Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas
Abstract
:1. Introduction
2. Remote Sensing Technology for Ground Feature Types in Mining Areas
2.1. Identification of Mining Boundaries
2.2. Land Use/Cover Changes in Mining Areas
3. Remote Sensing Monitoring of Landscape Ecology in Mining Areas
3.1. Biodiversity Monitoring
3.2. Landscape Ecological Diversity
4. Remote Sensing Monitoring of the Environment in Mining Areas
4.1. Extraction of Contaminated Vegetation
4.2. Soil Quality Monitoring
4.3. Water Pollution and Air Quality Monitoring
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Z.H.; Xie, X.D.; Wang, P.; Hu, Y.N.; Cheng, H.F. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, W.Z.; Wang, D. Current status, challenges and policy recommendations regarding the sustainable development of mining areas in China. J. Resour. Ecol. 2014, 5, 42–52. [Google Scholar] [CrossRef]
- Chase, P.E.; Pettyjohn, W.A. ERTS-1 investigation of ecological effects of strip mining in eastern Ohio. In Proceedings of the Symposium on Significant Results Obtained from the Earth Resources Technology Satellite 1, Goddard Space Flight Center Symp, Washington, DC, USA, 10–14 December 1974; pp. 561–568. [Google Scholar]
- Sengupta, M. Environmental impacts of mining monitoring, restoration, and control. J. Hum. Cap. 1993, 9, 19–24. [Google Scholar]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Xue, Q.; Song, W.; Zhang, Y.L.; Mou, F.Y. Research progress in ecological carrying capacity: Implications, assessment methods and current focus. J. Resour. Ecol. 2017, 8, 514–525. [Google Scholar] [CrossRef]
- Saedpanah, S.; Amanollahi, J. Environmental pollution and geo-ecological risk assessment of the Qhorveh mining area in western Iran. Environ. Pollut. 2019, 253, 811–820. [Google Scholar] [CrossRef]
- Götze, C.; Beyer, F.; Gläßer, C. Pioneer vegetation as an indicator of the geochemical parameters in abandoned mine sites using hyperspectral airborne data. Environ. Earth Sci. 2016, 75, 613. [Google Scholar] [CrossRef]
- Lulla, K. Some observations on geobotanical remote sensing and mineral prospecting. Can. J. Remote Sens. 1985, 11, 17–38. [Google Scholar] [CrossRef]
- Hunt, J.M.; Wisherd, M.P.; Bonham, L.C. Infrared absorption spectra of minerals and other inorganic compounds. Anal. Chem. 1950, 22, 1478–1497. [Google Scholar] [CrossRef]
- Lyon, R.J.P.; Lee, K. Remote sensing in exploration for mineral deposits. Econ. Geol. 1970, 65, 785–800. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Goetz, A.F.H.; Rock, B.N.; Rowan, L.C. Remote sensing for exploration; an overview. Econ. Geol. 1983, 78, 573–590. [Google Scholar] [CrossRef]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.R.; McGlynn, B.L.; Bernhardt, E.S. Deep impact: Effects of mountaintop mining on surface topography, bedrock structure, and downstream waters. Environ. Sci. Technol. 2016, 50, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevrel, S.; Kuosmannen, V.; Belocky, R.; Stuart, M.; Tukiainen, T.; Mollat, H.; Lídia, Q.; Vosen, P.; Schumacher, V.; Kuronen, E.; et al. Hyperspectral airborne imagery for mapping mining-related contaminated areas in various European environments–first results of the MINEO project. In Proceedings of the Fifth International Airborne Remote Sensing Conference, San Francisco, CA, USA, 17–20 September 2001; pp. 17–20. [Google Scholar]
- Asadzadeh, S.; Roberto, D.S.F.C. A review on spectral processing methods for geological remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Z.; He, G.; Wei, M. An improved grabcut method based on a visual attention model for rare-earth ore mining area recognition with high-resolution remote sensing images. Remote Sens. 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- De Lucia Lobo, F.; Souza-Filho, P.W.M.; De Moraes Novo, E.M.L.; Carlos, F.M.; Barbosa, C.C.F. Mapping mining areas in the brazilian amazon using msi/sentinel-2 imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, X.; Chen, Z.; Zhang, G.; Ma, T.; Jia, P.; Li, B. Evaluating the Feasibility of illegal open-pit mining identification using insar coherence. Remote Sens. 2020, 12, 367. [Google Scholar] [CrossRef] [Green Version]
- Soulard, C.; Acevedo, W.; Stehman, S.; Parker, O. Mapping extent and change in surface mines within the United States for 2001 to 2006. Land Degrad. Dev. 2016, 27, 248–257. [Google Scholar] [CrossRef]
- Li, F.P. Research on Landscape Ecological Evolution and Rehabilitation in Dense Mining Area. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2004. (In Chinese). [Google Scholar]
- LaJeunesse Connette, J.K.; Connette, G.; Bernd, A.; Phyo, P.; Aung, H.K.; Tun, L.Y.; Thein, M.Z.; Horning, N.; Leimgruber, P.; Songer, M. Assessment of mining extent and expansion in myanmar based on freely-available satellite imagery. Remote Sens. 2016, 8, 912. [Google Scholar] [CrossRef] [Green Version]
- Julzarika, A. Mining land identification in Wetar Island using remote sensing data. J. Degrad. Min. Lands Manag. 2018, 6, 1513–1518. [Google Scholar] [CrossRef]
- Song, X.L.; He, G.J.; Zhang, Z.M.; Long, T.F.; Yan, P.; Wang, Z.H. Visual attention model based mining area recognition on massive high-resolution remote sensing images. Clust. Comput. 2015, 18, 541–548. [Google Scholar] [CrossRef]
- Xia, Y.P.; Wang, Y.J.; Du, S.; Liu, X.X.; Zhou, H.Y. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China. Environ. Earth Sci. 2018, 77, 319. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Du, Z.; Wang, S.; Ma, C. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 92–103. [Google Scholar] [CrossRef]
- Xu, N.X.; Zhang, J.Y.; Tian, H.; Mei, G.; Ge, Q. Discrete element modeling of strata and surface movement induced by mining under open-pit final slope. Int. J. Rock Mech. Min. Sci. 2016, 88, 61–76. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Javed, A.; Khan, I. Land use/land cover change due to mining activities in singrauli industrial belt, madhya pradesh using remote sensing and gis. J. Environ. Res. Dev. 2012, 6, 834–843. [Google Scholar]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2016, 576, 705–719. [Google Scholar] [CrossRef]
- Sang, X.; Guo, Q.Z.; Wu, X.X.; Fu, Y.; Xie, T.Y.; Wei, H.C.; Zang, J.L. Intensity and stationarity analysis of land use change based on cart algorithm. Sci. Rep. 2019, 9, 12279. [Google Scholar] [CrossRef] [Green Version]
- Sikdar, P.K.; Chakraborty, S.; Adhya, E.; Paul, P.K. Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal-a GIS and remote sensing approach. J. Spat. Hydrol. 2004, 4, 1–24. [Google Scholar]
- Redondo Vega, J.M.; Gómez Villar, A.; Santos González, J.; González Gutiérrez, R.B.; Álvarez Martínez, J. Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. Catena 2017, 149, 844–856. [Google Scholar] [CrossRef]
- Xu, H.Q. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM + sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [Google Scholar] [CrossRef]
- Colwell, R.N.; Hay, C.M. Development of AI procedures for dealing with the effects of episodal events on crop temporal-spectral response, and, Development of AI guidelines for corn and soybean labeling. J. Therm. Anal. Calorim. 1979, 122, 1385–1394. [Google Scholar]
- Rossini Oliva, S.; Mingorance, M.D.; Peña, A. Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil. Chemosphere 2017, 168, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Coulson, S.J.; Fjellberg, A.; Melekhina, E.N.; Taskaeva, A.A.; Lebedeva, N.V.; Belkina, O.A.; Seniczak, S.; Seniczak, A.; Gwiazdowicz, D.J. Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden, Svalbard. Biodivers. Conserv. 2015, 24, 1671–1690. [Google Scholar] [CrossRef]
- Kadnikov, V.V.; Ivasenko, D.A.; Beletsky, A.V.; Mardanov, A.V.; Danilova, E.V.; Pimenov, N.V.; Karnachuk, O.V.; Ravin, N.V. Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit. Microbiology 2016, 85, 745–751. [Google Scholar] [CrossRef]
- Mairota, P.; Cafarelli, B.; Didham, R.K.; Lovergine, F.P.; Lucas, R.M.; Nagendra, H.; Rocchini, D.; Tarantino, C. Challenges and opportunities in harnessing satellite remote-sensing for biodiversity monitoring. Ecol. Inform. 2015, 30, 207–214. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental science: Agree on biodiversity metrics to track from space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Brandl, R. Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 2009, 46, 897–905. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E.J. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J. Biogeogr. 2003, 30, 1053–1066. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Honeck, E.; Castello, R.; Chatenoux, B.; Richard, J.-P.; Lehmann, A.; Giuliani, G. From a vegetation index to a sustainable development goal indicator: Forest trend monitoring using three decades of earth observations across Switzerland. ISPRS Int. J. Geo Inf. 2018, 7, 455. [Google Scholar] [CrossRef] [Green Version]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Marcinkowska Ochtyra, A.; Zagajewski, B.; Ochtyra, A.; Jarocińska, A.; Wojtuń, B.; Rogass, C.; Mielke, C.; Lavender, S. Subalpine and alpine vegetation classification based on hyperspectral APEX and simulated EnMAP images. Int. J. Remote Sens. 2017, 38, 1839–1864. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Zhou, W.; Bai, Z.K. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Bao, N.S.; Wu, L.X.; Liu, S.J.; Li, N. Scale parameter optimization through high-resolution imagery to support mine rehabilitated vegetation classification. Ecol. Eng. 2016, 97, 130–137. [Google Scholar] [CrossRef]
- Hughey, L.F.; Hein, A.M.; Strandburg-Peshkin, A.; Jensen, F.H. Challenges and solutions for studying collective animal behaviour in the wild. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.B.; Zhang, H.Q. Remote sensing image monitoring and recognition technology for the conservation of rare wild animals. Rev. Cient. Fac. Cienc. Vet. 2019, 29, 301–311. [Google Scholar]
- St-Louis, V.; Pidgeon, A.M.; Clayton, M.K.; Locke, B.A.; Bash, D.; Radeloff, V.C. Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 2009, 32, 468–480. [Google Scholar] [CrossRef]
- Vihervaara, P.; Auvinen, A.-P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Larsen, P.E.; Scott, N.; Post, A.F.; Field, D.; Knight, R.; Hamada, Y.; Gilbert, J.A. Satellite remote sensing data can be used to model marine microbial metabolite turnover. Isme J. 2015, 9, 166–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shade, A.; Carey, C.C.; Kara, E.; Bertilsson, S.; McMahon, K.D.; Smith, M.C. Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies. Isme J. 2009, 3, 881–888. [Google Scholar] [CrossRef]
- Dalton, J.B.; Palmer-Moloney, L.J.; Rogoff, D.; Hlavka, C.; Duncan, C. Remote monitoring of hypersaline environments in San Francisco Bay, CA, USA. Int. J. Remote Sens. 2009, 30, 2933–2949. [Google Scholar] [CrossRef]
- Malaviya, S.; Munsi, M.; Oinam, G.; Joshi, P.K. Landscape approach for quantifying land use land cover change (1972–2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand). Environ. Monit. Assess. 2010, 170, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Hassett, E.M.; Stehman, S.V.; Wickham, J.D. Estimating landscape pattern metrics from a sample of land cover. Landsc. Ecol. 2012, 27, 133–149. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.Y.; Lin, C.Y. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Pukowiec Kurda, K.; Myga Piątek, U. Application of new methods of environment analysis and assessment in landscape audits—Case studies of urban areas like czestochowa, Poland. In Proceedings of the “Environmental Engineering” 10th International Conference, Vilnius Gediminas Technical University, Vilnius, Lithuania, 27–28 April 2017; pp. 1–8. [Google Scholar]
- Sklenicka, P.; Prikryl, I.; Svoboda, I.; Lhota, T. Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. J. South. Afr. Inst. Min. Metall. 2004, 104, 83–88. [Google Scholar]
- Kodir, A.; Hartono, D.M.; Haeruman, H.; Mansur, I. Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Hancock, G.R.; Verdon Kidd, D.; Lowry, J.B.C. Soil erosion predictions from a landscape evolution model – An assessment of a post-mining landform using spatial climate change analogues. Sci. Total Environ. 2017, 601–602, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Mandal, I. Impacts of stone mining and crushing on stream characters and vegetation health of dwarka river basin of Jharkhand and West Bengal, Eastern India. J. Environ. Geogr. 2017, 10, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.R.; Su, B.F. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hede, A.N.H.; Kashiwaya, K.; Koike, K.; Sakurai, S. A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area. Remote Sens. Environ. 2015, 171, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Kersting, K.; Bauckhage, C.; Wahabzada, M.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Römer, C.; Plümer, L. Feeding the world with big data: Uncovering spectral characteristics and dynamics of stressed plants. In Computational Sustainability; Lässig, J., Kersting, K., Morik, K., Eds.; Springer: Cham, Switzerland, 2016; pp. 99–120. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; King, T.V.V.; Gallagher, A.J.; Calvin, W.M. The US Geological Survey, digital spectral reflectance library: Version 1: 0.2 to 3.0 microns. In Proceedings of the Summaries of the 4th Annual JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, Washington DC, USA, 25–29 October 1993; pp. 93–592. [Google Scholar]
- Grove, C.I.; Hook, S.J.; Paylor, E.D. Laboratory reflectance spectra for 160 minerals 0.4–2.5 mm: JPL Publication 92-2. Jet Propuls. Lab. Pasadena CA 1992, 405. [Google Scholar] [CrossRef]
- Lei, S.G.; Bian, Z.F.; Daniels, J.L.; He, X. Spatio-temporal variation of vegetation in an arid and vulnerable coal mining region. Min. Sci. Technol. (China) 2010, 20, 485–490. [Google Scholar] [CrossRef]
- Boutin, C.; Carpenter, D.J. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta. Sci. Total Environ. 2017, 576, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Lyon, J.; Yuan, D.; Lunetta, R.; Elvidge, C. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Meng, B.; Ge, J.; Liang, T.; Yang, S.; Gao, J.; Feng, Q.; Cui, X.; Huang, X.; Xie, H. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data. Remote Sens. 2017, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Mutanga, O. Remote Sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.; Thenkabail, P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 2015, 108, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.Z.; Liao, J.J.; Guo, H.D.; Liu, J. Poyang lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data. J. Appl. Remote Sens. 2015, 9, 096077. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Kocev, D.; Džeroski, S.; White, M.D.; Newell, G.R.; Griffioen, P. Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol. Model. 2009, 220, 1159–1168. [Google Scholar] [CrossRef]
- Li, B.Y.; Wang, W.; Bai, L.; Chen, N.C.; Wang, W. Estimation of aboveground vegetation biomass based on Landsat-8 OLI satellite images in the Guanzhong Basin, China. Int. J. Remote Sens. 2019, 40, 3927–3947. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Lu, D.S.; Chen, Q.; Wang, G.X.; Liu, L.J.; Li, G.Y.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps Valls, G.; Muñoz Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Surendran, U.; Gopinath, G.; Chandran, K.M.; Nk, A.; Ct, M.F. Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agric. Water Manag. 2019, 222, 92–104. [Google Scholar] [CrossRef]
- Hasegawa, K.; Izumi, T.; Matsuyama, H.; Kajiwara, K.; Honda, Y. Seasonal change of bidirectional reflectance distribution function in mature Japanese larch forests and their phenology at the foot of Mt. Yatsugatake, central Japan. Remote Sens. Environ. 2018, 209, 524–539. [Google Scholar] [CrossRef]
- Pandey, B.; Agrawal, M.; Singh, S. Ecological risk assessment of soil contamination by trace elements around coal mining area. J. Soils Sediments 2016, 16, 159–168. [Google Scholar] [CrossRef]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Soil Pollution-an Emerging Threat to Agriculture; Springer: Berlin, Germany, 2017. [Google Scholar]
- Teng, Y.G.; Wu, J.; Lu, S.J.; Wang, Y.Y.; Jiao, X.D.; Song, L.T. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.; Sheykhi, V.; Salari, M.; Bagheri, A. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. Environ. Monit. Assess. 2016, 188, 214. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Chen, J.; Ji, J.F.; Tian, Q.J.; Wu, X.M. Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environ. Sci. Technol. 2005, 39, 873–878. [Google Scholar] [CrossRef]
- Sun, W.C.; Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 126–133. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.R.; Clevers, J.G.P.W.; Kooistra, L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ. Pollut. 2015, 206, 217–226. [Google Scholar] [CrossRef]
- Chakraborty, S.; Weindorf, D.C.; Deb, S.; Li, B.; Paul, S.; Choudhury, A.; Ray, D.P. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 2017, 289, 72–81. [Google Scholar] [CrossRef]
- Cui, Z.W.; Wang, Y.; Zhao, N.; Yu, R.; Xu, G.H.; Yu, Y. Spatial distribution and risk assessment of heavy metals in paddy soils of yongshuyu irrigation area from Songhua River Basin, Northeast China. Chin. Geogr. Sci. 2018, 28, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Richter, N.; Staenz, K.; Kaufmann, H. Spectral unmixing of airborne hyperspectral data for baseline mapping of mine tailings areas. Int. J. Remote Sens. 2008, 29, 3937–3956. [Google Scholar] [CrossRef]
- Entezari, I.; Rivard, B.; Vajihinejad, V.; Wilson, W.G.; Soares, J.B.P.; Fisseha, B.; Beier, N. Monitoring tailings flocculation performance using hyperspectral imagery. Can. J. Chem. Eng. 2019, 97, 2465–2471. [Google Scholar] [CrossRef]
- Entezari, I.; Rivard, B.; Lipsett, M.G. Estimation of methylene blue index in oil sands tailings using hyperspectral data. Can. J. Chem. Eng. 2017, 95, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Segal, D. Theoretical basis for differentiation of ferric-iron bearing minerals using Landsat MSS data. In Proceedings of the Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX, USA, 6–10 December 1982; pp. 949–951. [Google Scholar]
- Alasta, A.F. Using remote sensing data to indentify iron deposits in central western Libya. In Proceedings of the International Conference on Emerging Trends in Computer and Image Processing, Bangkok, Thailand, 22–24 April 2019; pp. 56–61. [Google Scholar]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Martin, P.G.; Kwong, S.; Smith, N.T.; Yamashiki, Y.; Payton, O.D.; Russell-Pavier, F.S.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 12–19. [Google Scholar] [CrossRef]
- Eriksson, N.; Destouni, G. Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resour. Res. 1997, 33, 471–483. [Google Scholar] [CrossRef]
- Emel, J.; Plisinski, J.; Rogan, J. Monitoring geomorphic and hydrologic change at mine sites using satellite imagery: The Geita Gold Mine in Tanzania. Appl. Geogr. 2014, 54, 243–249. [Google Scholar] [CrossRef]
- Rivera, J.M.; Luís, T.A.; Grande, A.J.; Sarmiento, M.A.; Dávila, M.J.; Fortes, C.J.; Córdoba, F.; Diaz-Curiel, J.; Santisteban, M. Physico-chemical influence of surface water contaminated by acid mine drainage on the populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain). Int. J. Environ. Res. Public Health 2019, 16, 4516. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.L.; Costa, M.P.F.; Novo, E.M.L.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [Google Scholar] [CrossRef]
- Zhao, X.; Liusu, H.; Wang, P.J.; Li, Q.; Liu, X.H.; Qu, Y.H. A study on the remote sensing information model about the water pollution caused by mine tailings. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; pp. 2483–2487. [Google Scholar]
- Pei, W.M.; Zhang, H.; Yao, S.P.; Dong, S.C.; Ouyang, Y.; Qiu, J. Remote sensing inversion and analysis on spatial-temporal variation of water quality in different types of subsided waterlogged zones in Huainan mining area. Coal Geol. Explor. 2018, 46, 85–90. (In Chinese) [Google Scholar]
- Doña, C.; Chang, N.B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Jian, J.; Tan, D.J.; Xie, H.B.; Luo, Z.F.; Gao, B. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 1–9. [Google Scholar] [CrossRef]
- Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Maserti, B.E.; Bargagli, R. Atmospheric mercury mapping in a cinnabar mining area. Sci. Total Environ. 1993, 133, 1–15. [Google Scholar] [CrossRef]
- Lian, M.; Shang, L.; Duan, Z.; Li, Y.; Zhao, G.; Zhu, S.; Qiu, G.; Meng, B.; Sommar, J.; Feng, X.; et al. Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environ. Pollut. 2018, 240, 353–358. [Google Scholar] [CrossRef]
- Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 2015, 15, 9667. [Google Scholar] [CrossRef] [Green Version]
- Ci, H.; Qin, Y.; Yang, H.; Li, G.Q.; Feng, G.F. Remote Sensing Monitoring Model and Method of Methane Emission in Coal Mine Area. Adv. Mater. Res. 2012, 462, 631–634. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in china based on long-term and massive data mining of pollutant concentration. Atmos. Environ. 2018, 174, 25–42. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Liao, Q.; Ji, J. Can contaminant elements in soils be assessed by remote sensing technology: A case study with simulated data. Soil Sci. 2011, 176, 196–205. [Google Scholar] [CrossRef]
- Kolotkov, G.A.; Penin, S.T.; Matina, P.N. The sources of radioactive contamination in the southeast of the Tomsk region. Atmos. Phys. 2018. [Google Scholar] [CrossRef]
Identification Method | Data Types | Advantages | Disadvantages |
---|---|---|---|
Fuzzy clustering method: generating clusters similar to ground feature pixels [22,23] | Landsat land use data, Google Earth data | Can accurately and conveniently determine the extension scope of mining areas | Scope of mining areas should be relatively continuous and concentrated |
Multivariate normal distribution: mining area data reflectivity, data set fitting [24] | Landsat-5 TM, Landsat-7 ETM, Landsat-8 OLI | Low time cost and economic cost | Authenticity of the results needs further verification |
Vegetation index differential method: NDVI data difference based on time series [25] | Landsat-2 MSS, Landsat-5 TM, World View data | Can effectively identify changes in mining land | Precision of mining land boundary is uncertain, and the method has certain requirements regarding the surrounding environment |
Snake model: identifying the mining area scope by curve evolution of image information [26] | Land observing satellite data: panchromatic data of 2.5 m and multispectral data of 10 m | High accuracy, high degree of automation, desirable processing ability for vast data volume | Model is difficult to be implemented and requires a higher data quality |
Microwave interference method: adopting the binary-channel D-InSAR scheme of time series [27] | ALOS PALSAR data, high-resolution DEM data | Can continuously observe the fluctuation of boundary geodetic patterns | Observation accuracy depends on data accuracy and surface deformation |
Model Category | Monitoring Methods | Monitoring Content | Advantages and Disadvantages | Typical Cases |
---|---|---|---|---|
Empirical models | SWIR empirical model | Water bodies containing soil, water bodies polluted by coal dust | The required information can be obtained rapidly and conveniently; however, the qualitative analysis results are inaccurate and only suitable for heavily polluted areas. | Mining areas in the Tapajós River basin [111] |
Pollution concentration index | Dexing Copper Mine [112] | |||
Analytic or semi-analytic model | Comprehensive nutritional index method | Water chlorophyll concentration, suspended matter content (algae, etc.), organic matter content, heavy metal content, etc. | More comprehensive water pollution information can be acquired, and accurate quantitative analysis can be carried out; however, a vast volume of measured data is required, and the operation calculation is complex. | Huainan mining area [113] |
Genetic programming | Albufera, Valencia [114] | |||
Multivariant stepwise regression model | Wansheng mining area [115] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1846. https://doi.org/10.3390/ijerph17061846
Song W, Song W, Gu H, Li F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. International Journal of Environmental Research and Public Health. 2020; 17(6):1846. https://doi.org/10.3390/ijerph17061846
Chicago/Turabian StyleSong, Wen, Wei Song, Haihong Gu, and Fuping Li. 2020. "Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas" International Journal of Environmental Research and Public Health 17, no. 6: 1846. https://doi.org/10.3390/ijerph17061846
APA StyleSong, W., Song, W., Gu, H., & Li, F. (2020). Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. International Journal of Environmental Research and Public Health, 17(6), 1846. https://doi.org/10.3390/ijerph17061846