Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Materials
2.2. Sampling Locations
2.3. Wind Direction
2.4. Elemental Analysis
2.5. Experimental Design and Statistical Analysis
2.5.1. Correlation Analysis of the Trace Elements
2.5.2. PM2.5 Measurement
3. Results
Elemental Analysis
4. Discussion
Correlation of PM2.5 Measurements to Elemental Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bräuner, E.; Forchhammer, L.; Møller, P.; Simonsen, J.; Glasius, M.; Wåhlin, P.; Raaschou-Nielsen, O.; Loft, S. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage. Environ. Health Perspect. 2007, 115, 1177–1182. [Google Scholar] [CrossRef]
- Møller, P.; Danielsen, P.H.; Karottki, D.G.; Jantzen, K.; Roursgaard, M.; Klingberg, H.; Jensen, D.M.; Christophersen, D.V.; Hemmingsen, J.G.; Cao, Y.; et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat. Res.-Rev. Mut. Res. 2014, 762, 133–166. [Google Scholar] [CrossRef]
- Ritz, B.; Wilhelm, M.; Hoggatt, K.J.; Ghosh, J.K.C. Ambient Air Pollution and Preterm Birth in the Environment and Pregnancy Outcomes Study at the University of California, Los Angeles. Am. J. Epidemiol. 2007, 166, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A., III. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Hwang, S.-L.; Lin, Y.-C.; Lin, C.-M.; Hsiao, K.-Y. Effects of fine particulate matter and its constituents on emergency room visits for asthma in southern Taiwan during 2008–2010: A population-based study. Environ. Sci. Pollut. Res. Int. 2017, 24, 15012–15021. [Google Scholar] [CrossRef]
- Jang, A.-S. Particulate Matter and Bronchial Asthma. Korean J. Med. 2015, 88, 150. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Park, Y.-H.; Lee, J.-T. Assessment of temporal variation for the risk of particulate matters on asthma hospitalization. Environ. Res. 2017, 156, 542–550. [Google Scholar] [CrossRef]
- Requia, W.J.; Adams, M.D.; Koutrakis, P. Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. Sci. Total Environ. 2017, 584, 1077–1083. [Google Scholar] [CrossRef]
- Tian, Y.; Xiang, X.; Juan, J.; Sun, K.; Song, J.; Cao, Y.; Hu, Y. Fine particulate air pollution and hospital visits for asthma in Beijing, China. Environ. Pollut. 2017, 230, 227–233. [Google Scholar] [CrossRef]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- Gardner, B.; Ling, F.; Hopke, P.K.; Frampton, M.W.; Utell, M.J.; Zareba, W.; Cameron, S.J.; Chalupa, D.; Kane, C.; Kulandhaisamy, S.; et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: A case-crossover study. Part. Fibre Toxicol. 2014, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Link, M.S.; Luttmann-Gibson, H.; Schwartz, J.; Mittleman, M.A.; Wessler, B.; Gold, D.R.; Dockery, D.W.; Laden, F. Acute exposure to air pollution triggers atrial fibrillation. J. Am. Coll. Cardiol. 2013, 62, 816–825. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, M.J.; Fang, J.; Mittleman, M.A.; Kapral, M.K.; Wellenius, G.A.; Investigators of the Registry of Canadian Stroke Network. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. Epidemiology 2011, 22, 422–431. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Wu, S.; Zhao, H.; Qiu, H.; Fu, Y.; Li, X.; He, Y. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies. J. Diabetes Investig. 2017. [Google Scholar] [CrossRef]
- Pope, C.A.; Muhlestein, J.B.; Anderson, J.L.; Cannon, J.B.; Hales, N.M.; Meredith, K.G.; Le, V.; Horne, B.D. Short-Term Exposure to Fine Particulate Matter Air Pollution Is Preferentially Associated With the Risk of ST-Segment Elevation Acute Coronary Events. J. Am. Heart Assoc. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of improved air quality with lung development in children. N. Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Gilliland, F.; Avol, E.L.; McConnell, R.; Berhane, K.T.; Gauderman, W.J.; Lurmann, F.W.; Urman, R.; Chang, R.; Rappaport, E.B.; Howland, S. The Effects of Policy-Driven Air Quality Improvements on Children’s Respiratory Health; Health Effects Institute: Boston, MA, USA, 2017; Volume 190. [Google Scholar]
- Protection, P.D.O.E. Oil and Gas Permit Database. Available online: http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/Permits_Issued_Detail (accessed on 3 May 2016).
- West Virginia, D.O.E.P. Oil and Gas Permit Database. Available online: http://www.dep.wv.gov/oil-and-gas/databaseinfo/Pages/OGD.aspx (accessed on 3 May 2016).
- Colborn, T.; Schultz, K.; Herrick, L.; Kwiatkowski, C. An Exploratory Study of Air Quality Near Natural Gas Operations. Hum. Ecol. Risk Assess. Int. J. 2013, 20, 86–105. [Google Scholar] [CrossRef]
- Korfmacher, K.S.; Jones, W.A.; Malone, S.L.; Vinci, L.F. Public Health and High Volume Hydraulic Fracturing. New Solut. J. Environ. Occup. Health Policy 2013, 23, 13–31. [Google Scholar] [CrossRef]
- Macey, G.P.; Breech, R.; Chernaik, M.; Cox, C.; Larson, D.; Thomas, D.; Carpenter, D.O. Air Concentrations of Volatile Compounds Near Oil and Gas Production: A Community-Based Exploratory Study. Environ. Health 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.A.; Savitz, D.A.; Rasmussen, S.G.; Ogburn, E.L.; Pollak, J.; Mercer, D.G.; Schwartz, B.S. Unconventional Natural Gas Development and Birth Outcomes in Pennsylvania, USA. Epidemiology 2016, 27, 163–172. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, L.M.; Guo, R.; Witter, R.Z.; Savitz, D.A.; Newman, L.S.; Adgate, J.L. Birth Outcomes and Maternal Residential Proximity to Natural Gas Development in Rural Colorado. Environ. Health Perspect. 2014, 122, 412–417. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef]
- Stacy, S.L.; Brink, L.L.; Larkin, J.C.; Sadovsky, Y.; Goldstein, B.D.; Pitt, B.R.; Talbott, E.O. Perinatal outcomes and unconventional natural gas operations in Southwest Pennsylvania. PLoS ONE 2015, 10, e0126425. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.G.; Ogburn, E.L.; McCormack, M.; Casey, J.A.; Bandeen-Roche, K.; Mercer, D.G.; Schwartz, B.S. Association Between Unconventional Natural Gas Development in the Marcellus Shale and Asthma Exacerbations. JAMA Intern. Med. 2016, 176, 1334–1343. [Google Scholar] [CrossRef]
- Jemielita, T.; Gerton, G.L.; Neidell, M.; Chillrud, S.; Yan, B.; Stute, M.; Howarth, M.; Saberi, P.; Fausti, N.; Penning, T.M.; et al. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates. PLoS ONE 2015, 10, e0131093. [Google Scholar] [CrossRef] [Green Version]
- Thurston, G.D.; Burnett, R.T.; Turner, M.C.; Shi, Y.; Krewski, D.; Lall, R.; Ito, K.; Jerrett, M.; Gapstur, S.M.; Ryan Diver, W.; et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ. Health Perspect. 2016, 124. [Google Scholar] [CrossRef] [Green Version]
- Hays, J.; Shonkoff, S.B.C. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009–2015. PLoS ONE 2016, 11, e0154164. [Google Scholar] [CrossRef]
- Mitka, M. Rigorous evidence slim for determining health risks from natural gas fracking. JAMA 2012, 307, 2135–2136. [Google Scholar] [CrossRef]
- Werner, A.K.; Vink, S.; Watt, K.; Jagals, P. Environmental health impacts of unconventional natural gas development: A review of the current strength of evidence. Sci. Total Environ. 2015, 505, 1127–1141. [Google Scholar] [CrossRef] [Green Version]
- McCawley, M. Air contaminants associated with potential respiratory effects from unconventional resource development activities. Semin. Respir. Crit. Care Med. 2015, 36, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Riffault, V.; Arndt, J.; Marris, H.; Mbengue, S.; Setyan, A.; Alleman, L.Y.; Deboudt, K.; Flament, P.; Augustin, P.; Delbarre, H.; et al. Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2305–2356. [Google Scholar] [CrossRef]
- Kinney, P.L.; Chillrud, S.N.; Sax, S.; Ross, J.M.; Pederson, D.C.; Johnson, D.; Aggarwal, M.; Spengler, J.D. Toxic Exposure Assessment: A Columbia-Harvard (TEACH) Study (the New York City Report); Mickey Leland National Urban Air Toxics Research Center Research Report; Mickey Leland National Urban Air Toxics Research Center: Houston, TX, USA, 2005; Volume 3. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 659. [Google Scholar]
- Prati, P.; Zucchiatti, A.; Lucarelli, F.; Mandò, P.A. Source apportionment near a steel plant in Genoa (Italy) by continuous aerosol sampling and PIXE analysis. Atmos. Environ. 2000, 34, 3149–3157. [Google Scholar] [CrossRef]
- Tan, P.; Li, Y.; Shen, H. Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles. J. Environ. Sci. 2017, 55, 354–362. [Google Scholar] [CrossRef]
- Adams, M.B. Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia. J. Environ. Qual. 2011, 40, 1340–1344. [Google Scholar] [CrossRef]
- Fairhurst, C. Fractures and Fracturing—Hydraulic fracturing in Jointed Rock. In Effective and Sustainable Hydraulic Fracturing; Bunger, A.P., McLennan, J., Jeffrey, R., Eds.; InTech: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Steiner, S.; Bisig, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Diesel exhaust: Current knowledge of adverse effects and underlying cellular mechanisms. Arch. Toxicol. 2016, 90, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Thiruvengadam, A.; Besch, M.C.; Yoon, S.; Collins, J.; Kappanna, H.; Carder, D.K.; Ayala, A.; Herner, J.; Gautam, M. Characterization of particulate matter emissions from a current technology natural gas engine. Environ. Sci. Technol. 2014, 48, 8235–8242. [Google Scholar] [CrossRef]
- Broderick, J.; Anderson, K.; Wood, R.; Gilbert, P.; Sharmina, M.; Footitt, A.; Glynn, S.; Nicholls, F. Shale Gas: An Updated Assessment of Environmental and Climate Change Impacts; The Co-operative Press: Manchester, UK, 2011. [Google Scholar]
- Maryland Department of the Environment, Maryland Department of Natural Resources. Assessment of Risks from Unconventional Gas Well Development in the Marcellus Shale of Western Maryland: Appendix C.; Maryland Department of the Environment, Maryland Department of Natural Resources: Annapolis, MD, USA, 2015; p. 1770. [Google Scholar]
- Patterson, L.A.; Maloney, K.O. Transport of hydraulic fracturing waste from Pennsylvania wells: A county-level analysis of road use and associated road repair costs. J. Environ. Manag. 2016, 181, 353–362. [Google Scholar] [CrossRef]
Exclusion Criteria | |||||
---|---|---|---|---|---|
Sampling Period | Elements Excluded | Excluded N | Elements Included | Included N | |
EXCLUSION 1: Concentration exceeded detection limit | |||||
10/28/15 to 10/30/15 | As, Bi, Cd, Cr | 4 | Ag, Al, Ba, Be, Ca, Co, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn | 30 | |
10/30/15 to 11/1/15 | - | 0 | Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn | 34 | |
11/1/15 to 11/3/15 | Cr | 1 | Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn | 33 | |
11/3/15 to 11/5/15 | As, Cr | 2 | Ag, Al, Ba, Be, Bi, Ca, Cd, Co, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn | 32 | |
EXCLUSION 2: Concentration decreased overall with distance | |||||
10/28/15 to 10/30/15 | Be, Na, Pb, S, Sb, Se, Sn, Tl, Zn | 9 | Ag, Al, Ba, Ca, Co, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Ni, P, Rb, Sr, Ti, U, and V | 21 | |
10/30/15 to 11/1/15 | Ag, As, Bi, Cd, Cu, Pb, S, Sb, Se, Tl | 10 | Al, Ba, Be, Ca, Co, Cr, Cs, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, Sn, Sr, Ti, U, V, and Zn | 24 | |
11/1/15 to 11/3/15 | Ag, As, Bi, Cd, Na, Pb, S, Sb, Se, Tl, Zn | 11 | Al, Ba, Be, Ca, Co, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Ni, P, Rb, Sn, Sr, Ti, U, and V | 22 | |
11/3/15 to 11/5/15 | Be, Bi, Cd, Cu, Na, P, Pb, S, Sb, Se, Sn, Tl, Zn | 13 | Ag, Al, Ba, Ca, Co, Cs, Fe, K, La, Li, Mg, Mn, Mo, Ni, Rb, Sr, Ti, U, and V | 19 | |
EXCLUSION 3: r2 values > 0.6 | |||||
10/28/15 to 10/30/15 | Cs, Cu, K, Li, Ni, Rb | 6 | Ag, Al, Ba, Ca, Co, Fe, La, Mg, Mn, Mo, P, Sr, Ti, U, V | 15 | |
10/30/15 to 11/1/15 | Be, Li, Na, Sn, Zn | 5 | Al, Ba, Ca, Co, Cr, Cs, Fe, K, La, Mg, Mn, Mo, Ni, P, Rb, Sr, Ti, U, and V | 19 | |
11/1/15 to 11/3/15 | Al, Be, Ca, Co, Cs, Cu, K, La, Li, Mn, P, Rb, Sn, Sr, Ti, U, V | 17 | Ba, Fe, Mg, Mo, and Ni | 5 | |
11/3/15 to 11/5/15 | Ag, Al, Ba, Ca, Co, Cs, Fe, K, La, Li, Mg, Mn, Mo, Ni, Rb, Sr, Ti, U, V | 19 | - | 0 | |
EXCLUSION 4: Strong proportional fit to at least 3 other elements per period (r2 > 0.6, slope approx. +/- 1) | |||||
10/28/15 to 10/30/15 | Ag, Al, Ba, Ca, Co, Fe, La, Mn, P, Sr, Ti, U, V | 13 | Mg and Mo | 2 | |
10/30/15 to 11/1/15 | Al, Ba, Ca, Co, Cs, K, Mn, Mo, Ni, P, Rb, Sr, V | 13 | Cr, Fe, La, Mg, Ti, and U | 6 | |
11/1/15 to 11/3/15 | Ba, Fe, Mo, Ni | 4 | Mg | 1 | |
11/3/15 to 11/5/15 | - | - | - | - | |
EXCLUSION 5: Wind blowing > 1 mph in proper direction more than 5% of time | |||||
10/28/15 to 10/30/15 | - | 0 | Mg and Mo | 2 | |
10/30/15 to 11/1/15 | - | 0 | Cr, Fe, La, Mg, Ti, and U | 6 | |
11/1/15 to 11/3/15 | - | 0 | Mg | 1 | |
11/3/15 to 11/5/15 | excludes this sampling period | - | - | - | |
EXCLUSION 6: Proportional to at least 3 other elements across all remaining sample periods | |||||
10/28/15 to 10/30/15 | Mo | 1 | Mg 2 | 1 | |
10/30/15 to 11/1/15 | Cr, Fe, La, Ti, U | 5 | Mg 3 | 1 | |
11/1/15 to 11/3/15 | - | 0 | Mg 4 | - | |
11/3/15 to 11/5/15 | - | - | - | - |
Total 2 | Wind > 1 mph 3 | Wind < 1 mph 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Period | Sampling Site | Mg (ng) 1 | n | n | Mean | SD | % time | n | Mean | SD | % time |
10/28–10/30 | 0 km | 22.7 | 338 | 143 | 7.2 | 9.0 | 42.3% | 82 | 16.4 | 19.9 | 24.3% |
1 km | 7.6 | ||||||||||
2 km | 4.2 | ||||||||||
7 km | 5.7 | ||||||||||
10/30–11/1 | 0 km | 63.5 | 348 | 133 | 6.7 | 9.8 | 38.2% | 133 | 26.6 | 30.4 | 38.2% |
1 km | 14.5 | ||||||||||
2 km | 5.9 | ||||||||||
7 km | 6.6 | ||||||||||
11/1–11/3 | 0 km | 72.4 | 337 | 38 | 1.9 | 1.8 | 11.3% | 176 | 35.2 | 38.3 | 52.2% |
1 km | 6.9 | ||||||||||
2 km | 14.2 | ||||||||||
7 km | 16.8 | ||||||||||
11/3–11/5 | 0 km | 82.6 | 333 | 15 | 0.8 | 1.1 | 4.5% | 145 | 29.0 | 33.4 | 43.5% |
1 km | 24.7 | ||||||||||
2 km | 12.6 | ||||||||||
7 km | 31.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nye, M.; Knuckles, T.; Yan, B.; Ross, J.; Orem, W.; Varonka, M.; Thurston, G.; Dzomba, A.; McCawley, M. Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations. Int. J. Environ. Res. Public Health 2020, 17, 1837. https://doi.org/10.3390/ijerph17061837
Nye M, Knuckles T, Yan B, Ross J, Orem W, Varonka M, Thurston G, Dzomba A, McCawley M. Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations. International Journal of Environmental Research and Public Health. 2020; 17(6):1837. https://doi.org/10.3390/ijerph17061837
Chicago/Turabian StyleNye, Maya, Travis Knuckles, Beizhan Yan, James Ross, William Orem, Matthew Varonka, George Thurston, Alexandria Dzomba, and Michael McCawley. 2020. "Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations" International Journal of Environmental Research and Public Health 17, no. 6: 1837. https://doi.org/10.3390/ijerph17061837
APA StyleNye, M., Knuckles, T., Yan, B., Ross, J., Orem, W., Varonka, M., Thurston, G., Dzomba, A., & McCawley, M. (2020). Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations. International Journal of Environmental Research and Public Health, 17(6), 1837. https://doi.org/10.3390/ijerph17061837