Evaluation and Analysis of Water Quality of Marine Aquaculture Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Time
2.2. Sampling and Chemical Analysis
2.3. Data Processing and Principal Component Analysis
3. Results
3.1. Water Quality Parameter Detection
3.2. Water Quality Assessment by PCA
3.3. Spatial and Temporal Variations of Water Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Funge-Smith, S.J.; Briggs, M.R.P. Nutrient budgets in intensive shrimp ponds: Implications for sustainability. Aquaculture 1998, 164, 117–133. [Google Scholar] [CrossRef]
- Falconer, L.; Telfer, T.C.; Ross, L.G. Modelling seasonal nutrient inputs from non-point sources across large catchments of importance to aquaculture. Aquaculture 2018, 495, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M.; Pereira, T.G.; Carvalho, L.M.; Pousão-Ferreira, P.; Grade, A.; Teixeira, B.; Quental-Ferreira, H.; Mendes, R.; Bandarra, N.; Gonçalves, A. Wild and farmed meagre, Argyrosomus regius: A nutritional, sensory and histological assessment of quality differences. J. Food Compos. Anal. 2017, 63, 8–14. [Google Scholar] [CrossRef]
- Muziasari, W.; Pärnänen, K.; Johnson, T.; Lyra, C.; Karkman, A.; Stedtfeld, R.; Tamminen, M.; Tiedje, J.; Virta, M. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 2016, 92, 52. [Google Scholar] [CrossRef] [Green Version]
- Vikesland, P.; Pruden, A.; Alvarez, P.; Aga, D.; Bürgmann, H.; Li, X.D.; Manaia, C.; Nambi, I.; Wigginton, K.; Zhang, T.; et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environ. Sci. Technol. 2017, 51, 13061–13069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Li, J.; Zhang, Y.; Kong, L.; Jin, M.; Yang, X.; Wu, Q.L. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China. Ecotoxicol. Environ. Saf. 2019, 183, 109511. [Google Scholar] [CrossRef]
- Du, J.; Zhao, H.; Wang, Y.; Xie, H.; Zhu, M.; Chen, J. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea. Ecotoxicol. Environ. Saf. 2019, 177, 117–123. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, X.; Chen, X.; Zhao, Z.; Fang, L.; Chen, B.; Jiang, J.; Luan, T.; Chen, B. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere 2019, 234, 520–527. [Google Scholar] [CrossRef]
- McKinney, C.; Pruden, A. Ultraviolet Disinfection of Antibiotic Resistant Bacteria (ARBs) and their Antibiotic Resistance Genes (ARGs) in Water and Wastewater. Environ. Sci. Technol. 2012, 46, 13393–13400. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Su, Z.; Dai, T.; Huang, B.; Mu, Q.; Zhang, Y.; Wen, D. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays. J. Environ. Sci. 2019, 81, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yokoyama, H.; Cui, B.; Zhou, J.; Yan, J.; Ma, X.; Shibata, S. Impacts of sea cucumber farming on biogeochemical characteristics in the Yellow River estuary, Northern China. Phys. Chem. Earth Parts A/B/C 2017, 97, 19–30. [Google Scholar] [CrossRef]
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef]
- Liao, Y.; Shou, L.; Jiang, Z.; Tang, Y.; Du, P.; Zeng, J.; Chen, Q.; Yan, X.; Chen, J. Effects of fish cage culture and suspended oyster culture on macrobenthic communities in Xiangshan Bay, a semi-enclosed subtropical bay in eastern China. Mar. Pollut. Bull. 2019, 142, 475–483. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Allocation of weights using factor analysis for development of a novel water quality index. Ecotoxicol. Environ. Saf. 2019, 183, 109510. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Shine, J.; Ika, R.; Ford, T. Multivariate Statistical Examination of Spatial and Temporal Patterns of Heavy Metal Contamination in New Bedford Harbor Marine Sediments. Environ. Sci. Technol. 1995, 29, 1781–1788. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Perkins, R.G.; Underwood, G.J.C. Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition. Water Res. 2000, 34, 713–724. [Google Scholar] [CrossRef]
- Mandal, U.K.; Warrington, D.N.; Bhardwaj, A.K.; Bar-Tal, A.; Kautsky, L.; Minz, D.; Levy, G.J. Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma 2008, 144, 189–197. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Yue, H. Evaluation of hierarchically weighted principal component analysis for water quality management at Jiaozuo mine. Int. Biodeterior. Biodegrad. 2018, 128, 182–185. [Google Scholar] [CrossRef]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Aldieri, L.; Grafstrom, J.; Sundstrom, K.; Vinci, C.P. Wind power and job creation. Sustainability 2019, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Ma, J. Determination of chemical oxygen demand in aqueous samples with non-electrochemical methods. Trends Environ. Anal. Chem. 2017, 14, 37–43. [Google Scholar] [CrossRef]
- Cubas, C.; Gloria Lobo, M.; González, M. Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N,N-dimethylformamide using response surface methodology. J. Food Compos. Anal. 2008, 21, 125–133. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Fang, F. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond. Ecol. Eng. 2016, 94, 315–319. [Google Scholar] [CrossRef]
- Van, T.T.H.; Chin, J.; Chapman, T.; Tran, L.T.; Coloe, P.J. Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 2008, 124, 217–223. [Google Scholar] [CrossRef]
- Lu, Z.; Na, G.; Gao, H.; Wang, L.; Bao, C.; Yao, Z. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Sci. Total Environ. 2015, 527–528, 429–438. [Google Scholar] [CrossRef]
- Looft, T.; Johnson, T.; Allen, H.; Bayles, D.; Alt, D.; Stedtfeld, R.; Sul, W.J.; Stedtfeld, T.; Chai, B.; Cole’s, R.J.; et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; Alvarez, P. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44, 7220–7225. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.-T.; Yuan, Q.-B.; Yang, J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 2013, 93, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Strahilevitz, J.; Jacoby, G.; Hooper, D.; Robicsek, A. Plasmid-Mediated Quinolone Resistance: A Multifaceted Threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yu, Z.; Michel, F.; Wittum, T.; Morrison, M. Development and Application of Real-Time PCR Assays for Quantification of erm Genes Conferring Resistance to Macrolides-Lincosamides-Streptogramin B in Livestock Manure and Manure Management Systems. Appl. Environ. Microbiol. 2007, 73, 4407–4416. [Google Scholar] [CrossRef] [Green Version]
- Finch, B.K.; Beck, A.N. Socio-economic status and z-score standardized height-for-age of U.S.-born children (ages 2–6). Econ. Hum. Biol. 2011, 9, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Fávero, L.P.; Belfiore, P. Chapter 12—Principal Component Factor Analysis. In Data Science for Business and Decision Making; Fávero, L.P., Belfiore, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 383–438. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Lundberg, C.; Lönnroth, M.; von Numers, M.; Bonsdorff, E. A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Mar. Pollut. Bull. 2005, 50, 1185–1196. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, A.K.; Chandra, P.; Singh, D.P. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour. Technol. 2018, 270, 489–497. [Google Scholar] [CrossRef]
- Ryan, K.G.; Tay, M.L.; Martin, A.; McMinn, A.; Davy, S.K. Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. J. Exp. Mar. Biol. Ecol. 2011, 399, 156–161. [Google Scholar] [CrossRef]
- Changzi, G.; Kaijing, Z.; Chunfeng, Q.; College, M.; University, S. Safe Utilization of Prometryne in Sea Cucumber Culture Pond: From Nutrient Diffusion Flux Across Biodeposition-water Interface Aspect. Chin. Agric. Sci. Bull. 2019, 35, 149–153. [Google Scholar]
- Qiang, J.; Zhong, C.Y.; Bao, J.W.; Liang, M.; Liang, C.; Li, H.X.; He, J.; Xu, P. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂). J. Therm. Biol. 2019, 86, 102436. [Google Scholar] [CrossRef] [PubMed]
- Christianson, L.; Lepine, C.; Tsukuda, S.; Saito, K.; Summerfelt, S. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems. Aquac. Eng. 2015, 68, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Páez-Osuna, F.; Guerrero-Galván, S.R.; Ruiz-Fernández, A.C. The environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Mar. Pollut. Bull. 1998, 36, 65–75. [Google Scholar] [CrossRef]
- Shen, X.; Jin, G.; Zhao, Y.; Shao, X. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment. Sci. Total Environ. 2020, 711, 134626. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhou, Q. Antibiotic resistance genes (ARGs) as emerging pollutants. Huanjing Kexue Xuebao Acta Sci. Circumstantiae 2008, 28, 1499–1505. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Dai, X.; Sun, Y.; Chen, F. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 2011, 12, 187–192. [Google Scholar] [CrossRef]
- Qu, F.; Gong, N.; Wang, S.; Gao, Y.; Sun, C.; Fang, W.; Men, Z. Effect of pH on fluorescence and absorption of aggregates of chlorophyll a and carotenoids. Dye. Pigment. 2020, 173, 107975. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, Q.; She, Z.; Gao, M.; Zhao, Y.; Guo, L.; Jin, C. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 2019, 697, 134047. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Wang, J.H.; Liu, Y.; Tang, X.X. A multivariate assessment of eutrophication in the coastal waters of the southern Shandong Peninsula. Acta Oceanol. Sin. 2010, 22, 2186–2190. [Google Scholar] [CrossRef]
- Bhurtun, P.; Lesven, L.; Ruckebusch, C.; Halkett, C.; Cornard, J.-P.; Billon, G. Understanding the impact of the changes in weather conditions on surface water quality. Sci. Total Environ. 2019, 652, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, Y.; Xu, J.; Ling, J.; Zheng, L.; Zhou, X.; Xie, G. Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. Int. Biodeterior. Biodegrad. 2019, 138, 114–121. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, H.; Wang, L.; Zhou, Y.; Gabr, H.R. Effects of salinity on energy budget in pond-cultured sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 2010, 306, 348–351. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Qi, H.; Zhou, X.; Xu, C.; Wu, D.; Fang, F.; Feng, J.; Zhang, N. Effects of Rice-Fish Co-culture on Oxygen Consumption in Intensive Aquaculture Pond. Rice Sci. 2019, 26, 50–59. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Wu, J.; Luo, Y. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicol. Environ. Saf. 2019, 184, 109631. [Google Scholar] [CrossRef]
ARGs Name | Primers Sequences (5’-3’) | Product Length (bp) | Annealing Temperature | Reference |
---|---|---|---|---|
flor | F: TATCTCCCTGTCGTTCCAG R: AGAACTCGCCGATCAATG | 399 | 58 °C | [29] |
sul1 | F: CACCGGAAACATCGCTGCA R: AAGTTCCGCCGCAAGGCT | 159 | 60 ℃ | [30] |
sul2 | F: TCATCTGCCAAACTCGTCGTTA R: GTCAAAGAACGCCGCAATGT | 105 | 56 ℃ | [31] |
tetB | F: CGAAGTAGGGGTTGAGACGC R: AGACCAAGACCCGCTAATGAA | 192 | 56 ℃ | [32] |
tetM | F: ACAGAAAGCTTATTATATAAC R: TGGCGTGTCTATGATGTTCAC | 171 | 60 ℃ | [33] |
qnrS | F: ACGACATTCGTCAACTGCAA R: TAAATTGGCACCCTGTAGGC | 417 | 56 ℃ | [34] |
ermB | F: GATACCGTTTACGAAATTGG R: GAATCGAGACTTGAGTGTGC | 364 | 58 ℃ | [35] |
Sampling Type | Month | pH | T (°C) | SAL | DO (mg/L) | MRP (mg P/L) | COD (mg/L) | Chla (μg/L) | DIN (mg N/L) | ARGs (%) |
---|---|---|---|---|---|---|---|---|---|---|
Pond | May | 8.41 ± 0.45 | 26.0 ± 0.7 | 31.3 ± 0.8 | 7.44 ± 1.44 | 0.095 ± 0.061 | 3.0 ± 1.5 | 2.03 ± 1.60 | 0.100 ± 0.086 | 22% ± 11% |
Aug | 8.13 ± 0.23 | 20.7 ± 0.5 | 28.90 ± 0.53 | 8.34 ± 1.29 | 0.178 ± 0.150 | 7.9 ± 3.1 | 4.80 ± 2.06 | 0.027 ± 0.025 | 27% ± 8% | |
Nov | 8.41 ± 0.14 | 10 ± 0.2 | 31.1 ± 0.8 | 9.79 ± 0.69 | 0.042 ± 0.049 | 2.2 ± 1.6 | 3.13 ± 1.61 | 0.080 ± 0.577 | 20% ± 7% | |
Cage | May | 8.10 ± 0.05 | 16.2 ± 0.6 | 30.9 ± 0.2 | 9.26 ± 0.29 | 0.013 ± 0.005 | 2.3 ± 1.6 | 2.54 ± 1.88 | 0.800 ± 0.996 | 79% ± 12% |
Aug | 7.97 ± 0.06 | 24.3 ± 0.4 | 31.0 ± 0.2 | 8.24 ± 0.72 | 0.032 ± 0.014 | 2.5 ± 1.3 | 1.93 ± 1.10 | 0.053 ± 0.027 | 77% ± 16% | |
Nov | 8.06 ± 0.03 | 13.0 ± 0.1 | 31.2 ± 0.0 | 8.16 ± 0.22 | 0.014 ± 0.003 | 3.3 ± 1.4 | 4.26 ± 1.33 | 0.042 ± 0.008 | 100% ± 0% |
Sampling Type | Principal Component | Eigenvalue | Variance Contribution | Accumulated Contribution Rate |
---|---|---|---|---|
Pond culture | 1 | 2.86 | 31.79 | 31.79 |
2 | 1.88 | 20.88 | 52.68 | |
3 | 1.27 | 14.14 | 66.82 | |
Cage culture | 1 | 3.16 | 35.08 | 35.08 |
2 | 2.32 | 25.82 | 60.90 | |
3 | 1.09 | 12.09 | 82.99 |
Factor | Pond Aquaculture | Cage Aquaculture | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
pH | −0.52 | −0.37 | −0.33 | 0.71 | 0.01 | 0.39 | |
SAL | −0.86 | −0.10 | −0.09 | 0.24 | 0.87 | −0.28 | |
T | −0.04 | 0.78 | 0.13 | −0.76 | −0.30 | −0.26 | |
DO | 0.03 | 0.90 | 0.16 | −0.01 | 0.32 | 0.83 | |
COD | 0.72 | 0.26 | 0.27 | 0.03 | 0.55 | 0.36 | |
Chla | 0.74 | −0.22 | −0.10 | 0.80 | −0.19 | −0.22 | |
MRP | 0.33 | 0.52 | 0.10 | −0.57 | −0.21 | −0.63 | |
DIN | −0.29 | 0.37 | −0.76 | 0.47 | −0.74 | 0.21 | |
ARGs | −0.02 | 0.27 | 0.90 | 0.57 | 0.68 | −0.06 |
Factor | Pond Aquaculture | Cage Aquaculture | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
pH | −0.56 ** | −0.47 * | 0.33 | 0.69 ** | 0.04 | −0.45 * |
T | −0.17 | 0.73 ** | 0.05 | −0.75 ** | −0.61 ** | 0.09 |
SAL | −0.86 ** | −0.15 | 0.15 | 0.27 | 0.85 ** | 0.25 |
DO | 0.02 | 0.91 ** | 0.19 | 0.02 | 0.40 | 0.83 ** |
MRP | 0.27 | 0.57 ** | 0.00 | −0.49 * | −0.18 | 0.58 ** |
COD | 0.71 ** | 0.40 * | −0.32 | 0.10 | 0.56 ** | −0.40 |
Chla | 0.74 ** | −0.22 | 0.03 | 0.77 ** | 0.16 | 0.17 |
DIN | −0.26 | 0.23 | 0.65 ** | 0.19 | −0.40 | −0.59 ** |
ARGs | 0.13 | 0.38 * | −0.82 ** | 0.61 ** | 0.83 ** | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, Y.; Zhang, Q.; Liu, P.; Guo, R.; Jin, S.; Liu, J.; Chen, L.; Ma, Z.; Liu, Y. Evaluation and Analysis of Water Quality of Marine Aquaculture Area. Int. J. Environ. Res. Public Health 2020, 17, 1446. https://doi.org/10.3390/ijerph17041446
Zhang X, Zhang Y, Zhang Q, Liu P, Guo R, Jin S, Liu J, Chen L, Ma Z, Liu Y. Evaluation and Analysis of Water Quality of Marine Aquaculture Area. International Journal of Environmental Research and Public Health. 2020; 17(4):1446. https://doi.org/10.3390/ijerph17041446
Chicago/Turabian StyleZhang, Xianyu, Yingqi Zhang, Qian Zhang, Peiwu Liu, Rui Guo, Shengyi Jin, Jiawen Liu, Lei Chen, Zhen Ma, and Ying Liu. 2020. "Evaluation and Analysis of Water Quality of Marine Aquaculture Area" International Journal of Environmental Research and Public Health 17, no. 4: 1446. https://doi.org/10.3390/ijerph17041446
APA StyleZhang, X., Zhang, Y., Zhang, Q., Liu, P., Guo, R., Jin, S., Liu, J., Chen, L., Ma, Z., & Liu, Y. (2020). Evaluation and Analysis of Water Quality of Marine Aquaculture Area. International Journal of Environmental Research and Public Health, 17(4), 1446. https://doi.org/10.3390/ijerph17041446