, B.; Rahurkar, S.; Engler, S.; Menachemi, N. The Relationship Between Built Environments and Physical Activity: A Systematic Review. Am. J. Public Health 2012, 102, e7–e13. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Allen, P.; Barlow, C.E.; Marx, C.M.; Brownson, R.C.; Schootman, M. Understanding the Independent and Joint Associations of the Home and Workplace Built Environments on Cardiorespiratory Fitness and Body Mass Index. Am. J. Epidemiol. 2013, 178, 1094–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B.M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, K.; Bopp, M.; Papalia, Z.; Sims, D.; Bopp, C.M. The Relationship of Living Environment with Behavioral and Fitness Outcomes by Sex: An Exploratory Study in College-aged Students. Int. J. Exerc. Sci. 2017, 10, 330–339. [Google Scholar] [PubMed]
- Boone-Heinonen, J.; Jacobs, D.R., Jr.; Sidney, S.; Sternfeld, B.; Lewis, C.E.; Gordon-Larsen, P. A walk (or cycle) to the park: Active transit to neighborhood amenities, the CARDIA study. Am. J. Prev. Med. 2009, 37, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Hoehner, C.M.; Handy, S.L.; Yan, Y.; Blair, S.N.; Berrigan, D. Association between neighborhood walkability, cardiorespiratory fitness and body-mass index. Soc. Sci. Med. 2011, 73, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, P. Physical Fitness Evaluation. Am. J. Lifestyle Med. 2015, 9, 308–317. [Google Scholar] [CrossRef]
- Granacher, U.; Muehlbauer, T.; Gruber, M. A qualitative review of balance and strength performance in healthy older adults: Impact for testing and training. J. Aging Res. 2012, 2012, 708905. [Google Scholar] [CrossRef]
- Jaric, S. Muscle strength testing: Use of normalisation for body size. Sports Med. 2002, 32, 615–631. [Google Scholar] [CrossRef]
- Suni, J.H.; Oja, P.; Laukkanen, R.T.; Miilunpalo, S.I.; Pasanen, M.E.; Vuori, I.M.; Vartiainen, T.M.; Bos, K. Health-related fitness test battery for adults: Aspects of reliability. Arch. Phys. Med. Rehabil. 1996, 77, 399–405. [Google Scholar] [CrossRef]
- Obling, K.H.; Hansen, A.L.; Overgaard, K.; Normann, K.; Sandbaek, A.; Maindal, H.T. Association between self-reported and objectively measured physical fitness level in a middle-aged population in primary care. Prev. Med. Rep. 2015, 2, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Germain, J.L.; Hausenblas, H.A. The Relationship between Perceived and Actual Physical Fitness: A Meta-Analysis. J. Appl. Sport Psychol. 2006, 18, 283–296. [Google Scholar] [CrossRef]
- Ortega, F.B.; Sanchez-Lopez, M.; Solera-Martinez, M.; Fernandez-Sanchez, A.; Sjostrom, M.; Martinez-Vizcaino, V. Self-reported and measured cardiorespiratory fitness similarly predict cardiovascular disease risk in young adults. Scand. J. Med. Sci. Sports 2013, 23, 749–757. [Google Scholar] [CrossRef]
- Shephard, R.J.; Bouchard, C. Associations between health behaviours and health related fitness. Br. J. Sports Med. 1996, 30, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, G.; Miyake, H.; Mori, M. Leisure time physical activity as a determinant of self-perceived health and fitness in middle-aged male employees. J. Occup. Health 2003, 45, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shephard, R.J.; Bouchard, C. Population evaluations of health related fitness from perceptions of physical activity and fitness. Can. J. Appl. Physiol. 1994, 19, 151–173. [Google Scholar] [CrossRef]
- Haapanen-Niemi, N.; Miilunpalo, S.; Pasanen, M.; Vuori, I.; Oja, P.; Malmberg, J. Body mass index, physical inactivity and low level of physical fitness as determinants of all-cause and cardiovascular disease mortality—16 y follow-up of middle-aged and elderly men and women. Int. J. Obes. 2000, 24, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Lamb, K.L. Correlates of self-perceived fitness. Percept. Mot. Ski. 1992, 74, 907–914. [Google Scholar] [CrossRef]
- Drummond, J.L.; Hagan, L. Leisure-Time Physical Activity and Self-Perceived Fitness of Hospital Employees. Percept. Mot. Ski. 1998, 87, 1256–1258. [Google Scholar] [CrossRef]
- City of Calgary Main Streets. Available online: http://www.calgary.ca/PDA/pd/Pages/Main-Streets/Main-Streets.aspx?redirect=/mainstreets (accessed on 3 April 2019).
- Stroyer, J.; Essendrop, M.; Jensen, L.D.; Warming, S.; Avlund, K.; Schibye, B. Validity and reliability of self-assessed physical fitness using visual analogue scales. Percept. Mot. Ski. 2007, 104, 519–533. [Google Scholar] [CrossRef]
- Keith, N.R.; Clark, D.O.; Stump, T.E.; Miller, D.K.; Callahan, C.M. Validity and reliability of the Self-Reported Physical Fitness (SRFit) survey. J. Phys. Act. Health 2014, 11, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Keith, N.R.; Stump, T.E.; Clark, D.O. Developing a self-reported physical fitness survey. Med. Sci. Sports Exerc. 2012, 44, 1388–1394. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.; Bull, F.C.; Bauman, A. Reliability and validity testing of a single-item physical activity measure. Br. J. Sports Med. 2011, 45, 203–208. [Google Scholar] [CrossRef]
- Sallis, J.F.; Kerr, J.; Carlson, J.A.; Norman, G.J.; Saelens, B.E.; Durant, N.; Ainsworth, B.E. Evaluating a brief self-report measure of neighborhood environments for physical activity research and surveillance: Physical Activity Neighborhood Environment Scale (PANES). J. Phys. Act. Health 2010, 7, 533–540. [Google Scholar] [CrossRef]
- Alexander, A.; Bergman, P.; Hagströmer, M.; Sjöström, M. IPAQ environmental module; reliability testing. J. Public Health 2006, 14, 76–80. [Google Scholar] [CrossRef]
- Oyeyemi, A.L.; Adegoke, B.O.; Oyeyemi, A.Y.; Fatudimu, B.M. Test-retest reliability of IPAQ environmental- module in an African population. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyeyemi, A.L.; Sallis, J.F.; Oyeyemi, A.Y.; Amin, M.M.; De Bourdeaudhuij, I.; Deforche, B. Adaptation, test-retest reliability, and construct validity of the Physical Activity Neighborhood Environment Scale in Nigeria (PANES-N). J. Phys. Act. Health 2013, 10, 1079–1090. [Google Scholar] [CrossRef]
- Frehlich, L.; Blackstaffe, A.; McCormack, G.R. Test–retest Reliability and Construct Validity of an Online and Paper Administered Physical Activity Neighborhood Environment Scale (PANES). Meas. Phys. Educ. Exerc. Sci. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Walk Score; Seattle, WA, USA, 2011. Available online: https://www.walkscore.com/ (accessed on 3 April 2019).
- Hajna, S.; Ross, N.A.; Joseph, L.; Harper, S.; Dasgupta, K. Neighbourhood walkability, daily steps and utilitarian walking in Canadian adults. BMJ Open 2015, 5, 008964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielman, J.; Manson, H.; Chiu, M.; Copes, R.; Rosella, L.C. Residents of highly walkable neighbourhoods in Canadian urban areas do substantially more physical activity: A cross-sectional analysis. CMAJ Open 2016, 4, E720–E728. [Google Scholar] [CrossRef] [Green Version]
- Frehlich, L.; Blackstaffe, A.; McCormack, G.R. Test-Retest Reliability and Walk Score® Neighbourhood Walkability Comparison of an Online Perceived Neighbourhood-Specific Adaptation of the International Physical Activity Questionnaire (IPAQ). Int. J. Environ. Res. Public Health 2019, 16, 1917. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health Place 2010, 16, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Salvo, G.; Lashewicz, B.M.; Doyle-Baker, P.K.; McCormack, G.R. Neighbourhood Built Environment Influences on Physical Activity among Adults: A Systematized Review of Qualitative Evidence. Int. J. Environ. Res. Public Health 2018, 15, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.J.; Mokhtarian, P.L.; Handy, S.L. Examining the Impacts of Residential Self-Selection on Travel Behaviour: A Focus on Empirical Findings. Transp. Rev. 2009, 29, 359–395. [Google Scholar] [CrossRef]
- Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Correlates and Determinants of Cardiorespiratory Fitness in Adults: A Systematic Review. Sports Med. Open 2019, 5, 39. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Category | Estimate |
---|---|---|
Age in years [mean ± SD] | 46.0 ± 14.7 | |
Sex [n (%)] | Male | 194 (32.8) |
Female | 398 (67.2) | |
Ethnicity [n (%)] | Caucasian | 500 (84.5) |
Other ethnicities | 92 (15.5) | |
Highest level of education [n (%)] | Less than university | 128 (21.6) |
Completed university | 464 (78.4) | |
Annual household income [n (%)] | Less than $50,000 | 84 (14.2) |
$50,000 to $99,999 | 140 (23.6) | |
$100,00 to $149,999 | 113 (19.1) | |
$150,000 to $199,999 | 86 (14.5) | |
$200,000 or more | 111 (18.8) | |
Don’t know | 58 (9.8) | |
Dog living in the home [n (%)] | At least one dog in home | 170 (28.7) |
No dog in home | 422 (71.3) | |
Motor Vehicle Access [n (%)] | Always/Sometimes | 543 (91.7) |
Never/Don’t drive | 49 (8.3) | |
Tobacco use at present time [n (%)] | Yes, daily or occasionally | 53 (9.0) |
No current tobacco use | 539 (91.0) | |
Number of days/week of ≥30+ min of MVPA [mean ± SD] | 3.4 ± 2.1 | |
Number of days/week of resistance training [mean ± SD] | 2.0 ± 1.8 | |
Walk Score® (0 to 100) [mean ± SD] | 62.3 ± 15.0 | |
Physical Activity Neighborhood Environment Scale (1 to 4) [mean ± SD] | 3.3 ± 0.4 | |
Park Perceptions Index (1 to 4) [mean ± SD] | 3.2 ± 0.5 | |
Perceived cardiorespiratory fitness (0 to 100) [mean ± SD] | 65.2 ± 23.4 | |
Perceived reported muscle strength (0 to 100) [mean ± SD] | 64.9 ± 21.8 | |
Perceived flexibility (0 to 100) [mean ± SD] | 62.3 ± 22.8 | |
Overall perceived fitness (0 to 100) [mean ± SD] | 64.1 ± 19.4 |
Cardiorespiratory Fitness | Muscle Strength | Flexibility | Overall Fitness | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |
b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | b (95 CI) | |
Walk Score® | −0.04 (−0.16, 0.08) | 0.01 (−0.10, 0.12) | <0.00 (−0.11, 0.11) | −0.01 (−0.12, 0.11) | 0.03 (−0.08, 0.14) | 0.01 (−0.09, 0.12) | −0.03 (−0.15, 0.09) | −0.01 (−0.13, 0.11) | −0.01 (−0.13, 0.11) | −0.03 (−0.13, 0.08) | 0.01 (−0.08, 0.11) | <0.00 (−0.09, 0.09) |
MVPA (days/week) | 5.05 * (4.26, 5.84) | 4.57 * (3.74, 5.40) | 3.68 * (2.91, 4.46) | 2.69 * (1.89, 3.48) | 2.63 * (1.76, 3.49) | 2.18 * (1.26, 3.10) | 3.79 * (3.11, 4.47) | 3.15 * (2.44, 3.85) | ||||
RT (days/week) | 1.62 * (0.65, 2.58) | 3.37 * (2.45, 4.29) | 1.50 * (0.43, 2.57) | 2.16 * (1.34, 2.98) | ||||||||
R2 | 9.5 | 29.0 | 30.3 | 8.1 | 20.1 | 26.6 | 4.3 | 9.9 | 11.0 | 7.9 | 23.8 | 27.1 |
PANES | 8.66 * (4.11, 13.21) | 6.77 * (2.72, 10.83) | 6.47 * (2.44, 10.49) | 7.17 * (2.89,11.46) | 5.81 * (1.79, 9.82) | 5.15 * (1.29, 9.01) | 8.26 * (3.69, 12.84) | 7.30 * (2.83, 11.77) | 7.01 * (2.57, 11.47) | 8.03 * (4.23, 11.84) | 6.63 * (3.02, 4.36) | 6.21 * (2.79, 9.63) |
MVPA (days/week) | 4.95 * (4.17, 5.73) | 4.50 * (3.68, 5.32) | 3.59 * (2.81, 4.36) | 2.62 * (1.84, 3.41) | 2.53 * (1.67, 3.39) | 2.12 * (1.21, 3.02) | 3.69 * (3.02, 4.36) | 3.08 * (2.38, 3.78) | ||||
RT (days/week) | 1.5 5* (0.59, 2.50) | 3.32 * (2.40, 4.23) | 1.42 * (0.36, 2.47) | 2.09 * (1.28, 2.91) | ||||||||
R2 | 11.5 | 30.3 | 31.5 | 9.8 | 21.1 | 27.5 | 6.3 | 11.5 | 12.5 | 10.5 | 25.6 | 28.7 |
PPI | 6.60 * (3.06, 10.14) | 3.92 * (0.73, 7.10) | 3.75 * (0.59, 9.91) | 4.33 * (0.99, 7.67) | 2.37 (−0.79, 5.53) | 2.02 (−1.02, 5.05) | 6.12 * (2.56, 9.68) | 4.77 * (1.27, 8.28) | 4.62 * (1.14, 8.11) | 5.68 * (2.72, 8.65) | 3.69 * (0.95, 6.43) | 3.46 * (0.78, 6.15) |
MVPA (days/week) | 4.92 * (4.13, 5.70) | 4.46 * (3.63, 5.29) | 3.59 * (2.81, 4.37) | 2.62 * (1.82, 3.41) | 2.47 * (1.60, 3.34) | 2.05 * (1.14, 2.97) | 3.66 * (2.98, 4.34) | 3.04 * (2.34, 3.75) | ||||
RT (days/week) | 1.58 * (0.62, 2.54) | 3.36 * (2.43, 4.28) | 1.45 * (0.39, 2.51) | 2.13 * (1.31, 2.95) | ||||||||
R2 | 11.5 | 29.7 | 31.0 | 9.1 | 20.3 | 26.8 | 6.1 | 11.0 | 12.1 | 10.0 | 24.7 | 28.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCormack, G.R.; Frehlich, L.; Blackstaffe, A.; Turin, T.C.; Doyle-Baker, P.K. Active and Fit Communities. Associations between Neighborhood Walkability and Health-Related Fitness in Adults. Int. J. Environ. Res. Public Health 2020, 17, 1131. https://doi.org/10.3390/ijerph17041131
McCormack GR, Frehlich L, Blackstaffe A, Turin TC, Doyle-Baker PK. Active and Fit Communities. Associations between Neighborhood Walkability and Health-Related Fitness in Adults. International Journal of Environmental Research and Public Health. 2020; 17(4):1131. https://doi.org/10.3390/ijerph17041131
Chicago/Turabian StyleMcCormack, Gavin R., Levi Frehlich, Anita Blackstaffe, Tanvir C. Turin, and Patricia K. Doyle-Baker. 2020. "Active and Fit Communities. Associations between Neighborhood Walkability and Health-Related Fitness in Adults" International Journal of Environmental Research and Public Health 17, no. 4: 1131. https://doi.org/10.3390/ijerph17041131
APA StyleMcCormack, G. R., Frehlich, L., Blackstaffe, A., Turin, T. C., & Doyle-Baker, P. K. (2020). Active and Fit Communities. Associations between Neighborhood Walkability and Health-Related Fitness in Adults. International Journal of Environmental Research and Public Health, 17(4), 1131. https://doi.org/10.3390/ijerph17041131