Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population and Sample Collection
2.2. Sample Extraction and Chemical Analysis
2.3. Oxidative Stress Biomarkers
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vercellini, P.; Vigano, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Ruderman, R.; Pavone, M.E. Ovarian cancer in endometriosis: An update on the clinical and molecular aspects. Minerva Ginecol. 2017, 69, 286–294. [Google Scholar] [PubMed]
- Matias-Guiu, X.; Stewart, C.J.R. Endometriosis-associated ovarian neoplasia. Pathology 2018, 50, 190–204. [Google Scholar] [CrossRef]
- Eisenberg, V.H.; Weil, C.; Chodick, G.; Shalev, V. Epidemiology of endometriosis: A large population-based database study from a healthcare provider with 2 million members. BJOG Int. J. Obstet. Gynaecol. 2018, 125, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.G.; Lenk, E.E.; Lebovic, D.I.; Shu, Y.; Yu, J.; Taylor, R.N. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 50–60. [Google Scholar] [CrossRef]
- Koninckx, P.R.; Ussia, A.; Adamyan, L.; Wattiez, A.; Gomel, V.; Martin, D.C. Pathogenesis of endometriosis: The genetic/epigenetic theory. Fertil. Steril. 2019, 111, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Rahmioglu, N.; Montgomery, G.W.; Zondervan, K.T. Genetics of endometriosis. Womens Health 2015, 11, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Smarr, M.M.; Kannan, K.; Buck Louis, G.M. Endocrine disrupting chemicals and endometriosis. Fertil. Steril. 2016, 106, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.M.; Pussemier, L.; Scippo, M.L.; et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 3725–3740. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch. Environ. Contam. Toxicol. 2014, 67, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Molina-Molina, J.M.; Iribarne-Duran, L.M.; Jimenez-Diaz, I.; Vela-Soria, F.; Mustieles, V.; Arrebola, J.P.; Fernandez, M.F.; Artacho-Cordon, F.; Olea, N. Concentrations of bisphenol A and parabens in socks for infants and young children in Spain and their hormone-like activities. Environ. Int. 2019, 127, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Liu, Y.; Gong, X.; Zhang, T.; Sun, H. Widespread Occurrence of Bisphenol A in Daily Clothes and Its High Exposure Risk in Humans. Environ. Sci. Technol. 2019, 53, 7095–7102. [Google Scholar] [CrossRef] [PubMed]
- Li, A.J.; Kannan, K. Elevated Concentrations of Bisphenols, Benzophenones, and Antimicrobials in Pantyhose Collected from Six Countries. Environ. Sci. Technol. 2018, 52, 10812–10819. [Google Scholar] [CrossRef] [PubMed]
- Molina-Molina, J.M.; Jimenez-Diaz, I.; Fernandez, M.F.; Rodriguez-Carrillo, A.; Peinado, F.M.; Mustieles, V.; Barouki, R.; Piccoli, C.; Olea, N.; Freire, C. Determination of bisphenol A and bisphenol S concentrations and assessment of estrogen- and anti-androgen-like activities in thermal paper receipts from Brazil, France, and Spain. Environ. Res. 2019, 170, 406–415. [Google Scholar] [CrossRef]
- Li, Y.; Burns, K.A.; Arao, Y.; Luh, C.J.; Korach, K.S. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor alpha and beta in vitro. Environ. Health Perspect. 2012, 120, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Perez, P.; Pulgar, R.; Olea-Serrano, F.; Villalobos, M.; Rivas, A.; Metzler, M.; Pedraza, V.; Olea, N. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ. Health Perspect. 1998, 106, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wong, L.Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults during 2000–2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef]
- Molina-Molina, J.M.; Amaya, E.; Grimaldi, M.; Saenz, J.M.; Real, M.; Fernandez, M.F.; Balaguer, P.; Olea, N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol. Appl. Pharmacol. 2013, 272, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ. Toxicol. Pharmacol. 2005, 19, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Artacho-Cordon, F.; Rios-Arrabal, S.; Leon, J.; Frederiksen, H.; Saenz, J.M.; Martin-Olmedo, P.; Fernandez, M.F.; Olea, N.; Arrebola, J.P. Adipose tissue concentrations of non-persistent environmental phenols and local redox balance in adults from Southern Spain. Environ. Int. 2019, 133, 105118. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Ferguson, K.K.; Anzalota Del Toro, L.V.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int. J. Hyg. Environ. Health 2015, 218, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Khan, M.J. Bisphenol A analogues bisphenol B, bisphenol F, and bisphenol S induce oxidative stress, disrupt daily sperm production, and damage DNA in rat spermatozoa: A comparative in vitro and in vivo study. Toxicol. Ind. Health 2019, 35, 294–303. [Google Scholar] [CrossRef]
- Ferreira, E.M.; Giorgi, V.S.I.; Rodrigues, J.K.; de Andrade, A.Z.; Junior, A.A.J.; Navarro, P.A. Systemic oxidative stress as a possible mechanism underlying the pathogenesis of mild endometriosis-related infertility. Reprod. Biomed. Online 2019. [Google Scholar] [CrossRef]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef]
- Ito, F.; Yamada, Y.; Shigemitsu, A.; Akinishi, M.; Kaniwa, H.; Miyake, R.; Yamanaka, S.; Kobayashi, H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod. Sci. 2017, 24, 1493–1502. [Google Scholar] [CrossRef]
- Amreen, S.; Kumar, P.; Gupta, P.; Rao, P. Evaluation of Oxidative Stress and Severity of Endometriosis. J. Hum. Reprod. Sci. 2019, 12, 40–46. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, S.; Yuan, D.; Peng, L.; Zeng, R.; Yang, Z.; Liu, Q.; Xu, L.; Kang, D. The association between the environmental endocrine disruptor bisphenol A and polycystic ovary syndrome: A systematic review and meta-analysis. Gynecol. Endocrinol. 2018, 34, 370–377. [Google Scholar] [CrossRef]
- Ozel, S.; Tokmak, A.; Aykut, O.; Aktulay, A.; Hancerliogullari, N.; Engin Ustun, Y. Serum levels of phthalates and bisphenol-A in patients with primary ovarian insufficiency. Gynecol. Endocrinol. 2019, 35, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, W.; Zhu, W.; Chen, L.; Wang, W.; Tian, Y.; Shen, L.; Zhang, J. Associations of female exposure to bisphenol A with fecundability: Evidence from a preconception cohort study. Environ. Int. 2018, 117, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Lang, S.A.; Kendziorski, J.A.; Greene, A.D.; Burns, K.A. Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure. Environ. Health Perspect. 2018, 126, 127004. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Xiong, Y.; Qu, X.; Jin, L.; Zhou, C.; Zhang, M.; Zhang, Y. The risk of endometriosis after exposure to endocrine-disrupting chemicals: A meta-analysis of 30 epidemiology studies. Gynecol. Endocrinol. 2019, 35, 645–650. [Google Scholar] [CrossRef]
- Canis, M.; Donnez, J.G.; Guzick, D.S.; Halme, J.K.; Rock, J.A.; Schenken, R.S.; Vernon, M.W. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil. Steril. 1997, 67, 817–821. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Ballesteros, O.; Zafra-Gomez, A.; Ballesteros, L.; Navalon, A. UHPLC-MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal. Bioanal. Chem. 2014, 406, 3773–3785. [Google Scholar] [CrossRef]
- Rashidi, B.H.; Amanlou, M.; Lak, T.B.; Ghazizadeh, M.; Eslami, B. A case-control study of bisphenol A and endometrioma among subgroup of Iranian women. J. Res. Med. Sci. 2017, 22, 7. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Peterson, C.M.; Chen, Z.; Croughan, M.; Sundaram, R.; Stanford, J.; Varner, M.W.; Kennedy, A.; Giudice, L.; Fujimoto, V.Y.; et al. Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil. Steril. 2013, 100, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Upson, K.; Sathyanarayana, S.; De Roos, A.J.; Koch, H.M.; Scholes, D.; Holt, V.L. A population-based case-control study of urinary bisphenol A concentrations and risk of endometriosis. Hum. Reprod. 2014, 29, 2457–2464. [Google Scholar] [CrossRef] [Green Version]
- Simonelli, A.; Guadagni, R.; De Franciscis, P.; Colacurci, N.; Pieri, M.; Basilicata, P.; Pedata, P.; Lamberti, M.; Sannolo, N.; Miraglia, N. Environmental and occupational exposure to bisphenol A and endometriosis: Urinary and peritoneal fluid concentration levels. Int. Arch. Occup. Environ. Health 2017, 90, 49–61. [Google Scholar] [CrossRef]
- Itoh, H.; Iwasaki, M.; Hanaoka, T.; Sasaki, H.; Tanaka, T.; Tsugane, S. Urinary bisphenol-A concentration in infertile Japanese women and its association with endometriosis: A cross-sectional study. Environ. Health Prev. Med. 2007, 12, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Kendziorski, J.A.; Belcher, S.M. Strain-specific induction of endometrial periglandular fibrosis in mice exposed during adulthood to the endocrine disrupting chemical bisphenol A. Reprod. Toxicol. 2015, 58, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorile, P.G.; Spugnini, E.P.; Mita, L.; Mellone, P.; D’Avino, A.; Bianco, M.; Diano, N.; Caputo, L.; Rea, F.; Viceconte, R.; et al. Pre-natal exposure of mice to bisphenol A elicits an endometriosis-like phenotype in female offspring. Gen. Comp. Endocrinol. 2010, 168, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, L.M.; Ferreira, M.C.; Rocha, A.L.L.; Carneiro, M.M.; Reis, F.M. New biomarkers in endometriosis. Adv. Clin. Chem. 2019, 89, 59–77. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, Y.C. Increase of urinary malondialdehyde level by bisphenol A exposure: A longitudinal panel study. Environ. Health A Glob. Access Sci. Source 2017, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, K.K.; Cantonwine, D.E.; McElrath, T.F.; Mukherjee, B.; Meeker, J.D. Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod. Toxicol. 2016, 66, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Park, S.B.; Park, J.W.; Oh, S.R.; Han, M. Bisphenol A modulates inflammation and proliferation pathway in human endometrial stromal cells by inducing oxidative stress. Reprod. Toxicol. 2018, 81, 41–49. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.R.; Hong, Y.C. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes. Environ. Res. 2016, 147, 324–330. [Google Scholar] [CrossRef]
- Wang, I.J.; Karmaus, W.J. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int. J. Environ. Res. Public Health 2017, 14, 162. [Google Scholar] [CrossRef] [Green Version]
- Nepomnaschy, P.A.; Baird, D.D.; Weinberg, C.R.; Hoppin, J.A.; Longnecker, M.P.; Wilcox, A.J. Within-person variability in urinary bisphenol A concentrations: Measurements from specimens after long-term frozen storage. Environ. Res. 2009, 109, 734–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cases (n = 35) | Controls (n = 89) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
Age (years) * | 38.3 | ± | 9.3 | 35.8 | ± | 10.4 | 0.251 | |
Weight (kg) * | 68.5 | ± | 13.8 | 66.4 | ± | 13.6 | 0.334 | |
Height (m) * | 1.6 | ± | 0.1 | 1.6 | ± | 0.1 | 0.897 | |
Body mass index (kg/m2) * | 25.8 | ± | 5.4 | 25.0 | ± | 4.8 | 0.671 | |
Normal weight (BMI < 25) | 20 | 57.1 | 21 | 57.3 | 0.182 | |||
Overweight (BMI 25–30) | 6 | 17.1 | 26 | 29.2 | ||||
Obese (BMI > 30) | 9 | 25.7 | 12 | 13.5 | ||||
Residence | 0.156 | |||||||
Rural | 14 | 40.0 | 24 | 27.0 | ||||
Urban /semi-urban | 21 | 60.0 | 65 | 73.0 | ||||
Parity | 0.626 | |||||||
Nulliparous | 16 | 45.7 | 37 | 41.6 | ||||
Primiparous/Multiparous | 19 | 54.3 | 52 | 58.4 | ||||
Educational level | 0.105 | |||||||
Less than university degree | 19 | 54.3 | 62 | 69.7 | ||||
University degree | 16 | 45.7 | 27 | 30.3 | ||||
Working outside home | 0.806 | |||||||
Yes | 20 | 57.1 | 53 | 59.6 | ||||
No | 15 | 42.9 | 36 | 40.4 | ||||
Current smoker | 0.354 | |||||||
Yes | 7 | 20.0 | 25 | 28.1 | ||||
No | 28 | 80.0 | 64 | 71.9 | ||||
Amount of bleeding | 0.366 | |||||||
Mild | 14 | 40.0 | 28 | 31.5 | ||||
Moderate/severe | 21 | 60.0 | 61 | 68.5 | ||||
Urinary creatinine (ng/mL) * | 143.1 | ± | 71.6 | 115.5 | ± | 61.3 | 0.052 | |
Endometriosis stage | - | |||||||
I | 14 | 40.0 | - | - | ||||
II | 9 | 25.7 | - | - | ||||
III | 7 | 20.0 | - | - | ||||
IV | 5 | 14.3 | - | - | ||||
Endometrioma location | ||||||||
Deep infiltrating endometriosis | 11 | 31.4 | - | - | ||||
Ovarian/peritoneal endometriosis | 24 | 68.6 | - | - |
Total | Cases | Controls | p-Value | ||
---|---|---|---|---|---|
BPA | |||||
% ≥ LOD | 95.1 | 100.0 | 88.5 | 0.346 | |
GM (GSD) | 3.6 (1.1) | 5.5 (1.1) | 3.0 (1.2) | ||
Min–Max | 0.1–47.0 | 0.8–18.7 | 0.1–47.0 | ||
Percentiles 25–75 | 2.4–8.6 | 4.0–8.4 | 1.1–8.8 | ||
BPS | |||||
% ≥ LOD | 14.8 | 11.4 | 16.1 | 0.460 | |
GM (GSD) | 0.1 (1.1) | 0.1 (1.1) | 0.2 (1.1) | ||
Min–Max | 0.1–4.2 | 0.1–1.5 | 0.1–4.2 | ||
Percentiles 25–75 | 0.1–0.1 | 0.1–0.1 | 0.1–0.1 | ||
BPF | |||||
% ≥ LOD | 29.5 | 28.6 | 29.9 | 0.532 | |
GM (GSD) | 0.1 (0.1) | 0.1 (1.2) | 0.1 (1.1) | ||
Min–Max | 0.1–18.4 | 0.1–0.9 | 0.1–18.4 | ||
Percentiles 25–75 | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 | ||
Σbisphenols | |||||
GM (GSD) | 4.3 (1.1) | 5.9 (1.1) | 3.8 (1.2) | 0.510 | |
Min–Max | 0.2–47.1 | 0.9–18.9 | 0.2–47.1 | ||
Percentiles 25–75 | 2.8–9.0 | 4.6–8.5 | 1.2–10.0 | ||
% ≥ LOD | |||||
TBARS | |||||
% ≥ LOD | 81.5 | 82.9 | 80.9 | 0.113 | |
GM (GSD) | 2.5 (1.1) | 3.2 (1.2) | 2.3 (1.1) | ||
Min–Max | 0.1–18.6 | 0.1–15.0 | 0.2–18.6 | ||
Percentiles 25–75 | 1.3–5.5 | 1.8–7.0 | 1.2–5.0 |
OR | aOR 1 | aOR 2 | aOR 3 | |
---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |
BPA (ng/mL) | 1.3 (1.0–1.9) | 1.6 (1.0–2.3) | 1.6 (1.1–2.3) | 1.5 (1.0–2.3) |
BPS= >LOD | 1.5 (0.5–4.3) | 2.6 (0.5–12.4) | 2.7 (0.5–13.4) | 2.0 (0.4–10.2) |
BPF= >LOD | 1.0 (0.4–2.4) | 1.3 (0.6–3.4) | 1.4 (0.5–3.4) | 1.4 (0.5–3.5) |
Σbisphenols (ng/mL) | 1.5 (1.0–2.3) | 1.5 (1.0–2.3) | 1.5 (1.0–2.3) | 1.5 (0.9–2.3) |
Cases (n = 35) | Controls (n = 89) | OR | aOR 1 | aOR 2 | aOR 3 | ||
---|---|---|---|---|---|---|---|
n (%) | n (%) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | ||
TBARS | 1.4 (0.9–2.1) | 1.5 (0.9–2.5) | 1.5 (0.9–2.6) | 1.6 (1.0–2.8) | |||
<LOD–1.50 | 8 (22.9%) | 33 (37.1%) | 1.0 | 1.0 | 1.0 | 1.0 | |
>1.50–4.23 | 11 (31.4%) | 30 (33.7%) | 1.5 (0.5–4.3) | 2.1 (0.6–7.0) | 1.7 (0.5–6.1) | 2.1 (0.6–7.7) | |
>4.23 | 16 (45.7%) | 26 (29.2%) | 3.5 (0.9–6.8) | 3.7 (1.0–13.5) | 3.6 (1.0–13.2) | 3.8 (1.0–13.9) |
OR | aOR 1 | aOR 2 | aOR 3 | |
---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |
TBARS [<1.50 ng/mL] | ||||
BPA (ng/mL) | 1.4 (0.6–3.5) | 1.1 (0.4–2.9) | 0.9 (0.3–2.7) | 0.9 (0.3–2.8) |
Σbisphenols (ng/mL) | 1.3 (0.5–3.6) | 0.9 (0.3–2.9) | 0.7 (0.2–2.5) | 0.7 (0.1–6.9) |
TBARS [1.50–4.23 ng/mL] | ||||
BPA (ng/mL) | 1.3 (0.7–2.6) | 1.3 (0.7–2.6) | 1.4 (0.7–3.0) | 1.5 (0.7–3.5) |
Σbisphenols (ng/mL) | 1.2 (0.6–2.4) | 1.2 (0.6–2.5) | 1.4 (0.6–3.1) | 1.4 (0.6–3.5) |
TBARS [>4.23 ng/mL] | ||||
BPA (ng/mL) | 1.9 (1.0–3.5) | 2.0 (1.0–3.8) | 2.1 (1.0–4.4) | 2.0 (1.0–4.1) |
Σbisphenols (ng/mL) | 2.0 (1.0–3.9) | 2.1 (1.0–4.2) | 2.2 (1.0–4.8) | 2.2 (1.0–4.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinado, F.M.; Lendínez, I.; Sotelo, R.; Iribarne-Durán, L.M.; Fernández-Parra, J.; Vela-Soria, F.; Olea, N.; Fernández, M.F.; Freire, C.; León, J.; et al. Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study. Int. J. Environ. Res. Public Health 2020, 17, 1194. https://doi.org/10.3390/ijerph17041194
Peinado FM, Lendínez I, Sotelo R, Iribarne-Durán LM, Fernández-Parra J, Vela-Soria F, Olea N, Fernández MF, Freire C, León J, et al. Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study. International Journal of Environmental Research and Public Health. 2020; 17(4):1194. https://doi.org/10.3390/ijerph17041194
Chicago/Turabian StylePeinado, Francisco M., Inmaculada Lendínez, Rafael Sotelo, Luz M. Iribarne-Durán, Jorge Fernández-Parra, Fernando Vela-Soria, Nicolás Olea, Mariana F. Fernández, Carmen Freire, Josefa León, and et al. 2020. "Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study" International Journal of Environmental Research and Public Health 17, no. 4: 1194. https://doi.org/10.3390/ijerph17041194
APA StylePeinado, F. M., Lendínez, I., Sotelo, R., Iribarne-Durán, L. M., Fernández-Parra, J., Vela-Soria, F., Olea, N., Fernández, M. F., Freire, C., León, J., Pérez-Cabrera, B., Ocón-Hernández, O., & Artacho-Cordón, F. (2020). Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study. International Journal of Environmental Research and Public Health, 17(4), 1194. https://doi.org/10.3390/ijerph17041194