How Does Environmental Regulation Affect the Location of New Polluting Firms? Exploring the Agglomeration Threshold of Effective Environmental Regulation
Abstract
:1. Introduction
2. Mechanism Analysis and Hypothesis Development
3. Data Source and the Dynamics of the Location of New Chemical Firms in the YREB
3.1. Data Source
3.1.1. Dependent Variable
3.1.2. Core Explanatory Variable and Threshold Variable
3.1.3. Control Variables
3.2. The Dynamics of the Location of New Chemical Firms in the YREB
4. Model Specifications and Empirical Analysis
4.1. Model Specifications
4.2. Empirical Analysis
4.2.1. Individual Fixed-Effects Panel Regression
4.2.2. Fixed-Effects Panel Threshold Regression
4.2.3. Robustness Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chung, S. Environmental regulation and foreign direct investment: Evidence from South Korea. J. Dev. Econ. 2014, 108, 222–236. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, Y.G.; Zheng, S.L. Ecoefficiency, environmental regulation opportunity costs, and interregional industrial transfers: Evidence from the Yangtze River Economic Belt in China. J. Clean. Prod. 2019, 233, 611–625. [Google Scholar] [CrossRef]
- Ramanathan, R.; He, Q.; Black, A.; Ghobadian, A.; Gallear, D. Environmental regulations, innovation and firm performance: A revisit of the porter hypothesis. J. Clean. Prod. 2016, 155, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhu, S.; He, C. How do environmental regulations affect industrial dynamics? Evidence from China’s pollution-intensive industries. Habitat Int. 2017, 60, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, T.; List, J.A.; Folmer, H. Environmental regulations and new plant location decisions: Evidence from A meta-analysis. J. Reg. Sci. 2002, 42, 19–49. [Google Scholar] [CrossRef] [Green Version]
- Greenstone, M. The impacts of environmental regulations on industrial activity: Evidence from the 1970 and 1977 clean air act Amendments and the census of manufactures. J. Polit. Econ. 2002, 110, 1175–1219. [Google Scholar] [CrossRef]
- List, J.A.; Millimet, D.L.; Fredriksson, P.G.; McHone, W.W. Effects of environmental regulations on manufacturing plant births: Evidence from a propensity score matching estimator. Rev. Econ. Stat. 2003, 85, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Morgan, O.A.; Condliffe, S. Spatial heterogeneity in environmental regulation enforcement and the firm location decision among U.S. counties. Rev. Reg. Stud. 2009, 3, 239–252. [Google Scholar]
- Levinson, A. Environmental regulations and manufacturers’ location choices: Evidence from the census of manufactures. J. Public Econ. 2004, 62, 5–29. [Google Scholar] [CrossRef]
- Kirkpatrick, C.; Shimamoto, K. The effect of environmental regulation on the locational choice of Japanese foreign direct investment. J. Appl. Econ. 2008, 40, 1399–1409. [Google Scholar] [CrossRef]
- Khder, S.; Zugrav, N. Environmental regulation and French firms location abroad: An economic geography model in an international comparative study. Ecol. Econ. 2012, 77, 48–61. [Google Scholar] [CrossRef]
- Zhou, Y.; He, C.F.; Liu, Y. An empirical study on the geographical distribution of pollution-intensive industries in China. J. Nat. Resour. 2015, 30, 1183–1196. (In Chinese) [Google Scholar]
- Pang, R.; Zheng, D.; Shi, M.J.; Zhang, X. Pollute first, control later? Exploring the economic threshold of effective environmental regulation in China’s context. J. Envrinon. Manag. 2019, 248, 109275. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Kolstad, C.D. Do lax environmental regulations attract foreign investment? Environ. Resour. Econ. 2002, 21, 1–22. [Google Scholar] [CrossRef]
- Li, S.; Angelino, A.; Yin, H.T.; Spigarelli, F. Determinants of FDI localization in China: A county-level analysis for the pharmaceutical industry. Int. J. Environ. Res. Public Health 2017, 14, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raspiller, S.; Riedinger, N. Do environmental regulations influence the location behavior of French firms? Land Econ. 2008, 84, 382–395. [Google Scholar] [CrossRef]
- Ederington, J.; Levinson, A.; Minier, J. Footloose and pollution-free. Rev. Econ. Stat. 2005, 87, 92–99. [Google Scholar] [CrossRef]
- Shen, J.; Wei, Y.H.D.; Yang, Z. The impact of environmental regulations on the location of pollution-intensive industries in China. J. Clean. Prod. 2017, 148, 785–794. [Google Scholar] [CrossRef]
- Zheng, D.; Shi, M.J. Multiple environmental policies and pollution haven hypothesis: Evidence from China’s polluting industries. J. Clean. Prod. 2017, 141, 295–304. [Google Scholar] [CrossRef]
- Rezza, A.A. A meta-analysis of FDI and environmental regulations. Environ. Dev. Econ. 2014, 20, 185–208. [Google Scholar] [CrossRef]
- Jeppesen, T.; Folmer, H. The confusing relationship between environmental policy and location behavior of firms: A methodological review of selected case studies. Ann. Reg. Sci. 2001, 35, 523–546. [Google Scholar] [CrossRef]
- Wagner, U.J.; Timmins, C.D. Agglomeration effects in foreign direct investment and the pollution haven hypothesis. Environ. Resour. Econ. 2009, 43, 231–256. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Zhao, L. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Krugman, P. Geography and Trade; Mit Press: Cambridge, MA, USA, 1991; p. 62. [Google Scholar]
- Cheng, L.K.; Kwan, Y.K. What are the determinants of the location of foreign direct investment? The Chinese experience. J. Int. Econ. 2000, 51, 379–400. [Google Scholar] [CrossRef]
- Head, K.; Mayer, T. Market potential and the location of Japanese investment in the European Union. Rev. Econ. Stat. 2004, 86, 959–972. [Google Scholar] [CrossRef]
- Fujita, M.; Thisse, J. Economics of Agglomeration: Cities, Industrial Location, and Regional Growth; Cambridge University Press: Cambridge, UK, 2002; p. 5. [Google Scholar]
- Arduini, R.; Cesaroni, F. Environmental Technologies in the European Chemical Industry. Available online: https://www.researchgate.net/publication/24132244_Environmental_Technologies_in_the_European_Chemical_Industry (accessed on 8 January 2020).
- Ministry of Ecology and Environment of the People’s Republic of China. Ecological Environment Protection Plan of Yangtze River Economic Belt. 2017. Available online: http://www.mee.gov.cn/gkml/hbb/bwj/201707/t20170718_418053_wap.shtml (accessed on 8 January 2020).
- National Development and Reform Commission. Outline of the Development Plan for the Yangtze River Economic Belt. 2016. Available online: http://www.ndrc.gov.cn/fzgggz/dqjj/qygh/201610/t20161011_822279.html (accessed on 8 January 2020).
- López-Navarro, M.A.; Tortosa, V.; Llorens, J. Environmental management systems and local community perceptions: The case of petrochemical complexes located in ports. Bus. Strat. Env. 2015, 24, 236–251. [Google Scholar] [CrossRef]
- Yang, H.R.; Zheng, H.; Liu, H.G. NonLinear effects of environmental regulation on eco-efficiency under the constraint of land use carbon emissions: Evidence based on a bootstrapping approach and panel threshold model. Int. J. Environ. Res. Public Health 2019, 16, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.Q.; Zhang, N.; Ahmad, F.; Draz, M.U. Local government competition, environmental regulation intensity and regional innovation performance: An empirical investigation of Chinese provinces. Int. J. Environ. Res. Public Health 2019, 16, 2130. [Google Scholar] [CrossRef] [Green Version]
- Nie, H.H.; Jiang, T.; Yang, R.D. The current status and potential problems of the use of Chinese industrial enterprise databases. World Econ. 2012, 5, 142–158. (In Chinese) [Google Scholar]
- Schreifels, J.J.; Fu, Y.; Wilson, E.J. Sulfur dioxide control in China: Policy evolution during the 10th and 11th Five-year Plans and lessons for the future. Energy Policy 2012, 48, 779–789. [Google Scholar] [CrossRef]
- He, J. Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces. Ecol. Econ. 2006, 60, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Hering, L.; Poncet, S. Environmental policy and exports: Evidence from Chinese cities. J. Environ. Econ. Manag. 2014, 68, 296–318. [Google Scholar] [CrossRef]
- O’Donoghue, D.; Gleave, B. A note on methods for measuring industrial agglomeration. Reg. Stud. 2004, 38, 419–724. [Google Scholar] [CrossRef]
- He, C.F.; Pan, F.H. Geographical concentration and agglomeration of industries: Measurement and identification. Prog. Geogr. 2007, 26, 1–13. (In Chinese) [Google Scholar]
- Brainard, S.L. An empirical assessment of the proximity-concentration trade-off between multinational sales and trade. Am. Econ. Rev. 1997, 87, 520–544. [Google Scholar]
- Ellison, G.; Glaeser, E.L. Geographic concentration in U.S. manufacturing industries: A dartboard approach. J. Polit. Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.Y.; Guo, H.X.; Zhang, B.; Bu, M. Westward movement of new polluting firms in China: Pollution reduction mandates and location choice. J. Comp. Econ. 2017, 45, 119–138. [Google Scholar] [CrossRef]
- Coughlin, C.C.; Segev, E. Location determinants of new foreign-owned manufacturing plants. J. Reg. Sci. 2000, 40, 323–351. [Google Scholar] [CrossRef] [Green Version]
- List, J.A.; Mchone, W.W. Measuring the effects of air quality regulations on “dirty” firm births: Evidence from the neo- and mature-regulatory periods. Pap. Reg. Sci. 2000, 79, 177–190. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.M.; Lin, Z.L. Environmental policies in china over the past 10 years: Progress, problems and prospects. Procedia Environ. Sci. 2010, 2, 1701–1712. [Google Scholar]
- Mu, Z.L.; Bu, S.C.; Xue, B. Environmental legislation in China: Achievements, challenges and trends. Sustainability 2014, 6, 8967–8979. [Google Scholar] [CrossRef] [Green Version]
Variable Set | Variables | Variable Definition | Data Sources | Basic Statistics | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. | Min | Max | Obs. | ||||
Dependent variable | Number of newly registered chemical firms, Y | The number of chemical firms in each prefecture-level city | ★☆* | 34.32 | 42.55 | 0 | 420 | 648 |
Core explanatory variables | Environmental regulation, ER | Removal rate of SO2 (%) | ● | 59.72 | 26.56 | 0 | 99.52 | 648 |
Environmental regulation, ER’ | Ratio of wastewater centralized treated (%) | ● | 84.64 | 11.77 | 23.47 | 100 | 648 | |
Industrial agglomeration, AG | Location quotient of the employed population in industry (dimensionless) | ●▲ | 0.87 | 0.43 | 0.03 | 3.15 | 648 | |
Controlled variables | Market potential, MP | Regional gross national product (2000 constant prices, CNY billions) | ● | 135.97 | 146.25 | 12.67 | 890.38 | 648 |
Wage level, WL | Average wage of employees on the job (CPI2012 = 100, CNY hundreds) | ● | 499.61 | 116.54 | 260.94 | 922.99 | 648 | |
Traffic density, TD | Length of highway/land area (km/km2) | ◎ | 1.26 | 0.40 | 0.16 | 2.63 | 648 | |
Land area of administrative unit, S | Land area of prefecture-level city (km2) | ◎ | 12,595 | 7817 | 1459 | 44,266 | 108 |
ln(Y) | Whole YREB Model 1 | Lower Reaches Model 2 | Middle Reaches Model 3 | Upper Reaches Model 4 | ||||
---|---|---|---|---|---|---|---|---|
ER | −1.512 ** (−2.41) | −0.778 (−1.27) | −2.805 *** (−4.75) | −0.604 (−1.56) | −0.115 (−1.32) | −0.109 (−0.81) | −0.583 ** (−2.24) | −0.501 ** (−1.96) |
ER2 | 0.012 *** (6.03) | 0.010 *** (5.44) | 0.027 *** (3.82) | 0.021 *** (2.72) | 0.004 * (1.86) | 0.003 * (1.75) | 0.005 * (1.78) | 0.004 (1.52) |
AG | 6.581 (1.26) | −25.245 * (−2.03) | 46.719 * (1.89) | −63.283 (−0.70) | 7.064 ** (2.42) | 0.129 (0.02) | −1.552 (−0.22) | −18.782 (−1.31) |
ER*AG | 0.486 * (1.69) | 1.434 ** (2.15) | −0.118 (−1.19) | 0.275 (1.10) | ||||
Ln(MP) | 46.278 *** (2.68) | 53.415 *** (3.11) | 117.553 (1.22) | 132.095 (1.43) | 47.539 *** (3.81) | 55.346 *** (4.30) | 12.988 (0.91) | 15.063 (1.04) |
Ln(WL) | 12.565 (0.93) | 7.503 (0.58) | 139.702 (1.47) | 129.092 (1.41) | −12.528 (−1.26) | −21.718 ** (−2.05) | 5.374 (0.55) | 5.363 (0.56) |
TD | −5.869 (−0.48) | −4.009 (−0.34) | −180.084 (−1.41) | −177.171 (−1.45) | 12.770 * (1.68) | 12.789 * (1.66) | 13.651 (0.90) | 13.670 (0.92) |
S | 0.003 (0.96) | 0.002 (0.91) | 0.011 (1.31) | 0.009 (1.27) | 0.002 (1.06) | 0.002 (1.01) | 0.001 (0.86) | 0.000 (0.79) |
Constant | −436.9 *** (−5.76) | −421.8 *** (−5.83) | −2066.4 *** (−4.91) | −2019.1 *** (−4.81) | −206.5 *** (−3.28) | −166.5 *** (−2.69) | −103.2 (−1.43) | −108.6 (−1.49) |
Individual-FE | Y | Y | Y | Y | Y | Y | Y | Y |
R2 | 0.671 | 0.677 | 0.567 | 0.591 | 0.807 | 0.811 | 0.631 | 0.634 |
F-stat. | 17.65 | 15.57 | 7.36 | 6.73 | 17.71 | 12.08 | 6.56 | 5.33 |
Obs. | 648 | 648 | 144 | 144 | 312 | 312 | 192 | 192 |
The whole YREB | Threshold | F-stat. | Prob. | Crit10 | Crit5 | Crit1 | Threshold Estimator |
Single | 54.66 | 0.03 | 24.998 | 33.403 | 66.726 | Th-1 1.944 | |
Double | 8.37 | 0.61 | 52.323 | 72.411 | 135.36 | Th-21 1.944, Th-22 1.570 | |
Lower reaches | Single | 30.92 | 0.01 | 18.372 | 25.647 | 29.902 | Th-1 2.091 |
Double | 25.69 | 0.09 | 23.990 | 59.034 | 112.761 | Th-21 2.091, Th-22 1.804 | |
Triple | 4.98 | 0.61 | 20.673 | 30.792 | 65.252 | Th-31 2.091, Th-32 1.804, Th-33 2.033 | |
Middle reaches | Single | 8.32 | 0.00 | 5.570 | 6.496 | 7.833 | Th-1 0.786 |
Double | 5.55 | 0.21 | 6.858 | 7.438 | 9.064 | Th-21 0.803, Th-22 0.515 | |
Upper reaches | Single | 26.05 | 0.23 | 40.871 | 50.976 | 63.045 | Th-1 0.506 |
ln(Y) | The Whole YREB Model 5 | Lower Reaches Model 6 | Middle Reaches Model 7 | Upper Reaches Model 8 |
---|---|---|---|---|
Ln(MP) | 74.579 *** (3.95) | 179.905 ** (2.08) | 22.339 *** (11.89) | 12.309 (0.86) |
Ln(WL) | −10.475 (−0.65) | 68.334 (0.83) | 2.645 (0.38) | −0.296 (−0.02) |
TD | −0.054 (−0.00) | −172.372 (−1.32) | −5.285 * (−1.62) | 18.852 ** (1.95) |
S | 0.003 (1.02) | 0.012 (1.33) | 0.002 (1.14) | 0.001 (0.93) |
Constant | −373.1 *** (−4.09) | −1815.9 *** (−4.14) | −139.6 ** (−1.90) | −93.8 (−1.24) |
ER(AG≤1.944) | −0.149 (−1.44) | |||
ER (AG>1.944) | 0.951 *** (5.73) | |||
ER (AG≤1.804) | −0.212 (-0.43) | |||
ER(1.804<AG≤2.091) | 0.802 (1.45) | |||
ER (2.091<AG) | 2.066 *** (3.00) | |||
ER (AG≤0.786) | −0.117 ** (-2.39) | |||
ER (AG>0.786) | −0.016 (-0.33) | |||
ER (AG≤0.506) | −0.411 (−0.35) | |||
ER (AG>0.506) | −0.035 (−0.33) | |||
Individual-FE | Y | Y | Y | Y |
R2 | 0.70 | 0.72 | 0.66 | 0.51 |
Obs. | 648 | 144 | 312 | 192 |
The whole YREB | Threshold | F-stat. | Prob. | Crit10 | Crit5 | Crit1 | Threshold Estimator |
Single | 18.71 | 0.07 | 17.605 | 22.159 | 30.742 | Th-1 1.938 | |
Double | 22.06 | 0.09 | 19.257 | 24.793 | 24.793 | Th-21 1.938, Th-22 1.491 | |
Lower reaches | Single | 31.48 | 0.05 | 19.920 | 30.06 | 49.87 | Th-1 2.090 |
Double | 29.55 | 0.08 | 15.264 | 31.790 | 43.461 | Th-21 2.090, Th-22 1.803 | |
Triple | 5.55 | 0.45 | 18.541 | 27.946 | 51.716 | Th-31 2.090, Th-32 1.803, Th-33 2.027 | |
Middle reaches | Single | 9.67 | 0.02 | 5.121 | 7.358 | 11.084 | Th-1 0.806 |
Double | 4.33 | 0.22 | 6.328 | 9.276 | 13.241 | Th-21 0.806, Th-22 0.537 | |
Upper reaches | Single | 19.42 | 0.13 | 23.949 | 37.781 | 86.293 | Th-1 0.505 |
ln(Y) | The Whole YREB Model 9 | Lower Reaches Model 10 | Middle Reaches Model 11 | Upper Reaches Model 12 |
---|---|---|---|---|
Ln(MP) | 74.102 *** (3.68) | 178.973 ** (2.15) | 21.956 *** (12.04) | 13.637 (1.04) |
Ln(WL) | −10.625 (−0.69) | 67.925 (0.82) | 2.604 (0.40) | −0.202 (−0.03) |
TD | −0.052 (−0.04) | −171.004 (−1.31) | −5.003 * (−1.71) | 17.394 ** (1.96) |
S | 0.003 (1.02) | 0.012 (1.33) | 0.002 (1.15) | 0.001 (0.93) |
Constant | −381.0 *** (−3.96) | −1913.1 *** (−3.72) | −113.8 ** (−2.15) | −99.5 (−1.47) |
ER’(AG ≤ 1.938) | −0.152 (−1.36) | |||
ER’ (AG > 1.938) | 0.972 *** (4.11) | |||
ER’ (AG ≤ 1.803) | −0.207 (−0.46) | |||
ER’(1.803 < AG ≤ 2.090) | 0.789 (1.52) | |||
ER’ (2.091 < AG) | 2.004 *** (2.81) | |||
ER’ (AG ≤ 0.806) | −0.125 ** (−2.16) | |||
ER’ (AG > 0.806) | −0.013 (−0.40) | |||
ER’ (AG ≤ 0.505) | −0.012 (−0.84) | |||
ER’ (AG > 0.505) | −0.037 (−0.10) | |||
Individual-FE | Y | Y | Y | Y |
R2 | 0.67 | 0.69 | 0.60 | 0.51 |
Obs. | 648 | 144 | 312 | 192 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Miao, C.; Miao, J.; Zhang, Y. How Does Environmental Regulation Affect the Location of New Polluting Firms? Exploring the Agglomeration Threshold of Effective Environmental Regulation. Int. J. Environ. Res. Public Health 2020, 17, 1279. https://doi.org/10.3390/ijerph17041279
Wu Y, Miao C, Miao J, Zhang Y. How Does Environmental Regulation Affect the Location of New Polluting Firms? Exploring the Agglomeration Threshold of Effective Environmental Regulation. International Journal of Environmental Research and Public Health. 2020; 17(4):1279. https://doi.org/10.3390/ijerph17041279
Chicago/Turabian StyleWu, Yinhao, Changhong Miao, Jianming Miao, and Yan Zhang. 2020. "How Does Environmental Regulation Affect the Location of New Polluting Firms? Exploring the Agglomeration Threshold of Effective Environmental Regulation" International Journal of Environmental Research and Public Health 17, no. 4: 1279. https://doi.org/10.3390/ijerph17041279
APA StyleWu, Y., Miao, C., Miao, J., & Zhang, Y. (2020). How Does Environmental Regulation Affect the Location of New Polluting Firms? Exploring the Agglomeration Threshold of Effective Environmental Regulation. International Journal of Environmental Research and Public Health, 17(4), 1279. https://doi.org/10.3390/ijerph17041279