Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Ultrasound-Vortex-Assisted Dispersive Liquid–Liquid Microextraction Procedure
2.3. GC–IT/MS Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Legislative Decree. Implementation of the Directive 2001/110/CE regarding the production and the marketing of honey. Gazz. Uff. It. 2004, 168, 29–34. [Google Scholar]
- Abdulrhman, M.A.; Mekawy, M.A.; Awadalla, M.M.; Mohamed, A.H. Bee honey added to the oral rehydration solution in treatment of gastroenteritis in infants and children. J. Med. Food 2010, 13, 605–609. [Google Scholar] [CrossRef]
- Montenegro, G.; Mejias, E. Biological applications of honeys produced by Apis mellifera. Biol. Res. 2013, 46, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderone, N.W.; Lin, S. Rapid determination of the numbers of Varroa destructor, a parasitic mite of the honey bee, Apis mellifera, on sticky-board collection devices. Apidologie 2003, 34, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Notardonato, I.; Avino, P.; Cinelli, G.; Russo, M.V. Trace determination of acaricides in honey samples using XAD-2 adsorbent and gas chromatography coupled with an ion trap mass spectrometer detector. RSC Adv. 2014, 4, 42424–42431. [Google Scholar] [CrossRef]
- Ruffinengo, S.R.; Maggi, M.D.; Marcangeli, J.A.; Eguaras, M.J.; Principal, J.; Barrios, C.; De Piano, F.; Giullia, M. Integrated pest management to control Varroa destructor and its implications to Apis mellifera colonies. Zootec. Trop. 2014, 32, 149–168. [Google Scholar]
- Notardonato, I.; Avino, P.; Cinelli, G.; Russo, M.V. Rapid and reliable method for analyzing acaricides in honey-based products. Food Anal. Methods 2016, 9, 1675–1685. [Google Scholar] [CrossRef]
- Corredera, L.; Bayarri, S.; Pérez-Arquillué, C.; Lázaro, R.; Molino, F.; Herrera, A. Evaluation of heavy metals and polycyclic aromatic hydrocarbons in honeys from different origins. J. Food Prot. 2014, 77, 504–509. [Google Scholar] [CrossRef]
- de Andrade, C.K.; dos Anjos, V.E.; Felsner, M.L.; Torres, Y.R.; Quináia, S.P. Relationship between geographical origin and contents of Pb, Cd, and Cr in honey samples from the state of Paraná (Brazil) with chemometric approach. Environ. Sci. Pollut. Res. 2014, 21, 12372–12381. [Google Scholar] [CrossRef]
- Russo, M.V.; Avino, P.; Notardonato, I. PAH residues in honey by ultrasound-vortex-assisted liquid-liquid micro-extraction followed by GC-FID/IT-MS. Food Anal. Methods 2017, 10, 2132–2142. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Cenci Goga, B.T.; Elia, A.C.; Galletti, M.; Moroni, B.; Petroselli, C.; et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Notardonato, I.; Cinelli, G.; Avino, P. Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal. Methods 2014, 6, 7030–7037. [Google Scholar] [CrossRef]
- Russo, M.V.; Avino, P.; Perugini, L.; Notardonato, I. Extraction and GC-MS analysis of phthalate esters in food matrices: A review. RSC Adv. 2015, 5, 37023–37043. [Google Scholar] [CrossRef]
- Barrett, J.R. Attention worthy: Prenatal phthalate exposure and subsequent ADHD diagnosis. Environ. Health Perspect. 2019, 127, 34001. [Google Scholar] [CrossRef]
- Shoaff, J.R.; Calafat, A.M.; Schantz, S.L.; Korrick, S.A. Endocrine disrupting chemical exposure and maladaptive behavior during adolescence. Environ. Res. 2019, 172, 231–241. [Google Scholar] [CrossRef]
- Huang, H.B.; Kuo, P.H.; Su, P.H.; Sun, C.W.; Chen, W.J.; Wang, S. Prenatal and childhood exposure to phthalate diesters and neurobehavioral development in a 15-year follow-up birth cohort study. Environ. Res. 2019, 172, 569–577. [Google Scholar] [CrossRef]
- Ran, D.; Luo, Y.; Gan, Z.; Liu, J.; Yang, J. Neural mechanisms underlying the deficit of learning and memory by exposure to di(2-ethylhexyl) phthalate in rats. Ecotoxicol. Environ. Saf. 2019, 174, 58–65. [Google Scholar] [CrossRef]
- Shen, C.; Wei, J.; Wang, T.; Wang, Y. Acute toxicity and responses of antioxidant systems to dibutyl phthalate in neonate and adult Daphnia magna. PeerJ 2019, 7, e6584. [Google Scholar] [CrossRef] [Green Version]
- Vera, P.; Aznar, M.; Mercea, P.; Nerín, C. Study of hotmelt adhesives used in food packaging multilayer laminates. Evaluation of the main factors affecting migration to food. J. Mater. Chem. 2011, 21, 420–431. [Google Scholar] [CrossRef]
- Aznar, M.; Vera, P.; Canellas, E.; Nerín, C.; Mercea, P.; Störmer, A.J. Composition of the adhesives used in food packaging multilayer materials and migration studies from packaging to food. Mater. Chem. 2011, 21, 4358–4370. [Google Scholar] [CrossRef]
- Di Bella, G.; Saitta, M.; La Pera, L.; Alfa, M.; Dugo, G. Pesticide and plasticizer residues in bergamot essential oils from Calabria (Italy). Chemosphere 2004, 56, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Lo Turco, V.; Di Bella, G.; Potortì, A.G.; Tropea, A.; Casale, E.K.; Fede, M.R.; Dugo, G. Determination of plasticisers and BPA in Sicilian and Calabrian nectar honeys by selected ion monitoring GC/MS. Food Addit. Contam. A 2016, 33, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Avino, P.; Notardonato, I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J. Chromatogr. A 2016, 1474, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Notardonato, I.; Protano, C.; Vitali, M.; Avino, P. Phthalates and bisphenol A determination and release from different beverage plastic containers by dispersive liquid-liquid microextraction and GC-IT/MS analysis. Food Anal. Methods 2019, 12, 2562–2571. [Google Scholar] [CrossRef]
- Santhi, V.A.; Sakai, N.; Ahmad, E.D.; Mustafa, A.M. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water. Sci. Total Environ. 2012, 427, 332–338. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Y.; Guo, J.; Yu, T.; Sun, L.; Xiao, X.; Zhu, D.; Nakanishi, T.; Hiromori, Y.; Li, J.; et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice. Nat. Commun. 2017, 8, 14585. [Google Scholar] [CrossRef] [Green Version]
- Notardonato, I.; Russo, M.V.; Avino, P. Phthalates and bisphenol-A residues in water samples: An innovative analytical approach. Rend. Licei. 2018, 29, 831–840. [Google Scholar] [CrossRef]
- Notardonato, I.; Protano, C.; Vitali, M.; Bhattacharya, B.; Avino, P. A method validation for simultaneous determination of phthalates and bisphenol A released from plastic water containers. Appl. Sci. 2019, 9, 2945. [Google Scholar] [CrossRef] [Green Version]
- Adebola, A.A.; Babalola, B.A. Bisphenol-A (BPA) in Foods commonly consumed in Southwest Nigeria and its human health risk. Sci. Rep. 2019, 9, 17458. [Google Scholar]
- Wang, H.X.; Zhou, Y.; Tang, C.X.; Wu, J.G.; Chen, Y.; Jiang, Q.W. Association between bisphenol A exposure and body mass index in Chinese school children: A cross-sectional study. Environ. Health 2012, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zheng, Y.; Jiang, J.; Liu, Y.; Luo, X.; Shen, Z.; Chen, X.; Wang, Y.; Dai, Y.; Zhao, J.; et al. Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in eastern China. PLoS ONE 2015, 10, e012788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Rider, C.V.; Hwang, G.S.; Hoy, H.; LeBlanc, G.A. Covert signal disruption: Anti-ecdysteroidal activity of bisphenol A involves cross talk between signaling pathways. Environ. Toxicol. Chem. 2005, 24, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Genuis, S.J.; Beesoon, S.; Birkholz, D.; Lobo, R.A. Human excretion of bisphenol A: Blood, urine, and sweat (BUS) study. J. Environ. Public Health 2012. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Hong, Y.C. Exposure to bisphenol A from drinking canned beverages increases blood pressure: Randomized crossover trial. Hypertension 2015, 65, 313–319. [Google Scholar] [CrossRef]
- Eng, D.S.; Lee, J.M.; Gebremariam, A.; Meeker, J.D.; Peterson, K.; Padmanabhan, V. Bisphenol A and chronic disease risk factors in US children. Pediatrics 2013, 132, e637–e645. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- European Commission. Commission Regulation (EU) 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off. J. Eur. Union 2018, 41, 6–12. [Google Scholar]
- Babu-Rajendran, R.; Preethi, G.; Poopal, R.K.; Nikhil, N.P.; Vimalkumar, K.; Subramanian, A.; Krishna-Kumar, S. GC-MS determination of phthalate esters in human urine: A potential biomarker for phthalate bio-monitoring. J. Chromatogr. B 2018, 1079, 15–24. [Google Scholar] [CrossRef]
- Pinguet, J.; Kerckhove, N.; Eljezi, T.; Lambert, C.; Moreau, E.; Bernard, L.; Boeuf, B.; Decaudin, B.; Genay, S.; Masse, M.; et al. New SPE-LC-MS/MS method for the simultaneous determination in urine of 22 metabolites of DEHP and alternative plasticizers from PVC medical devices. Talanta 2019, 198, 377–389. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Zhu, Q.; Liao, C. A multi-residue method for determination of 36 endocrine disrupting chemicals in human serum with a simple extraction procedure in combination of UPLC-MS/MS analysis. Talanta 2019, 205, 120144. [Google Scholar] [CrossRef]
- Mousavi, L.; Tamiji, Z.; Khoshayand, M.R. Applications and opportunities of experimental design for the dispersive liquid-liquid microextraction method—A review. Talanta 2018, 190, 335–356. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid-phase microextraction: A review of reviews. Microchem. J. 2019, 149, 103989. [Google Scholar] [CrossRef]
- Li, G.; Row, K.H. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. TrAC-Trend. Anal. Chem. 2019, 120, 115651. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Canan, C.; Beato, M.O.; Leite, O.D.; Moraes Flores, E.L. A new and feasible analytical method using reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) for further determination of Nickel in hydrogenated vegetable fat. Talanta 2020, 208, 120409. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xing, X.; Du, Z. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of extractables from pharmaceutical packaging materials. Talanta 2020, 209, 120540. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography-ion trap mass spectrometry. Anal. Chim. Acta 2013, 769, 72–78. [Google Scholar] [CrossRef]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid-liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv. 2014, 4, 59655–59663. [Google Scholar] [CrossRef]
- Cinelli, G.; Avino, P.; Notardonato, I.; Russo, M.V. Ultrasound-vortex-assisted dispersive liquid-liquid microextraction coupled with gas chromatography with a nitrogen-phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine. Anal. Methods 2014, 6, 782–790. [Google Scholar] [CrossRef]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem. 2014, 146, 181–187. [Google Scholar] [CrossRef]
- Notardonato, I.; Salimei, E.; Russo, M.V.; Avino, P. Simultaneous determination of organophosphorus pesticides and phthalates in baby food simples by ultrasound-vortex-assisted liquid-liquid microextraction and GC–IT/MS. Anal. Bioanal. Chem. 2018, 410, 3285–3296. [Google Scholar] [CrossRef]
- Knoll, J.E. Estimation of the limit of detection in chromatography. J. Chromatogr. Sci. 1985, 23, 422–425. [Google Scholar] [CrossRef]
- Amézqueta, S.; Subirats, X.; Fuguet, E.; Rosés, M.; Ràfols, C. Octanol-water partition constant. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–208. [Google Scholar]
- Tanagra. Available online: http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html (accessed on 25 January 2020).
- Escofier, B.; Pagès, J. Analyses Factorielles Multiples; Dunod: Paris, France, 1988. [Google Scholar]
- Hohnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hill: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Avino, P.; Capannesi, G.; Renzi, L.; Rosada, A. Instrumental neutron activation analysis and statistical approach for determining baseline values of essential and toxic elements in hairs of high school students. Ecotoxicol. Environ. Saf. 2013, 92, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food exposure and impact on human health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Non-pollen particulates in honey and sugar. Food Addit. Contam. A 2013, 30, 2136–2140. [Google Scholar] [CrossRef]
Compound | Abbreviation | CAS 1,# | MW 2 | SIM 3 | Kow 4 | LD50 5 | SML 6 |
---|---|---|---|---|---|---|---|
Di-methyl phthalate | DMP | 131-113 | 194.18 | 163, 194 | 1.60 | 44.7 | 60 |
Di-ethyl phthalate | DEP | 84-66-2 | 222.24 | 149, 177 | 2.42 | 15.1 | 60 |
Di-isobutyl phthalate | DiBP | 84-69-5 | 278.34 | 149, 223 | 4.11 | 2.04 | 60 |
Di-n-butyl phthalate | DBP | 84-74-2 | 278.34 | 149, 205 | 4.50 | 1.69 | 0.3 |
Bisphenol A | BP-A | 80-05-7 | 228.29 | 213, 228 | 3.32 | 35.26 | 0.05 |
Bis(2-ethylhexyl) phthalate | DEHP | 118-81-7 | 390.56 | 149, 167 | 7.27 | 10000 | 1.5 |
Di-(n-octyl) phthalate | DnOP | 117-84-0 | 390.56 | 149, 279 | 8.10 | 4.73 | 60 |
Solvent | DMP | DEP | DiBP | DBP | BP-A | DEHP | DnOP |
---|---|---|---|---|---|---|---|
n-hexane | 15.6 ± 3.5 | 65.3 ± 5.2 | 80.9 ± 4.8 | 86.5 ± 5.2 | 40.2 ± 7.1 | 92.8 ± 5.2 | 99.4 ± 3.2 |
n-heptane | 14.7 ± 4.2 | 63.2 ± 4.4 | 78.2 ± 2.9 | 84.1 ± 3.9 | 15.3 ± 6.9 | 91.7 ± 3.4 | 97.1 ± 3.4 |
iso-octane | 60.3 ± 5.1 | 96.6 ± 3.8 | 110.8 ± 4.1 | 138.6 ± 4.1 | 25.0 ± 5.7 | 76.0 ± 4.2 | 76.1 ± 1.9 |
et. acetate 1 | 76.1 ± 3.2 | 76.3 ± 3.7 | 73.9 ± 3.6 | 78.5 ± 3.7 | 51.3 ± 6.1 | 67.0 ± 5.1 | 76.2 ± 2.9 |
toluene | 91.2 ± 3.5 | 88.3 ± 4.2 | 89.4 ± 4.7 | 96.1 ± 3.9 | 69.3 ± 6.7 | 98.8 ± 3.1 | 97.0 ± 2.9 |
tol+et 1 1:1 | 112.9 ± 4.9 | 87.9 ± 5.1 | 113.9 ± 3.9 | 95.6 ± 5.1 | 65.6 ± 7.3 | 64.0 ± 2.9 | 86.0 ± 3.2 |
Compound | Regr. Eq. 1 | Intraday 2 | Interday 2 | LOD | LOQ | Recovery 1 | |
---|---|---|---|---|---|---|---|
Blank | Honey | ||||||
DMP | y = 0.616x + 0.215 | 2.2 | 2.6 | 6 | 9 | 97.9 ± 1.6 | 91.2 ± 3.5 |
DEP | y = 0.875x + 0.356 | 2.6 | 4.1 | 5 | 11 | 99.3 ± 1.2 | 88.3 ± 4.2 |
DiBP | y = 0.598x + 0.434 | 2.8 | 3.3 | 2 | 7 | 97.5 ± 1.9 | 89.4 ± 4.7 |
DBP | y = 0.736x + 0.197 | 2.8 | 3.9 | 3 | 8 | 99.5 ± 2.1 | 96.1 ± 3.9 |
BP-A | y = 0.569x + 0.283 | 11.6 | 17.6 | 11 | 16 | 89.4 ± 1.7 | 69.3 ± 7.8 |
DEHP | y = 0.148x + 0.610 | 3.6 | 4.8 | 2 | 5 | 99.3 ± 2.1 | 98.8 ± 3.1 |
DnOP | y = 0.259x + 0.532 | 3.5 | 4.2 | 4 | 10 | 98.9 ± 2.5 | 97.0 ± 2.9 |
# Sample | DMP | DEP | DiBP | DBP | BP-A | DEHP | DnOP |
---|---|---|---|---|---|---|---|
# 1 | < LOQ | < LOQ | < LOQ | < LOQ | 24.6 | 65.0 | < LOQ |
# 2 | < LOQ | 19.9 | < LOQ | < LOQ | 18.8 | < LOQ | < LOQ |
# 3 | < LOQ | < LOQ | < LOQ | < LOQ | 22.6 | 18.6 | < LOQ |
# 4 | < LOQ | < LOQ | < LOQ | < LOQ | 23.1 | < LOQ | 6.9 |
# 5 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 6.7 | 5.1 |
# 6 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 5.7 | 10.7 |
# 7 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 25.8 | 15.1 |
# 8 | < LOQ | < LOQ | < LOQ | < LOQ | 31.0 | < LOQ | 10.2 |
# 9 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 35.4 | 41.0 |
# 10 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 94.9 | < LOQ |
# 11 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 20.7 | < LOQ |
# 12 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 113.5 | 38.5 |
# 13 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 28.4 | < LOQ |
# 14 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 30.9 | < LOQ |
# 15 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 141.6 | 43.7 |
# 16 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 127.0 | 7.3 |
# 17 | < LOQ | 25.4 | < LOQ | < LOQ | < LOQ | 41.2 | < LOQ |
# 18 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 82.6 | < LOQ |
# 19 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ |
# 20 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 8.1 | < LOQ |
# 21 | < LOQ | 91.4 | 137.5 | 166.0 | 170.4 | 132.3 | 170.7 |
# 22 | < LOQ | < LOQ | < LOQ | < LOQ | 35.4 | 4.9 | < LOQ |
# 23 | < LOQ | < LOQ | < LOQ | < LOQ | 29.8 | 60.1 | 71.3 |
# 24 | < LOQ | < LOQ | < LOQ | < LOQ | 23.2 | 6.3 | < LOQ |
# 25 | < LOQ | < LOQ | < LOQ | < LOQ | 28.5 | < LOQ | < LOQ |
# 26 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ |
# 27 | < LOQ | 29.7 | 299.6 | 270.1 | 30.8 | 363.3 | 343.3 |
# 28 | < LOQ | < LOQ | 40.3 | 48.2 | < LOQ | 62.4 | 68.8 |
# 29 | < LOQ | < LOQ | < LOQ | 19.4 | < LOQ | 151.4 | 206.1 |
# 30 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 13.7 | 24.8 |
# 31 | < LOQ | < LOQ | 28.7 | 56.8 | < LOQ | 147.8 | 124.8 |
# 32 | < LOQ | 371.5 | 553.1 | 550.7 | 54.1 | 960.0 | 888.2 |
# 33 | < LOQ | < LOQ | < LOQ | < LOQ | 11.5 | 47.4 | 32.6 |
# 34 | < LOQ | 35.9 | 89.2 | 180.0 | 996.8 | 502.8 | 94.1 |
# 35 | < LOQ | < LOQ | < LOQ | < LOQ | 24.1 | 51.8 | 31.7 |
# 36 | 12.0 | < LOQ | < LOQ | < LOQ | < LOQ | 56.9 | 19.5 |
# 37 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 13.1 | < LOQ |
# 38 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ |
# 39 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ |
# 40 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 8.3 | < LOQ |
# 41 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ |
# 42 | < LOQ | < LOQ | < LOQ | < LOQ | < LOQ | 23.6 | 14.0 |
# 43 | < LOQ | < LOQ | < LOQ | < LOQ | 314.3 | 235.1 | < LOQ |
# 44 | < LOQ | < LOQ | < LOQ | < LOQ | 23.2 | 251.1 | 124.1 |
# 45 | < LOQ | < LOQ | < LOQ | < LOQ | 27.9 | 29.2 | 5.1 |
# 46 | < LOQ | < LOQ | < LOQ | < LOQ | 29.1 | < LOQ | < LOQ |
# 47 | 14.0 | < LOQ | < LOQ | < LOQ | 37.0 | 35.3 | 41.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Passarella, S.; Ianiri, G.; Di Fiore, C.; Russo, M.V.; Avino, P. Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples. Int. J. Environ. Res. Public Health 2020, 17, 1692. https://doi.org/10.3390/ijerph17051692
Notardonato I, Passarella S, Ianiri G, Di Fiore C, Russo MV, Avino P. Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples. International Journal of Environmental Research and Public Health. 2020; 17(5):1692. https://doi.org/10.3390/ijerph17051692
Chicago/Turabian StyleNotardonato, Ivan, Sergio Passarella, Giuseppe Ianiri, Cristina Di Fiore, Mario Vincenzo Russo, and Pasquale Avino. 2020. "Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples" International Journal of Environmental Research and Public Health 17, no. 5: 1692. https://doi.org/10.3390/ijerph17051692
APA StyleNotardonato, I., Passarella, S., Ianiri, G., Di Fiore, C., Russo, M. V., & Avino, P. (2020). Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples. International Journal of Environmental Research and Public Health, 17(5), 1692. https://doi.org/10.3390/ijerph17051692