Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Clusters Detection
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report. 2019. Available online: https://www.who.int/tb/publications/global_report/en/ (accessed on 13 January 2020).
- World Health Organization Media Centre 2019. Tuberculosis: Key Facts. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 13 January 2020).
- World Health Organization Media Centre. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis (accessed on 5 October 2019).
- World Health Organization. Tuberculosis Country Profles. 2018. Available online: https//www.who.int/tb/country/data/profiles/en/ (accessed on 11 October 2019).
- NTP. National TB Control Program-Pakistan. 2019. Available online: http://ntp.gov.pk/national_data.php (accessed on 1 September 2019).
- Pakistan Bureau of Statistics. Pakistan’s 6th Census: Population of Major Cities Census. Available online: http://www.pbscensusgov.pk/ (accessed on 7 September 2019).
- World Health Organization. WHO Country Cooperation Strategy at a Glance: Pakistan. 2018. Available online: https://apps.who.int/iris/bitstream/10665/136607/1/ccsbrief_pak_en.pdf (accessed on 7 September 2019).
- National TB Control Program Pakistan (NTP). Available online: http://www.ntp.gov.pk/webdatabase.php (accessed on 7 September 2019).
- Falahuddin, S.; Khan, L.; Iqbal, M.; Salahuddin, N. Statistical analysis of various risk factors of tuberculosis in district Mardan, Pakistan. J. Biostat. Epidemiol. 2016, 2, 47–51. [Google Scholar]
- Khattak, I.; Mushtaq, M.H.; Ahmad, M.U.D.; Khan, M.S.; Haider, J. Zoonotic tuberculosis in occupationally exposed groups in Pakistan. Occup. Med. 2016, 66, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Ali, I.; Ahmad, T.; Tufail, M.; Ahmad, K.; Murtaza, B.N. Prevalence of Brucellosis in Human Population of District Swat, Pakistan. Pak. J. Zool. 2017, 49, 371–376. [Google Scholar] [CrossRef]
- Akhtar, N.; Saeed, K.; Khan, S.; Rafiq, N. Prevalence of Tuberculosis in District Buner Khyber Pakhtunkhwa, Pakistan. World J. Med. Sci. 2015, 12, 292–296. [Google Scholar]
- Ahmad, T.; Jadoon, M.A. Cross Sectional Study of Pulmonary Tuberculosis at Civil Hospital Thana, District Malakand Khyber Pakhtunkhwa Pakistan. World J. Zool. 2015, 10, 161–167. [Google Scholar]
- Ahmad, T.; Jadoon, M.A.; Khattak, M.N.K. Prevalence of sputum smear positive pulmonary tuberculosis at Dargai, District Malakand, Pakistan: A four year retrospective study. Egypt. J. Chest Dis. Tuberc. 2016, 65, 461–464. [Google Scholar] [CrossRef]
- Noorrahim, M.S.K.; Shahid, M.; Shah, A.; Shah, M.; Rafiullah, H.A. Prevalence of Tuberculosis in Livestock Population of District Charsadda by Tuberculin Skin Test (TST); Akinik Publications: Delhi, India, 2015. [Google Scholar]
- Basit, A.; Hussain, M.; Shahid, M.; Ayaz, S.; Rahim, K.; Ahmad, I.; Rehman, A.U.; Hassan, M.F.; Ali, T.; Au, R.; et al. Occurrence and risk factors associated with Mycobacterium tuberculosis and Mycobacterium bovis in milk samples from North East of Pakistan. Pak. Vet. J. 2018, 38, 199–203. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, S.; Haroon, M.Z.; Khan, A.; Salman, S.; Khan, N.; Gul, G. Epidemiological study of tuberculosis. Eur. Acad. Res. 2013, 1, 1855–1858. [Google Scholar]
- Ullah, S.; Daud, H.; Dass, S.C.; Fanaee-T, H.; Khalil, A. An Eigenspace approach for detecting multiple space-time disease clusters: Application to measles hotspots detection in Khyber-Pakhtunkhwa, Pakistan. PLoS ONE 2018, 13, e0199176. [Google Scholar] [CrossRef]
- Kulldorff, M.; Hjalmars, U. The Knox method and other tests for space-time interaction. Biometrics 1999, 55, 544–552. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Roza, D.L.; Caccia-Bava, M.C.G.; Martinez, E.Z. Spatio-temporal patterns of tuberculosis incidence in Ribeirao Preto, state of Sao Paulo, southeast Brazil, and their relationship with social vulnerability: A Bayesian analysis. Rev. Soc. Bras. Med. Trop. 2012, 45, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Wang, W.; Li, Z.; Hou, M.; He, Y.; Wu, W.; Wang, H.; Liang, H.; Guo, X. Investigation of space-time clusters and geospatial hot spots for the occurrence of tuberculosis in Beijing. Int. J. Tuberc. Lung Dis. 2012, 16, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Kulldorff, M.; Athas, W.F.; Feuer, E.J.; Miller, B.A.; Key, C.R. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 1998, 88, 1377–1380. [Google Scholar] [CrossRef]
- Kulldorff, M. Prospective time periodic geographical disease surveillance using a scan statistic. J. R. Stat. Soc. Ser. A-Stat. Soc. 2001, 164, 61–72. [Google Scholar] [CrossRef]
- Kulldorff, M.; Heffernan, R.; Hartman, J.; Assunção, R.; Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, 0216–0224. [Google Scholar] [CrossRef]
- Fanaee-T, H.; Gama, J. An eigenvector-based hotspot detection. arXiv 2014, arXiv:1406.3191. Available online: https://arxiv.org/abs/1406.3191 (accessed on 7 September 2019).
- Xie, Z.; Yan, J. Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Levine, N. Crime mapping and the Crimestat program. Geogr. Anal. 2006, 38, 41–56. [Google Scholar] [CrossRef]
- Wu, S.; Wu, F.; Hong, R.; He, J. Incidence analyses and space-time cluster detection of hepatitis C in Fujian province of China from 2006 to 2010. PLoS ONE 2012, 7, e40872. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liu, J.; Fu, Y.; Zhang, B.; Mao, Y. Spatio-temporal epidemiology of viral hepatitis in China (2003–2015): Implications for prevention and control policies. Int. J. Environ. Res. Public Health 2018, 15, 661. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.; Enqueselassie, F.; Hagos, S. Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia. PLoS ONE 2018, 13, e0198353. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Tang, W.; Zhao, H.; Ling, H.; Su, K.; Zhao, H.; Li, Q.; Shen, T. Epidemiological characteristics and spatial-temporal distribution of hand, foot, and mouth disease in Chongqing, China, 2009–2016. Int. J. Environ. Res. Public Health 2018, 15, 270. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, M.R.; Whiteman, A.; Casas, I.; Delmelle, E. Space-time clusters and co-occurrence of chikungunya and dengue fever in Colombia from 2015 to 2016. Acta Trop. 2018, 185, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Low, G.K.; Papapreponis, P.; Isa, R.M.; Gan, S.C.; Chee, H.Y.; Te, K.K.; Hatta, N.M. Geographical distribution and spatio-temporal patterns of hospitalization due to dengue infection at a leading specialist hospital in Malaysia. Geospat. Health 2018, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.F.; Zofeen, S.; Majeed, A.; Hu, W.; Qi, X.; Zhuang, G. Spatiotemporal Clustering Analysis of Malaria Infection in Pakistan. Int. J. Environ. Res. Public Health 2018, 15, 1202. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, S.; He, G.; Huang, F.; Zhang, H.; Xu, B.; Murimwa, T.C.; Cheng, J.; Hu, N.; Wang, L. Space-time clustering characteristics of tuberculosis in China, 2005–2011. PLoS ONE 2013, 8, e83605. [Google Scholar] [CrossRef]
- Kulldorff, M. A spatial scan statistic. Commun. Stat.-Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- District heath Information System. Quarter Reports. Available online: http://www.dhiskp.gov.pk/reports.php (accessed on 7 September 2019).
- District Health Information Khyber Pakhtunkhwa, Pakistan. Available online: http://www.dhiskp.gov.pk (accessed on 1 September 2019).
- SaTScan v9.6 March 2018. Available online: https://www.satscan.org (accessed on 1 September 2019).
- Kulldorff, M. SaTScan User Guid. 2018. Available online: https://www.satscan.org/techdoc.html (accessed on 1 September 2019).
- Kulldorff, M.; Nagarwalla, N. Spatial disease clusters: Detection and inference. Stat. Med. 1995, 14, 799–810. [Google Scholar] [CrossRef]
- BOS Khyber Pakhtunwa. Development Statistics of Khyber Pakhtunkhwa. 2019. Available online: https://kpbos.gov.pk/allpublication/1 (accessed on 1 September 2019).
- Malik, M.S.; Afzal, M.; Farid, A.; Khan, F.U.; Mirza, B.; Waheed, M.T. Disease Status of Afghan Refugees and Migrants in Pakistan. Front. Public Health 2019, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Smeda.org. Districts Profiles Khyber Pakhtunkhwa. Available online: https://smeda.org/index.php?option=com_phocadownload&view=category&id=1:district-profiles (accessed on 13 January 2020).
- Khan, J.A.; Irfan, M.; Zaki, A.; Beg, M.; Hussain, S.F.; Rizvi, N. Knowledge, attitude and misconceptions regarding tuberculosis in Pakistani patients. J. Pak. Med. Assoc. 2006, 56, 211. [Google Scholar] [PubMed]
Cluster Type | Districts | Number of Districts | Time-Frame | Observed Counts | Expected Counts | LLR | P-value |
---|---|---|---|---|---|---|---|
Most Likely | Dir Upper | 1 | 1st quarter 2017 | 10686 | 219.37 | 31541.8 | <0.001 |
1st secondary | Buner, Swat | 2 | 1st quarter 2015 to 4th quarter 2015 | 13019 | 2599.46 | 11044.8 | <0.001 |
2nd secondary | Bannu | 1 | 1st quarter 2015 to 4th quarter 2016 | 4495 | 2001.46 | 1170.532 | <0.001 |
3rd secondary | Hangu | 1 | 2nd quarter 2015 to 4th quarter 2016 | 2216 | 822.69 | 810.864 | <0.001 |
4th secondary | Noshera, Mardan | 2 | 2nd quarter2015 to 2nd quarter 2016 | 6356 | 4203.86 | 496.057 | <0.001 |
5th secondary | Charsadda | 1 | 4th quarter 2015 | 505 | 365.45 | 23.865 | <0.001 |
Year | Cluster Type | Districts | Number of Districts | Observed Counts | Expected Counts | LLR | P-value |
---|---|---|---|---|---|---|---|
2015 | Most likely | Swat | 1 | 12406 | 2500.81 | 11728.029 | <0.001 |
1st secondary | Bannu | 1 | 2435 | 1292.42 | 20.132 | <0.001 | |
2nd secondary | Hangu | 1 | 1022 | 616.25 | 113.73 | <0.001 | |
3rd secondary | Shangla | 1 | 1102 | 852.78 | 34.255 | <0.001 | |
4th secondary | Haripur | 1 | 1381 | 1181.37 | 16.602 | <0.001 | |
2016 | Most likely | Shangla, Swat | 2 | 4794 | 2363.25 | 1097.165 | <0.001 |
1st secondary | Karak, Hangu, Bannu, Kohat | 4 | 4814 | 2770.32 | 714.454 | <0.001 | |
2nd secondary | Noshera | 1 | 1891 | 1221.14 | 166.741 | <0.001 | |
3rd secondary | Mansehra | 1 | 1872 | 1350.35 | 95.685 | <0.001 | |
4th secondary | Tank | 1 | 568 | 332.69 | 69.656 | <0.001 | |
5th secondary | Mardan | 1 | 2371 | 2039.16 | 28.081 | <0.001 | |
6th secondary | Haripur | 1 | 1133 | 966.76 | 14.12 | <0.001 | |
7th secondary | Dir Lower | 1 | 1040 | 1002.26 | 0.731 | 0.997 | |
2017 | Most likely | Upper Dir | 1 | 11025 | 957.11 | 18802.163 | <0.001 |
1st secondary | Bannu | 1 | 2030 | 1181.08 | 262.797 | <0.001 | |
2nd secondary | Swat | 1 | 3053 | 2335.65 | 109.45 | <0.001 | |
3rd secondary | Tank | 1 | 573 | 396.31 | 35.082 | <0.001 | |
4th secondary | Shangla | 1 | 979 | 766.37 | 27.848 | <0.001 | |
5th secondary | Hangu | 1 | 599 | 524.66 | 5.125 | 0.065 | |
6th secondary | Haripur | 1 | 1069 | 1014.36 | 1.496 | 0.859 | |
2018 | Most likely | Shangla, Swat, Battagram | 3 | 7997 | 2672.79 | 4206.852 | <0.001 |
1st secondary | Bannu, Lakki Marwat, Karak, Hangu, Tank, Kohat | 7 | 5796 | 3510.64 | 759.992 | <0.001 | |
2nd secondary | Chitral | 1 | 605 | 337.39 | 87.288 | <0.001 | |
3rd secondary | Haripur | 1 | 946 | 756.46 | 22.787 | <0.001 | |
4th secondary | Mansehra | 1 | 1266 | 1173.85 | 3.72 | 0.183 | |
5th secondary | Dir Lower | 1 | 1153 | 1082.93 | 2.331263 | 0.570 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Daud, H.; Dass, S.C.; Fanaee-T, H.; Kausarian, H.; Alamgir. Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019. Int. J. Environ. Res. Public Health 2020, 17, 1413. https://doi.org/10.3390/ijerph17041413
Ullah S, Daud H, Dass SC, Fanaee-T H, Kausarian H, Alamgir. Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019. International Journal of Environmental Research and Public Health. 2020; 17(4):1413. https://doi.org/10.3390/ijerph17041413
Chicago/Turabian StyleUllah, Sami, Hanita Daud, Sarat C. Dass, Hadi Fanaee-T, Husnul Kausarian, and Alamgir. 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019" International Journal of Environmental Research and Public Health 17, no. 4: 1413. https://doi.org/10.3390/ijerph17041413
APA StyleUllah, S., Daud, H., Dass, S. C., Fanaee-T, H., Kausarian, H., & Alamgir. (2020). Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019. International Journal of Environmental Research and Public Health, 17(4), 1413. https://doi.org/10.3390/ijerph17041413