Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Sample Collection
2.2. Sample Collection and Biochemical Measurements
2.3. Genotyping of Skin Pigmentation Polymorphisms
2.4. Estimation of Subject Sun Exposure: Accumulated Erythemal Dose Rate
2.5. Questionnaires and Clinical Data
2.6. Statistics
3. Results
3.1. Cohort Characteristics
3.2. Association between Accumulated Erythemal Dose Rate and Folate Levels
3.3. Association between Accumulated Erythemal Dose Rate and Homocysteine Levels
3.4. Association between Skin Pigmentation Variants and Folate Levels
3.5. Association between Skin Pigmentation Variants and Homocysteine Levels
3.6. Interaction between Accumulated Erythemal Dose Rate and Skin Pigmentation Variants on Folate Levels
3.7. Interaction between Accumulated Erythemal Dose Rate and Skin Pigmentation Variants on Homocysteine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stover, P.J. Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 2004, 62 (Suppl. 1), S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Blom, H.J.; Smulders, Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metabol. Dis. 2011, 34, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Stover, P.J.; Field, M.S. Trafficking of Intracellular Folates. Adv. Nutr. Int. Rev. J. 2011, 2, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.I. Folate and cancer prevention: A new medical application of folate beyond hyperhomocysteinemia and neural tube defects. Nutr. Rev. 1999, 57, 314–321. [Google Scholar] [PubMed]
- Ward, M. Homocysteine, folate, and cardiovascular disease. Int. J. Vitam. Nutr. Res. 2001, 71, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Thuesen, B.H.; Husemoen, L.L.N.; Ovesen, L.; Jørgensen, T.; Fenger, M.; Linneberg, A. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population. Br. J. Nutr. 2010, 103, 1195–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucock, M.; Beckett, E.; Martin, C.; Jones, P.; Furst, J.; Yates, Z.; Jablonski, N.G.; Chaplin, G.; Veysey, M. UV-associated decline in systemic folate: Implications for human nutrigenetics, health, and evolutionary processes. Am. J. Hum. Biol. 2017, 29, e22929. [Google Scholar] [CrossRef]
- Borradale, D.; Isenring, E.; Hacker, E.; Kimlin, M.G. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age. J. Photochem. Photobiol. B 2014, 131, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Godar, D.E. UV doses worldwide. Photochem. Photobiol. 2005, 81, 736–749. [Google Scholar] [CrossRef]
- Juzeniene, A.; Tam, T.T.T.; Iani, V.; Moan, J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free Radic. Biol. Med. 2009, 47, 1199–1204. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Fujita, M.; Shibata, K. Effects of UVA irradiation on the concentration of folate in human blood. Biosci. Biotechnol. Biochem. 2009, 73, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steindal, A.H.; Juzeniene, A.; Johnsson, A.; Moan, J. Photodegradation of 5-methyltetrahydrofolate: Biophysical aspects. Photochem. Photobiol. 2006, 82, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Steindal, A.H.; Tam, T.T.T.; Lu, X.Y.; Juzeniene, A.; Moan, J. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin. Photochem. Photobiol. Sci. 2008, 7, 814–818. [Google Scholar] [CrossRef]
- El-Saie, L.T.; Rabie, A.R.; Kamel, M.I.; Seddeik, A.K.; Elsaie, M.L. Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis. Lasers Med. Sci. 2011, 26, 481–485. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Abdel Fattah, N.S.; El-Borhamy, M.I. Analysis of Serum Folate Levels after Narrow Band UVB Exposure. Egypt Dermatol. Online 2006, 2, 1–7. [Google Scholar]
- McKinley, M.C.; Strain, J.J.; McPartlin, J.; Scott, J.M.; McNulty, H. Plasma Homocysteine Is Not Subject to Seasonal Variation. Clin. Chem. 2001, 47, 1430–1436. [Google Scholar] [CrossRef]
- Clarke, R.; Woodhouse, P.; Ulvik, A.; Frost, C.; Sherliker, P.; Refsum, H.; Ueland, P.M.; Khaw, K.T. Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin. Chem. 1998, 44, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Branda, R.F.; Eaton, J.W. Skin color and nutrient photolysis: An evolutionary hypothesis. Science 1978, 201, 625–626. [Google Scholar] [CrossRef]
- Jablonski, N.G. The Evolution of Human Skin and Skin Color. Ann. Rev. Anthropol. 2004, 33, 585–623. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, C.M.; Caudill, S.P.; Gunter, E.W.; Osterloh, J.; Sampson, E.J. Biochemical indicators of B vitamin status in the US population after folic acid fortification: Results from the National Health and Nutrition Examination Survey 1999–2000. Am. J. Clin. Nutr. 2005, 82, 442–450. [Google Scholar] [CrossRef]
- Ford, E.S.; Bowman, B.A. Serum and red blood cell folate concentrations, race, and education: Findings from the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 1999, 69, 476–481. [Google Scholar] [CrossRef]
- Perry, C.A.; Renna, S.A.; Khitun, E.; Ortiz, M.; Moriarty, D.J.; Caudill, M.A. Ethnicity and race influence the folate status response to controlled folate intakes in young women. J. Nutr. 2004, 134, 1786–1792. [Google Scholar] [CrossRef]
- Ainger, S.A.; Jagirdar, K.; Lee, K.J.; Soyer, H.P.; Sturm, R.A. Skin Pigmentation Genetics for the Clinic. Dermatology 2017, 233, 1–15. [Google Scholar] [CrossRef]
- Gerstenblith, M.R.; Goldstein, A.M.; Fargnoli, M.C.; Peris, K.; Landi, M.T. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum. Mutat. 2007, 28, 495–505. [Google Scholar] [CrossRef]
- Law, M.H.; Medland, S.E.; Zhu, G.; Yazar, S.; Vinuela, A.; Wallace, L.; Shekar, S.N.; Duffy, D.L.; Bataille, V.; Glass, D.; et al. Genome-Wide Association Shows that Pigmentation Genes Play a Role in Skin Aging. J. Investig. Dermatol. 2017, 137, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Nan, H.; Kraft, P.; Qureshi, A.A.; Guo, Q.; Chen, C.; Hankinson, S.E.; Hu, F.B.; Thomas, G.; Hoover, R.N.; Chanock, S.; et al. Genome-Wide Association Study of Tanning Phenotype in a Population of European Ancestry. J. Investig. Dermatol. 2009, 129, 2250–2257. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kraft, P.; Nan, H.; Guo, Q.; Chen, C.; Qureshi, A.; Hankinson, S.E.; Hu, F.B.; Duffy, D.L.; Zhao, Z.Z.; et al. A Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation. PLoS Genet. 2008, 4, e1000074. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Magnusson, K.P.; Manolescu, A.; Karason, A.; Palsson, A.; Thorleifsson, G.; et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 2007, 39, 1443–1452. [Google Scholar] [CrossRef]
- Lucock, M.; Yates, Z.; Martin, C.; Choi, J.H.; Boyd, L.; Tang, S.; Naumovski, N.; Furst, J.; Roach, P.; Jablonski, N.; et al. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes. Evol. Med. Public Health 2014, 2014, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Beckett, E.L.; Martin, C.; Duesing, K.; Jones, P.; Furst, J.; Yates, Z.; Veysey, M.; Lucock, M. Vitamin D Receptor Genotype Modulates the Correlation between Vitamin D and Circulating Levels of let-7a/b and Vitamin D Intake in an Elderly Cohort. J. Nutrigenet. Nutrigenomics 2014, 7, 264–273. [Google Scholar] [CrossRef]
- Abbott, K.A.; Veysey, M.; Lucock, M.; Niblett, S.; King, K.; Burrows, T.; Garg, M.L. Sex-dependent association between erythrocyte n-3 PUFA and type 2 diabetes in older overweight people. Br. J. Nutr. 2016, 115, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Baumann, L. Skin ageing and its treatment. J. Pathol. 2007, 211, 241–251. [Google Scholar] [CrossRef]
- Lucock, M.; Yates, Z.; Martin, C.; Choi, J.H.; Beckett, E.; Boyd, L.; LeGras, K.; Ng, X.; Skinner, V.; Wai, R.; et al. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence. BBA Clin. 2015, 3, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Hoffman, R.M. A highly sensitive single-enzyme homocysteine assay. Nat. Protocols 2008, 3, 1388–1394. [Google Scholar] [CrossRef]
- Iida, R.; Ueki, M.; Takeshita, H.; Fujihara, J.; Nakajima, T.; Kominato, Y.; Nagao, M.; Yasuda, T. Genotyping of five single nucleotide polymorphisms in the OCA2 and HERC2 genes associated with blue-brown eye color in the Japanese population. Cell. Biochem. Funct. 2009, 27, 323–327. [Google Scholar] [CrossRef]
- Dȩbniak, T.; Scott, R.; Masojc, B.; Serrano-Fernández, P.; Huzarski, T.; Byrski, T.; Dȩbniak, B.; Górski, B.; Cybulski, C.; Mȩdrek, K.; et al. MC1R common variants, CDKN2A and their association with melanoma and breast cancer risk. Int. J. Cancer 2006, 119, 2597–2602. [Google Scholar] [CrossRef]
- CIE Standard. Erythema reference action spectrum and standard erythema dose. CIE S 1998, 7, E1998. [Google Scholar]
- Beckett, E.L.; Martin, C.; Boyd, L.; Porter, T.; King, K.; Niblett, S.; Yates, Z.; Veysey, M.; Lucock, M. Reduced plasma homocysteine levels in elderly Australians following mandatory folic acid fortification—A comparison of two cross-sectional cohorts. J. Nutr. Intermed. Metabol. 2017, 8, 14–20. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Ovesen, L.; Bülow, I.; Knudsen, N.; Laurberg, P.; Perrild, H. Folate intake, lifestyle factors, and homocysteine concentrations in younger and older women. Am. J. Clin. Nutr. 2000, 72, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Hatzis, C.M.; Bertsias, G.K.; Linardakis, M.; Scott, J.M.; Kafatos, A.G. Dietary and other lifestyle correlates of serum folate concentrations in a healthy adult population in Crete, Greece: A cross-sectional study. Nutr. J. 2006, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Ganji, V.; Kafai, M.R. Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2003, 77, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.F.; Bostom, A.G.; Wilson, P.W.; Rich, S.; Rosenberg, I.H.; Selhub, J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am. J. Clin. Nutr. 2001, 73, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Department of Health. Folate Testing. 2014. Available online: https://www.health.gov.au/internet/main/publishing.nsf/Content/F05A8741F610EDB7CA257EB30026794E/$File/Folate%20testing%20Review%20Report.docx (accessed on 7 November 2019).
- Murase, J.E.; Koo, J.Y.M.; Berger, T.G. Narrowband ultraviolet B phototherapy influences serum folate levels in patients with vitiligo. J. Am. Acad. Dermatol. 2010, 62, 710–711. [Google Scholar] [CrossRef]
- Green, R. Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies. Am. J. Clin. Nutr. 2011, 94, 666S–672S. [Google Scholar] [CrossRef] [Green Version]
- Rose, R.F.; Batchelor, R.J.; Turner, D.; Goulden, V. Narrowband ultraviolet B phototherapy does not influence serum and red cell folate levels in patients with psoriasis. J. Am. Acad. Dermatol. 2009, 61, 259–262. [Google Scholar] [CrossRef]
- Juzeniene, A.; Stokke, K.T.; Thune, P.; Moan, J. Pilot study of folate status in healthy volunteers and in patients with psoriasis before and after UV exposure. J. Photochem. Photobiol. B 2010, 101, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Bader, A.; Sauermann, K.; Altmeyer, P.; Hoffmann, K. Serum folate levels after UVA exposure: A two-group parallel randomised controlled trial. BMC Dermatol. 2001, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Goyert, G.; Lim, H.W. Folate and phototherapy: What should we inform our patients? J. Am. Acad. Dermatol. 2017, 77, 958–964. [Google Scholar] [CrossRef]
- Amer, M.; Qayyum, R. The Relationship Between 25-Hydroxyvitamin D and Homocysteine in Asymptomatic Adults. J. Clin. Endocrinol. Metabol. 2014, 99, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.M.; Ekwaru, J.P.; Mastroeni, S.S.; Mastroeni, M.F.; Loehr, S.A.; Veugelers, P.J. The Effect of Serum 25-Hydroxyvitamin D on Elevated Homocysteine Concentrations in Participants of a Preventive Health Program. PLoS ONE 2016, 11, e0161368. [Google Scholar] [CrossRef]
- Glueck, C.J.; Jetty, V.; Rothschild, M.; Duhon, G.; Shah, P.; Prince, M.; Lee, K.; Goldenberg, M.; Kumar, A.; Goldenberg, N.; et al. Associations between Serum 25-hydroxyvitamin D and Lipids, Lipoprotein Cholesterols, and Homocysteine. North Am. J. Med. Sci. 2016, 8, 284–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Xing, X.; Xu, R.; Gong, Q.; He, Y.; Li, S.; Wang, H.; Liu, C.; Ding, X.; Na, R.; et al. Folic Acid and Vitamins D and B12 Correlate With Homocysteine in Chinese Patients With Type-2 Diabetes Mellitus, Hypertension, or Cardiovascular Disease. Medicine 2016, 95, e2652. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Caruso, P.; Dal Ben, M.; Conti, C.; Gazzin, S.; Tiribelli, C. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Front. Aging Neurosci. 2017, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.R.; Tyagi, S.C. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation. Nutr. J. 2004, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef]
- Duffy, D.L.; Iles, M.M.; Glass, D.; Zhu, G.; Barrett, J.H.; Höiom, V.; Zhao, Z.Z.; Sturm, R.A.; Soranzo, N.; Hammond, C.; et al. IRF4 variants have age-specific effects on nevus count and predispose to melanoma. Am. J. Hum. Genet. 2010, 87, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Gilchrest, B.A.; Blog, F.B.; Szabo, G. Effects of Aging and Chronic Sun Exposure on Melanocytes in Human Skin. J. Investig. Dermatol. 1979, 73, 141–143. [Google Scholar] [CrossRef] [Green Version]
Variant | Primers | Conditions | Enzyme | Expected Fragments |
---|---|---|---|---|
HERC2 rs12913832 | F:GAGGCCAGTTTCATTTGAGCTTTA R:CACCACTGGTAGTTTTCTTTGCC | 95 °C 5min 35 cycles: 95 °C 30 s, 48 °C 30 s, 72 °C 30 s 72 °C 5 min | DraI | AA—203 bp AG—203, 226 bp GG—226 bp |
MC1R rs1805007 | F: CAAGAACCGGAACCTGCACT R: CCAGCATGTGGACGTACAGC | 95 °C 5 min, 35 cycles: 95 °C 30 s, 48 °C 30 s, 72 °C 30 s 72 °C 5 min | HhaI | CC—197, 178, 42, 31 bp CT—197, 178, 74. 42, 31 bp |
All (n = 599) | Male (n = 268) | Female (n = 331) | |
---|---|---|---|
Age (years)^ | 77 (76–78) | 77 (76–78) | 77 (76–78) |
RBC folate (nmol/L)^ | 1332.1 (1295.3–1368.9) | 1312.8 (1259.9–1365.6) | 1348.0 (1296.7–1399.2) |
Serum folate (nmol/L)^ | 29.1 (28.2–30.0) | 28.3 (27.0–29.6) | 29.8 (28.5–31.1) |
Homocysteine (μmol/L)^ | 10.4 (9.9–10.8) | 10.8 (10.1–11.5) | 10.0 (9.5–10.6) |
Serum vitamin B12 (pmol/L)^ | 239.4 (227.2–251.6) | 224.0 (208.7–239.2)a | 252.0 (233.7–270.2)a |
Creatinine (μmol/L)^ | 9.3 (8.9–9.7) | 10.5 (9.8–11.1)b | 8.4 (7.9–8.9)b |
Folate intake (μg/day)^ | 736.4 (692.1–780.7) | 727.6 (684.8–770.4) | 743.6 (671.1–816.1) |
Vitamin B6 intake (mg/d)^ | 9.4 (7.1–11.8) | 10.1 (5.7–14.5) | 8.9 (6.5–11.2) |
Alcohol intake (g/day)^ | 8.6 (7.5–9.6) | 13.3 (11.4–15.1)c | 4.7 (3.9–5.6)c |
Tea serves/day* | |||
<1 | 193 (32) | 82 (31) | 111 (34) |
1–2 | 274 (46) | 124 (46) | 150 (45) |
>2 | 132 (22) | 62 (23) | 70 (21) |
Coffee serves/day* | |||
<1 | 208 (35) | 91 (34) | 117 (35) |
1–2 | 262 (44) | 120 (45) | 142 (43) |
>2 | 129 (22) | 57 (21) | 72 (22) |
Smoking status* | |||
Never smoked | 304 (51) | 91 (34)d | 213 (64)d |
Current smoker | 18 (3) | 9 (3) | 9 (3) |
Ex-smoker | 277 (46) | 168 (63)e | 109 (33)e |
BMI category^ | |||
Underweight | 9 (2) | 5 (2) | 4 (1) |
Normal | 122 (22) | 47 (19) | 75 (25) |
Overweight | 237 (43) | 119 (48) | 118 (39) |
Obese | 185 (33) | 78 (31) | 107 (35) |
4M-EDR# | 16751.0(7788.2–29160.6) | 16956.0(7788.2 -28258.0) | 16585.07788.2–29160.6 |
Variant | RHLS | EUR | GBR |
---|---|---|---|
n (%) | n (%) | n (%) | |
IRF4-rs12203592 | |||
CC genotype | 359 (62) | 395 (78) | 61 (67) |
CT genotype | 188 (32) | 99 (20) | 27 (30) |
TT genotype | 33 (6) | 9 (2) | 3 (3) |
HERC2-rs12913832 | |||
AA genotype | 24 (4) | 90 (18) | 4 (4) |
AG genotype | 178 (31) | 186 (37) | 25 (28) |
GG genotype | 364 (64) | 227 (45) | 62 (68) |
MC1R-rs1805007 | |||
CC genotype | 473 (84) | 435 (87) | 75 (82) |
CT genotype | 87 (16) | 64 (13) | 14 (15) |
RBC Folate Levels | Serum Folate Levels | |||||||
---|---|---|---|---|---|---|---|---|
Unadjusted n = 591 | Adjusted* n = 544 | Unadjusted n = 585 | Adjusted* n = 539 | |||||
p | β | p | β | p | β | p | β | |
4M-EDR | <0.001 | −0.19 | <0.001 | −0.19 | 0.045 | −0.08 | 0.044 | −0.08 |
Homocysteine Levels | ||||
---|---|---|---|---|
Unadjusted n = 570 | Adjusted n = 517 | |||
p | β | p | β | |
4M-EDR | <0.001 | −0.28 | <0.001 | −0.28 |
RBC Folate Levels | Serum Folate Levels | |||||||
---|---|---|---|---|---|---|---|---|
Unadjusted n = 495 | Adjusted* n = 453 | Unadjusted n = 486 | Adjusted* n = 445 | |||||
p | β | p | β | p | β | p | β | |
MC1R rs1805007 (CC vs. CT) | 0.429 | −0.04 | 0.930 | −0.00 | 0.020 | −0.11 | 0.171 | −0.06 |
HERC2 rs12913832 (AG vs. GG) | 0.919 | 0.00 | 0.466 | −0.03 | 0.480 | −0.03 | 0.130 | −0.07 |
IRF4 rs12203592 (CT vs. CC) | 0.422 | 0.04 | 0.540 | 0.03 | 0.135 | 0.07 | 0.229 | 0.06 |
Homocysteine Levels | ||||
---|---|---|---|---|
Unadjusted n = 460 | Adjusted* n = 436 | |||
p | β | p | β | |
MC1R rs1805007 (CC vs CT) | 0.715 | 0.02 | 0.725 | 0.02 |
HERC2 rs12913832 (AG vs. GG) | 0.208 | −0.06 | 0.108 | −0.08 |
IRF4 rs12203592 (CT vs CC) | 0.026 | −0.10 | 0.059 | −0.10 |
RBC Folate Levels | Serum Folate Levels | |||||||
---|---|---|---|---|---|---|---|---|
Unadjusted n = 495 | Adjusted* n = 453 | Unadjusted n = 486 | Adjusted* n = 445 | |||||
p | β | p | β | p | β | p | β | |
4M-EDR | 0.026 | −0.15 | 0.034 | −0.15 | 0.156 | −0.10 | 0.071 | −0.13 |
MC1R rs1805007 | 0.460 | −0.03 | 0.883 | −0.01 | 0.024 | −0.10 | 0.155 | −0.07 |
HERC2 rs12913832 | 0.788 | −0.01 | 0.630 | −0.02 | 0.434 | −0.04 | 0.182 | −0.06 |
IRF4 rs12203592 | 0.286 | 0.05 | 0.420 | 0.04 | 0.112 | 0.07 | 0.214 | 0.06 |
4M-EDR x MC1R rs1805007 | 0.759 | −0.02 | 0.669 | −0.03 | 0.734 | 0.02 | 0.614 | 0.03 |
4M-EDR x HERC2 rs12913832 | 0.594 | 0.03 | 0.504 | 0.03 | 0.721 | −0.02 | 0.304 | −0.05 |
4M-EDR x IRF4 rs12203592 | 0.641 | 0.02 | 0.735 | 0.02 | 0.973 | 0.00 | 0.832 | 0.01 |
Homocysteine Levels | ||||
---|---|---|---|---|
Unadjusted n = 481 | Adjusted* n = 418 | |||
p | β | p | β | |
4M-EDR | <0.001 | −0.30 | <0.001 | −0.30 |
MC1R-rs1805007 | 0.728 | 0.02 | 0.896 | 0.01 |
HERC2-rs12913832 | 0.151 | −0.06 | 0.171 | −0.07 |
IRF4-rs12203592 | 0.073 | −0.08 | 0.149 | −0.07 |
4M-EDR x MC1R rs1805007 | 0.794 | −0.02 | 0.646 | −0.03 |
4M-EDR x HERC2 rs12913832 | 0.804 | 0.01 | 0.879 | 0.01 |
4M-EDR x IRF4 rs12203592 | 0.698 | 0.02 | 0.316 | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, P.; Lucock, M.; Scarlett, C.J.; Veysey, M.; Beckett, E. Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1545. https://doi.org/10.3390/ijerph17051545
Jones P, Lucock M, Scarlett CJ, Veysey M, Beckett E. Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. International Journal of Environmental Research and Public Health. 2020; 17(5):1545. https://doi.org/10.3390/ijerph17051545
Chicago/Turabian StyleJones, Patrice, Mark Lucock, Christopher J. Scarlett, Martin Veysey, and Emma Beckett. 2020. "Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort" International Journal of Environmental Research and Public Health 17, no. 5: 1545. https://doi.org/10.3390/ijerph17051545
APA StyleJones, P., Lucock, M., Scarlett, C. J., Veysey, M., & Beckett, E. (2020). Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. International Journal of Environmental Research and Public Health, 17(5), 1545. https://doi.org/10.3390/ijerph17051545