Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methodology
3.1. Datasets
3.1.1. SAR Remotely Sensed Images
3.1.2. Optical Remotely Sensed Images
3.1.3. Coal Mining Information
3.2. Methodology
3.2.1. Detection Land Subsidence by Means of Small Baseline InSAR Technique from 2006 to 2011
3.2.2. Detection Land Subsidence by Means of DInSAR Technique from 2014 to 2015
3.2.3. The Subsidence Gradient Calculation and Analysis Method
4. Results
4.1. Distribution of Land Subsidence in Coal Mining Area
4.2. Validation of the SAR Outcomes
5. Discussion
5.1. Dangerous Risk Region around the Boundary of Mining Goafs
5.2. The Effects of Mining Scales in the Coal Mining Goafs on Land Subsidence
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, H.; Gu, W.; Qin, Y.; Xue, J.; Chen, B. A model for extracting large deformation mining subsidence using D-InSAR technique and probability integral method. Trans. Nonferrous Met. Soc. China 2014, 24, 1242–1247. [Google Scholar] [CrossRef]
- Qi, L.; Dong, Y.; Lv, J.; Chen, Z. Research on geological environmental impact assessment of mineral resources development-the case of Ordos. China Land Resour. Econ. 2014, 9, 22–24. (In Chinese) [Google Scholar]
- Wang, B.; Guo, L.; Wang, J.; Yang, H.; Li, J.; Dou, J. InSAR monitoring of surface deformation in mining area-the Yongcheng case. Surv. Spat. Geogr. Inf. 2016, 39, 24–27. (In Chinese) [Google Scholar]
- Fan, H.; Deng, K.; Ju, C.; Zhu, C.; Xue, J. Land subsidence monitoring by D-InSAR technique. Min. Sci. Technol. 2011, 6, 119–122. [Google Scholar] [CrossRef]
- Amelung, F.; Galloway, D.; Bell, J.; Zebker, H.; Laczniak, R. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Abdikan, S.; Arıkan, M.; Sanli, F.; Cakir, Z. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the Loess Plateau: The case study of Yan’an City. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1999, 14, 12–13. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Studinger, M.; Shuman, C.; Fahnestock, M. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 2007, 445, 904–907. [Google Scholar]
- Gray, L. Using multiple RADARSAT InSAR pairs to estimate a full three-dimensional solution for glacial ice movement. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef]
- Yen, J.; Chang, C.; Chen, K. DInSAR Observation of a Graben-Like Structure in Southwestern Taiwan and its Tectonic Implication. In Proceedings of the AGU invites abstract submissions for Fall Meeting, San Francisco, CA, USA, 9–13 December 2006. [Google Scholar]
- Papageorgiou, E.; Foumelis, M.; Parcharidis, I. Long-and short-term deformation monitoring of santorini volcano: Unrest evidence by DInSAR analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1531–1537. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Hongdong, F.; Kazhong, D.; Chengyu, J.; Chuanguang, Z.; Jiqun, X. Land subsidence monitoring by D-InSAR technique. Min. Sci. Technol. 2011, 21, 869–872. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Multitemporal interferometric point target analysis. Remote Sens. 2004, 3, 136–144. [Google Scholar]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE. Remote Sens. 2018, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.L.; Peng, J.H. Monitoring urban subsidence with multi-master radar interferometry based on coherent targets. J. Indian Soc. Remote Sens. 2015, 43, 529–538. [Google Scholar] [CrossRef]
- Tosi, L.; Da Lio, C.; Strozzi, T.; Teatini, P. Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy. Remote Sens. 2016, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GISci. Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Ng, A.H.M.; Ge, L.; Du, Z.Y.; Wang, S.R.; Ma, C. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 92–103. [Google Scholar] [CrossRef]
- Ng, A.H.M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; Lopez-Sanchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng. Geol. 2007, 90, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Monika; Govil, H.; Chatterjee, R.S.; Malik, K.; Diwan, P.; Tripathi, M.K.; Guha, S. Identification and Measurement of Deformation Using Sentinel Data and PSInSAR Technique in Coalmines of KORBA. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII, 20–23. [Google Scholar]
- Cigna, F.; Cabral-Cano, E.; Osmanoglu, B.; Dixon, T.H.; Wdowinski, S. Detecting subsidence-induced faulting in Mexican urban areas by means of persistent scatterer interferometry and subsidence horizontal gradient mapping. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2125–2128. [Google Scholar]
- Du, Z.; Ge, L.; Ng, A.H.M.; Li, X. Satellite-based Estimates of Ground Subsidence in Ordos Basin, China. J. Appl. Geod. 2017, 11, 9–20. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Li, X.; Ng, A.H.M. Subsidence monitoring in the Ordos basin using integrated SAR differential and time-series interferometry techniques. Remote Sens. Lett. 2016, 7, 180–189. [Google Scholar] [CrossRef]
- Agustan, F.; Abidin, H.; Pamitro, Y. Measuring ground deformation of the tropical volcano, Ibu, using ALOS-PALSAR data. Remote Sens Lett. 2010, 1, 37–44. [Google Scholar] [CrossRef]
- Ministry of Land and Resources of the People’s Republic of China. Compiling Code on The Project of Mining Geo-Environmental Protection and Integrated Renovation; DZ/T 0223-2011; Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2011.
- Li, Z.; Cao, Y.; Wei, J.; Duan, M.; Wu, L.; Hou, J.; Zhu, J. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Sci. Rev. 2019, 192, 258–284. [Google Scholar] [CrossRef]
- Goel, K.; Adam, N. An advanced algorithm for deformation estimation in non-urban areas. ISPRS J. Photogramm. Remote Sens. 2012, 73, 100–110. [Google Scholar] [CrossRef]
- Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Manson, S.M.; Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems: Spatial Information Systems and Geostatistics. Econ. Geogr. 1999, 75, 422. [Google Scholar] [CrossRef]
- North, M.A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; Volume 1, pp. 35–38. [Google Scholar]
- Zhang, Z.; Wang, C.; Tang, Y.; Fu, Q.; Zhang, H. Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 49–55. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, R.; Deng, Y.; Ma, P.; Lin, H.; Wang, J. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS J. Photogramm. Remote Sens. 2019, 148, 157–173. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Deng, C.; Zhang, Y.; Fan, H.; Li, P. Three-dimensional deformation field detection based on multi-source SAR imagery in mining area. J. China Coal Soc. 2014, 39, 673–678. (In Chinese) [Google Scholar]
Satellite/Sensor | Operation Time | Polarization | Heading | Mode | Number of Acquisitions | Time Spans of Acquisitions |
---|---|---|---|---|---|---|
ALOS-1 PALSAR | January 2006–April 2011 | HH+HV | Ascending | FBD | 20 | 22 December 2006–2 January 2011 |
ALOS-2 PALSAR-2 | May 2014–Present | HH+HV | Ascending | FBD | 2 | 3 December 2014–15 July 2015 |
Coal Mine Factory | Scale | Mining Capacity | Goafs Area | Construction Time (year) | Operational Status in 2012 |
---|---|---|---|---|---|
A | Large | 30 | 1.14 | 1989 | Open |
B | Medium | 6 | 0 | 2000 | Close |
C | Small | 3 | 0.20 | 2000 | Open |
D | Large | 24 | 4.54 | 1988 | Open |
E | Medium | 6 | 0.09 | 1984 | Close |
F | Medium | 4.5 | 0.46 | 1965 | Open |
G | Small | 3 | 1.53 | 1994 | Close |
H | Small | 3 | 1.29 | 2006 | Open |
I | Medium | 6 | 0.28 | 1993 | Close |
J | Large | 15 | 1.38 | 1998 | Open |
K | Large | 27 | 0.92 | 1998 | Open |
L | Large | 200 | 0 | 2008 | Open |
M | Large | 30 | 5.10 | 1988 | Open |
N | Large | 12 | 0 | 2011 | Construction period |
O | Large | 50 | 14.02 | 1988 | Open |
Range | 50–100 | 100–150 | 150–200 | 200–250 | 250–300 | 300–350 |
Change rate | 3.94 | 3.28 | 2.94 | 2.20 | 2.10 | 1.90 |
Range | 350–400 | 400–450 | 450–500 | 500–550 | 550–600 | 600–650 |
Change rate | 1.12 | 1.02 | 0.58 | 0.92 | 0.88 | 0.82 |
Scale | Small | Medium | Large |
---|---|---|---|
Number of measurement pixels in the goafs (per ) | 1465 | 1306 | 1074 |
Number of measurement pixels with subsidence rates greater than −10 mm/year (per ) | 151 | 149 | 190 |
Proportion of subsidence rates (greater than −10 mm/year) | 10 | 11 | 18 |
Maximum subsidence rate (mm/year) | −26.69 | −22.03 | −58.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Zhu, L.; Wang, W.; Guo, L.; Chen, B. Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1170. https://doi.org/10.3390/ijerph17041170
Zheng L, Zhu L, Wang W, Guo L, Chen B. Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. International Journal of Environmental Research and Public Health. 2020; 17(4):1170. https://doi.org/10.3390/ijerph17041170
Chicago/Turabian StyleZheng, Liping, Lin Zhu, Wei Wang, Lin Guo, and Beibei Chen. 2020. "Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis" International Journal of Environmental Research and Public Health 17, no. 4: 1170. https://doi.org/10.3390/ijerph17041170
APA StyleZheng, L., Zhu, L., Wang, W., Guo, L., & Chen, B. (2020). Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. International Journal of Environmental Research and Public Health, 17(4), 1170. https://doi.org/10.3390/ijerph17041170