Relationships between Severity of Internet Gaming Disorder, Severity of Problematic Social Media Use, Sleep Quality and Psychological Distress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Instruments
2.2.1. Internet Gaming Disorder Scale- Short Form (IGDS9-SF)
2.2.2. The Bergen Social Media Addiction Scale (BSMAS)
2.2.3. Depression Anxiety Stress Scales (DASS-21)
2.2.4. The Pittsburgh Sleep Quality Index (PSQI)
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van den Eijnden, R.J.; Meerkerk, G.J.; Vermulst, A.A.; Spijkerman, R.; Engels, R.C. Online communication, compulsive Internet use, and psychosocial well-being among adolescents: A longitudinal study. Dev. Psychol. 2008, 44, 655–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, A.; Dorani, D.; Elhadif, R.; Bukovza, Y.; Yarmulnik, A.; Dannon, P. Internet addiction is associated with social anxiety in young adults. Ann. Clin. Psychiatry 2015, 27, 4–9. [Google Scholar] [PubMed]
- Internet Users by Region and Country, 2010–2016. Available online: https://www.itu.int/en/ITUD/Statistics/Pages/stat/Treemap.aspx (accessed on 20 December 2019).
- Tang, C.S.K.; Wu, A.M.S.; Yan, E.C.W.; Ko, J.H.C.; Kwon, J.H.; Yogo, M.; Gan, Y.Q.; Koh, Y.Y.W. Relative risks of Internet-related addictions and mood disturbances among college students: A 7-country/region comparison. Public Health 2018, 165, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Anderson, M. Social Media Use in 2018: A Majority of Americans Use Facebook and YouTube, but Young Adults Are Especially Heavy Users of Snapchat and Instagram; Pew Reserch Center: Washington, DC, USA, 2018. [Google Scholar]
- American Society of Addiction Medicine (ASAM). Available online: https://www.asam.org/Quality-Science/publications/magazine/public-policy-statements/2019/10/21/short-definition-of-addiction (accessed on 10 March 2020).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-5®, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- ICD-11 for Mortality and Morbidity Statistics—Gaming Disorder (6C51). Available online: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/1448597234 (accessed on 20 December 2019).
- Alhassan, A.A.; Alqadhib, E.M.; Taha, N.W.; Alahmari, R.A.; Salam, M.; Almutairi, A.F. The relationship between addiction to smartphone usage and depression among adults: A cross sectional study. BMC Psychiatry 2018, 18, 148. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Pontes, H.M. Internet Addiction Disorder and Internet Gaming Disorder are Not the Same. J. Addict. Res. 2014, 5, e124. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Szabo, A. Is excessive online usage a function of medium or activity? An empirical pilot study. J. Behav. Addict. 2013, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Achab, S.; Nicolier, M.; Mauny, F.; Monnin, J.; Trojak, B.; Vandel, P.; Sechter, D.; Gorwood, P.; Haffen, E. Massively multiplayer online role-playing games: Comparing characteristics of addict vs non-addict online recruited gamers in a French adult population. BMC Psychiatry 2011, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Fossum, I.N.; Nordnes, L.T.; Storemark, S.S.; Bjorvatn, B.; Pallesen, S. The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behav. Sleep Med. 2014, 12, 343–357. [Google Scholar] [CrossRef]
- Van den Bulck, J. Television viewing, computer game playing, and Internet use and self-reported time to bed and time out of bed in secondary-school children. Sleep 2004, 27, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Touitou, Y.; Touitou, D.; Reinberg, A. Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J. Physiol. Paris 2016, 110, 467–479. [Google Scholar] [CrossRef]
- Hale, L.; Kirschen, G.W.; LeBourgeois, M.K.; Gradisar, M.; Garrison, M.M.; Montgomery-Downs, H.; Kirschen, H.; McHale, S.M.; Chang, A.M.; Buxton, O.M. Youth Screen Media Habits and Sleep: Sleep-Friendly Screen Behavior Recommendations for Clinicians, Educators, and Parents. Child Adolesc. Psychiatr. Clin. N. Am. 2018, 27, 229–245. [Google Scholar] [CrossRef] [PubMed]
- van der Lely, S.; Frey, S.; Garbazza, C.; Wirz-Justice, A.; Jenni, O.G.; Steiner, R.; Wolf, S.; Cajochen, C.; Bromundt, V.; Schmidt, C. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J. Adolesc. Health 2015, 56, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Alimoradi, Z.; Lin, C.-Y.; Broström, A.; Bülow, P.H.; Bajalan, Z.; Griffiths, M.D.; Ohayon, M.M.; Pakpour, A.H. Internet addiction and sleep disorders: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 47, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehbein, F.; Kliem, S.; Baier, D.; Mößle, T.; Petry, N.M. Prevalence of internet gaming disorder in German adolescents: Diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction 2015, 110, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Motohashi, Y.; Liu, Y.; Maeda, A. Effects of playing a computer game using a bright display on presleep physiological variables, sleep latency, slow wave sleep and REM sleep. J. Sleep Res. 2005, 14, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Watanabe, H.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.S.; Fu, K.W.; Wong, P.W.; Yip, P.S. Internet addiction: Prevalence, discriminant validity and correlates among adolescents in Hong Kong. Br. J. Psychiatry 2010, 196, 486–492. [Google Scholar]
- Huang, C. Internet use and psychological well-being: A meta-analysis. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 241–249. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z. Behavioral addictions: Criteria, evidence and treatment. In Social Networking Addiction: An Overview of Preliminary Findings; Rosenberg, K., Feder, L., Eds.; Elsevier Inc.: New York, NY, USA, 2014; pp. 119–141. [Google Scholar]
- Griffiths, M.D.; Kuss, D. Adolescent social media addiction (revisited). Educ. Health 2017, 35, 49–52. [Google Scholar]
- Kuss, D.J.; Griffiths, M.D. Excessive online social networking: Can adolescents become addicted to Facebook? Educ. Health 2011, 29, 68–71. [Google Scholar]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Social networking sites and addiction: Ten lessons learned. Int. J. Environ. Res. Public Health 2017, 14, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, M.D.; Kuss, D.J.; King, D.L. Video game addiction: Past, present and future. Curr. Psychiatry Rev. 2012, 8, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Internet gaming addiction: A systematic review of empirical research. Int. J. Ment. Health Addict. 2012, 10, 278–296. [Google Scholar] [CrossRef]
- Pontes, H.M. Investigating the differential effects of social networking site addiction and Internet gaming disorder on psychological health. J. Behav. Addict. 2017, 6, 601–610. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Yam, C.W.; Pakpour, A.H.; Griffiths, M.D.; Yau, W.Y.; Lo, C.M.; Ng, J.M.T.; Lin, C.Y.; Leung, H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatr. Q. 2019, 90, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Leung, L. Predicting Internet risks: A longitudinal panel study of gratifications-sought, Internet addiction symptoms, and social media use among children and adolescents. Health Psychol. Behav. Med. 2014, 2, 424–439. [Google Scholar] [CrossRef]
- Arıcak, O.T.; Dinç, M.; Yay, M.; Griffiths, M.D. Adapting the Short Form of the Internet Gaming Disorder Scale into Turkish: Validity and reliability. Addicta Turk. J. Addict. 2019, 6, 15–22. [Google Scholar]
- de Palo, V.; Monacis, L.; Sinatra, M.; Griffiths, M.D.; Pontes, H.M.; Petro, M.; Miceli, S. Measurement invariance of the nine-item Internet Gaming Disorder Scale across Albania, United States of America, United Kingdom, and Italy. Int. J. Ment. Health Addict. 2019, 17, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Evren, C.; Dalbudak, E.; Topcu, M.; Kutlu, N.; Evren, B.; Pontes, H.M. Psychometric validation of the Turkish nine-item Internet Gaming Disorder Scale-Short Form (IGDS9-SF). Psychiatry Res. 2018, 265, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, H.M.; Griffiths, M.D. Portuguese validation of the Internet Gaming Disorder Scale-Short-Form. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Pontes, H.M.; Stavropoulos, V.; Griffiths, M.D. Measurement Invariance of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF) between the United States of America, India and the United Kingdom. Psychiatry Res. 2017, 257, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- chivinski, B.; Brzozowska-Woś, M.; Buchanan, E.M.; Griffiths, M.D.; Pontes, H.M. Psychometric assessment of the Internet Gaming Disorder diagnostic criteria: An Item Response Theory study. Addict. Behav. Rep. 2018, 8, 176–184. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Lin, C.-Y.; Årestedt, K.; Griffiths, M.D.; Broström, A.; Pakpour, A.H. Psychometric validation of the Persian nine-item Internet Gaming Disorder Scale—Short Form: Does gender and hours spent online gaming affect the interpretations of item descriptions? J. Behav. Addict. 2017, 6, 256–263. [Google Scholar] [CrossRef]
- Monacis, L.; Palo, V.; Griffiths, M.D.; Sinatra, M. Validation of the Internet Gaming Disorder Scale-Short-Form (IGDS9-SF) in an Italian-speaking sample. J. Behav. Addict. 2016, 5, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Pontes, H.M.; Griffiths, M.D. Measuring DSM-5 Internet gaming disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Leung, H.; Pakpour, A.H.; Strong, C.; Lin, Y.C.; Tsai, M.C.; Griffiths, M.D.; Lin, C.Y.; Chen, I.H. Measurement invariance across young adults from Hong Kong and Taiwan among three internet-related addiction scales: Bergen Social Media Addiction Scale (BSMAS), Smartphone Application-Based Addiction Scale (SABAS), and Internet Gaming Disorder Scale-Short Form (IGDS-SF9) (Study Part A). Addict. Behav. 2020, 101, 105969. [Google Scholar]
- Chen, I.-H.; Strong, C.; Lin, Y.-C.; Tsai, M.-C.; Leung, H.; Lin, C.-Y.; Pakpour, A.H.; Griffiths, M.D. Time invariance of three ultra-brief internet-related instruments: Smartphone Application-Based Addiction Scale (SABAS), Bergen Social Media Addiction Scale (BSMAS), and the nine-item Internet Gaming Disorder Scale- Short Form (IGDS-SF9) (Study Part B). Addict. Behav. 2020, 101, 105960. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric validation of the Persian Bergen Social Media Addiction Scale using classic test theory and Rasch models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Monacis, L.; De Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, H.M.; Andreassen, C.S.; Griffiths, M.D. Portuguese validation of the Bergen Facebook Addiction Scale: An empirical study. Int. J. Ment. Health Addict. 2016, 14, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef] [PubMed]
- Taouk, M.; Lovibond, P.F.; Laube, R. Report for New South Wales Transcultural Mental Health Centre; Cumberland Hospital: Sydney, Australia, 2001. [Google Scholar]
- Nieuwenhuijsen, K.; De Boer, A.; Verbeek, J.; Blonk, R.; Van Dijk, F. The Depression Anxiety Stress Scales (DASS): Detecting anxiety disorder and depression in employees absent from work because of mental health problems. Occup. Environ. Med. 2003, 60, I77–I82. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Khayat, M.A.; Qari, M.H.; Almutairi, B.S.; Rambo, M.Z.; Alrogi, M.J.; Alkhattabi, S.Z.; Alqarni, D.A. Sleep Quality and Internet Addiction Level among University Students. Egypt J. Hosp. Med. 2018, 73, 7042–7047. [Google Scholar]
- Dietch, J.R.; Taylor, D.J.; Sethi, K.; Kelly, K.; Bramoweth, A.D.; Roane, B.M. Psychometric evaluation of the PSQI in US college students. J. Clin. Sleep Med. 2016, 12, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Ho, R.T.; Fong, T.C. Factor structure of the Chinese version of the Pittsburgh Sleep Quality Index in breast cancer patients. Sleep Med. 2014, 15, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.S.; Fielding, R. Prevalence of insomnia among Chinese adults in Hong Kong: A population-based study. J. Sleep Res. 2011, 20, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.; Lin, H.; Chou, W.; Liu, T.; Ko, C. Associations Among Resilience, Stress, Depression, and Internet Gaming Disorder in Young Adults. Int. J. Environ. Res. Public Health 2019, 16, 318. [Google Scholar] [CrossRef] [Green Version]
- Levenson, J.C.; Shensa, A.; Sidani, J.E.; Colditz, K.B.; Primack, B.A. The association between social media use and sleep disturbance among young adults. Prev. Med. 2016, 85, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.H.; Yen, J.Y.; Liu, S.C.; Hunag, C.F.; Yen, C.F. The associations between aggressive behaviours and Internet addiction and online activities in adolescents. J. Adolesc. Health 2009, 44, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Steinkuehler, C.A.; Williams, D. Where Everybody Knows Your (Screen) Name: Online Games as “Third Places”. J. Comput. Mediat. Commun. 2006, 11, 885–909. [Google Scholar] [CrossRef]
- Ostovar, S.; Allahyar, N.; Aminpoor, H.; Moafian, F.; Mariani, M.N.; Griffiths, M.D. Internet addiction and its psychosocial risks among Iranian adolescents and young adults: A structural equation model in a cross-sectional study. Int. J. Ment. Health Addict. 2016, 14, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, E.; Oberst, U.; Stodt, B.; Brand, M. Online-specific fear of missing out and Internet-use expectancies contribute to symptoms of Internet-communication disorder. Addict. Behav. Rep. 2017, 5, 33–42. [Google Scholar] [CrossRef]
Characteristic | M ± SD or n (%) |
---|---|
Age (year) | 20.89 ± 1.48 |
Gender (Male) | 122 (40.67) |
Height (cm) | 165.57 ± 8.75 |
Weight (kg) | 56.54 ± 10.24 |
Body mass index (kg/m2) | 20.52 ± 2.64 |
Smoke (No) 1 | 279 (99.64) |
Monthly income (HKD) | |
≤ 1000 | 34 (12.27) |
1001–2000 | 52 (18.77) |
2001–3000 | 59 (21.30) |
3001–5000 | 88 (31.77) |
≥5001 | 44 (15.88) |
Time on smartphones (hours/day) | 5.29 ± 2.34 |
Time spent gaming on the internet (hours/day) | 1.19 ± 1.53 |
Time spent on social media (hours/day) | 3.09 ± 1.80 |
IGDS9-SF score (range: 9–45) | 16.98 ± 6.45 |
BSMAS score (range: 6–30) | 15.37 ± 4.11 |
Depression (range: 0–21) | 5.16 ± 4.47 |
Anxiety (range: 0–21) | 4.18 ± 3.83 |
Stress (range: 0–21) | 6.72 ± 4.25 |
PSQI score (range: 0–21) | 6.63 ± 2.14 |
r | ||||||
---|---|---|---|---|---|---|
IGDS9-SF | BSMAS | Depression | Anxiety | Stress | PSQI | |
IGDS9-SF | -- | |||||
BSMAS | 0.221 | -- | ||||
Depression | 0.351 | 0.336 | -- | |||
Anxiety | 0.363 | 0.344 | 0.792 | -- | ||
Stress | 0.331 | 0.384 | 0.792 | 0.815 | -- | |
PSQI | 0.249 | 0.351 | 0.351 | 0.411 | 0.386 | -- |
Coefficient (SE)/Standardized Coefficient | ||||
---|---|---|---|---|
Depression | Anxiety | Stress | Sleep Quality | |
IGDS9-SF score | 0.203 (0.047)/0.295 *** | 0.188 (0.039)/0.325 *** | 0.220 (0.043)/0.339 *** | 0.052 (0.023)/0.157 * |
BSMAS score | 0.250 (0.067)/0.235 *** | 0.196 (0.057)/0.219 ** | 0.264 (0.063)/0.262 *** | 0.150 (0.033)/0.292 *** |
Age | −0.356 (0.167)/−0.121 * | −0.144 (0.140)/−0.058 | −0.171 (0.154)/−0.061 | −0.037 (0.082)/−0.026 |
Gender | 0.251 (0.528)/0.028 | 0.375 (0.444)/0.050 | 1.030 (0.489)/0.121 * | 0.069 (0.259)/0.016 |
Time on smartphone | 0.215 (0.169)/0.102 | 0.094 (0.143)/0.053 | 0.125 (0.157)/0.062 | −0.021 (0.083)/−0.020 |
Time gaming on the internet | −0.249 (0.216)/−0.085 | −0.165 (0.182)/−0.067 | −0.354 (0.200)/−0.128 | 0.052 (0.106)/0.037 |
Time on social media | 0.039 (0.187)/0.016 | 0.117 (0.157)/0.057 | 0.043 (0.173)/0.018 | 0.121 (0.092)/0.103 |
Smoking status | 1.731 (4.131)/0.023 | 2.42 (3.479)/0.039 | 6.44 (3.827)/0.092 | −2.055 (2.027)/−0.058 |
Model summary | ||||
F-value | 8.501 *** | 8.459 *** | 10.323 *** | 6.916 *** |
R2 | 0.202 | 0.201 | 0.235 | 0.171 |
Adjusted R2 | 0.178 | 0.177 | 0.212 | 0.146 |
Depression | Anxiety | Stress | Sleep Quality | |
---|---|---|---|---|
Severities of IGD | o | o | o | − |
Severities of SMA | o | o | o | + |
t (p) a | 0.574 (0.57) | 0.116 (0.91) | 0.577 (0.56) | 2.436 (0.01) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, H.Y.; Mo, H.Y.; Potenza, M.N.; Chan, M.N.M.; Lau, W.M.; Chui, T.K.; Pakpour, A.H.; Lin, C.-Y. Relationships between Severity of Internet Gaming Disorder, Severity of Problematic Social Media Use, Sleep Quality and Psychological Distress. Int. J. Environ. Res. Public Health 2020, 17, 1879. https://doi.org/10.3390/ijerph17061879
Wong HY, Mo HY, Potenza MN, Chan MNM, Lau WM, Chui TK, Pakpour AH, Lin C-Y. Relationships between Severity of Internet Gaming Disorder, Severity of Problematic Social Media Use, Sleep Quality and Psychological Distress. International Journal of Environmental Research and Public Health. 2020; 17(6):1879. https://doi.org/10.3390/ijerph17061879
Chicago/Turabian StyleWong, Hiu Yan, Hoi Yi Mo, Marc N. Potenza, Mung Ni Monica Chan, Wai Man Lau, Tsz Kwan Chui, Amir H. Pakpour, and Chung-Ying Lin. 2020. "Relationships between Severity of Internet Gaming Disorder, Severity of Problematic Social Media Use, Sleep Quality and Psychological Distress" International Journal of Environmental Research and Public Health 17, no. 6: 1879. https://doi.org/10.3390/ijerph17061879
APA StyleWong, H. Y., Mo, H. Y., Potenza, M. N., Chan, M. N. M., Lau, W. M., Chui, T. K., Pakpour, A. H., & Lin, C. -Y. (2020). Relationships between Severity of Internet Gaming Disorder, Severity of Problematic Social Media Use, Sleep Quality and Psychological Distress. International Journal of Environmental Research and Public Health, 17(6), 1879. https://doi.org/10.3390/ijerph17061879