A Sustainable Approach to the Metabolic Syndrome in Children and Its Economic Burden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Procedure
2.3. Measures and Instruments
2.3.1. Weight
2.3.2. Height
2.3.3. Body Max Index
2.3.4. Waist Circumference (WC)
2.3.5. Waist-to-Height Ratio
2.3.6. Blood Pressure
2.3.7. Electrocardiogram (ECG)
2.3.8. Blood Tests
2.3.9. Urine Test
2.3.10. Prevalence of MetS
2.3.11. Economic Burden
2.4. Diagnostic Criteria of Metabolic Syndrome
2.5. Statistical Analysis
2.6. Implementation of the Model via a Web Simulation
3. Results
3.1. Initial Analysis and Obesity Frequency
3.2. Detection of Metabolic Syndrome and Economic Burden
3.3. Creation of a Model to Diagnosis the Metabolic Syndrome (MetS) in Children
3.4. Implementation of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- Mendez, M.A.; Monteiro, C.A.; Popkin, B.M. Overweight exceeds underweight among women in most developing countries. Am. J. Clin. Nutr. 2005, 81, 714–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diolintzi, A.; Panagiotakos, D.B.; Sidossis, L.S. From Mediterranean diet to Mediterranean lifestyle: A narrative review. Public Health Nutr. 2019, 22, 2703–2713. [Google Scholar] [CrossRef] [PubMed]
- Nugent, R.; Levin, C.; Hale, J.; Hutchinson, B. Economic effects of the double burden of malnutrition. Lancet 2020, 395, 156–164. [Google Scholar] [CrossRef]
- Uauy, R.; Kain, J.; Mericq, V.; Rojas, J.; Corvalán, C. Nutrition, child growth, and chronic disease prevention. Ann. Med. 2008, 40, 11–20. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 27 February 2020).
- Slining, M.M.; Ng, S.W.; Popkin, B.M. Food Companies’ Calorie-Reduction Pledges to Improve U.S. Diet. Am. J. Prev. Med. 2013, 44, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Fraser, L.K.; Clarke, G.P.; Cade, J.E.; Edwards, K.L. Fast Food and Obesity. Am. J. Prev. Med. 2012, 42, e77–e85. [Google Scholar] [CrossRef]
- Patrick, H.; Nicklas, T.A. A Review of Family and Social Determinants of Children’s Eating Patterns and Diet Quality. J. Am. Coll. Nutr. 2005, 24, 83–92. [Google Scholar] [CrossRef]
- Alevizou, P.; Oates, C.; McDonald, S.; Alevizou, P.J.; Oates, C.J.; McDonald, S. The Well(s) of Knowledge: The Decoding of Sustainability Claims in the UK and in Greece. Sustainability 2015, 7, 8729–8747. [Google Scholar] [CrossRef] [Green Version]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Finkelstein, E.A.; Trogdon, J.G.; Brown, D.S.; Allaire, B.T.; Dellea, P.S.; Kamal-Bahl, S.J. The Lifetime Medical Cost Burden of Overweight and Obesity: Implications for Obesity Prevention. Obesity 2008, 16, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed Food Intake and Obesity: What Really Matters for Health—Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Speiser, P.; Rudolf, M.; Anhalt, H.; Camacho-Hubner, C.; Chiarelli, F.; Freemark, M.; Gruters, A.; Hershkovitz, E.; Krude, H.; Latzer, Y.; et al. CONSENSUS STATEMENT: Childhood Obesity. J. Clin. Endocrinol. Metab. 2005. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; Wu, W.; Chumlea, W.C.; Roche, A.F. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am. J. Clin. Nutr. 2002, 76, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, W.; Pigeot, I.; Pohlabeln, H.; De Henauw, S.; Lissner, L.; Molnár, D.; Moreno, L.A.; Tornaritis, M.; Veidebaum, T.; Siani, A.; et al. Prevalence of overweight and obesity in European children below the age of 10. Int. J. Obes. (Lond.) 2014, 38, S99–S107. [Google Scholar] [CrossRef] [Green Version]
- Estudio ALADINO. Estudio de Vigilancia del Crecimiento, Alimentación, Actividad Física, Desarrollo Infantil y Obesidad en España 2015; Agencia Española de Consumo, Seguridad Alimentaria y Nutrición, Ministerio de Sanidad, Servicios Sociales e Igualdad: Madrid, Spain, 2016; ISBN 690-16-010-3. [Google Scholar]
- García García, E.; Vázquez López, M.-Á.; Galera Martínez, R.; Alias, I.; Martín González, M.; Bonillo Perales, A.; Cabrera Sevilla, J.E.; García Escobar, I.; Gómez Bueno, S.; López Ruzafa, E.; et al. Prevalencia de sobrepeso y obesidad en niños y adolescentes de 2 a 16 años. Endocrinol. Nutr. 2013, 60, 121–126. [Google Scholar] [CrossRef]
- Lakshman, R.; Elks, C.E.; Ong, K.K. Childhood obesity. Circulation 2012, 126, 1770–1779. [Google Scholar] [CrossRef]
- Friend, A.; Craig, L.; Turner, S. The prevalence of metabolic syndrome in children: A systematic review of the literature. Metab. Syndr. Relat. Disord. 2013, 11, 71–80. [Google Scholar] [CrossRef]
- Wang, J.; Perona, J.S.; Schmidt-RioValle, J.; Chen, Y.; Jing, J.; González-Jiménez, E. Metabolic Syndrome and Its Associated Early-Life Factors among Chinese and Spanish Adolescents: A Pilot Study. Nutrients 2019, 11, 1568. [Google Scholar] [CrossRef] [Green Version]
- Regitz-Zagrosek, V.; Lehmkuhl, E.; Weickert, M.O. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin. Res. Cardiol. 2006, 95, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Alaklabi, A.M.; Alsharairi, N.A. Current Evidence on Vitamin D Deficiency and Metabolic Syndrome in Obese Children: What Does the Evidence from Saudi Arabia Tell Us? Children 2018, 5, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetherington, M.; Anderson, A.; Norton, G.; Newson, L. Situational effects on meal intake: A comparison of eating alone and eating with others. Physiol. Behav. 2006, 88, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Scholze, J.; Alegria, E.; Ferri, C.; Langham, S.; Stevens, W.; Jeffries, D.; Uhl-Hochgraeber, K. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health 2010, 10, 529. [Google Scholar] [CrossRef] [Green Version]
- Hernáez, Á.; Zomeño, M.D.; Dégano, I.R.; Pérez-Fernández, S.; Goday, A.; Vila, J.; Civeira, F.; Moure, R.; Marrugat, J. Exceso de peso en España: Situación actual, proyecciones para 2030 y sobrecoste directo estimado para el Sistema Nacional de Salud. Rev. Esp. Cardiol. (Engl. Ed.) 2019, 72, 916–924. [Google Scholar] [CrossRef]
- Magge, S.N.; Goodman, E.; Armstrong, S.C.; Committee on Nutrition; Section on Endocrinology; Section on Obesity. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics 2017, 140, e20171603. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [Green Version]
- de Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents. Lancet 2007, 369, 2059–2061. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Lo, K.; Wong, M.; Khalechelvam, P.; Tam, W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: A meta-analysis. Obes. Rev. 2016, 17, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- Romero-Saldaña, M.; Fuentes-Jiménez, F.J.; Vaquero-Abellán, M.; Álvarez-Fernández, C.; Molina-Recio, G.; López-Miranda, J. New non-invasive method for early detection of metabolic syndrome in the working population. Eur. J. Cardiovasc. Nurs. 2016, 15, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Romero-Saldaña, M.; Fuentes-Jiménez, F.J.; Vaquero-Abellán, M.; Álvarez-Fernández, C.; Aguilera-López, M.D.; Molina-Recio, G. Predictive Capacity and Cutoff Value of Waist-to-Height Ratio in the Incidence of Metabolic Syndrome. Clin. Nurs. Res. 2019, 28, 676–691. [Google Scholar]
- Jenkins, D. Scopus—A large abstract and citation database for research. Orb 2017. [Google Scholar]
- Sweileh, W.M. Research trends on human trafficking: A bibliometric analysis using Scopus database. Glob. Health 2018, 14, 106. [Google Scholar] [CrossRef]
- Cuestas, E. CÁLCULO DE TAMAÑOS MUESTRALES APROXIMADOS: FÓRMULA DE LEHR. Exp. Médica 2008, 26, 4. [Google Scholar]
- On behalf of the IDEFICS Consortium; Bammann, K.; Huybrechts, I.; Vicente-Rodriguez, G.; Easton, C.; De Vriendt, T.; Marild, S.; Mesana, M.I.; Peeters, M.W.; Reilly, J.J.; et al. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: The IDEFICS study. Int. J. Obes. 2013, 37, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Melo Salor, J.A. Child. Growth Standards for 0–5 years, 2006 and WHO Growth Reference 5–19 years. Table of BMI Values for the Diagnosis of Childhood Overweight and Obesity; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lurbe, E.; Cifkova, R.; Cruickshank, J.K.; Dillon, M.J.; Ferreira, I.; Invitti, C.; Kuznetsova, T.; Laurent, S.; Mancia, G.; Morales-Olivas, F.; et al. Manejo de la hipertensión arterial en niños y adolescentes: Recomendaciones de la Sociedad Europea de Hipertensión. Anales de Pediatría 2010, 73, e1–e28. [Google Scholar] [CrossRef]
- Baker-Smith, C.M.; Flinn, S.K.; Flynn, J.T.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Goodwin, C.; et al. Diagnosis, Evaluation, and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2018, 142, 18. [Google Scholar] [CrossRef] [Green Version]
- Ostchega, Y.; Prineas, R.J.; Nwankwo, T.; Zipf, G. Assessing Blood Pressure Accuracy of an Aneroid Sphygmomanometer in a National Survey Environment. Am. J. Hypertens. 2011, 24, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulyan, H. The Computerized ECG: Friend and Foe. Am. J. Med. 2019, 132, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García Martín, M.A.; Rueda de Castro, A.M.; Muñoz Rebollo, R.; Conejo Gaspar, G.; Capitán Gutiérrez, J.M. Sobrepeso y Obesidad en Escolares de Educación Primaria de Sevilla; Oservatorio de la salud. servicio de salud área de bienestar social y empleo EXCMO, Ayuntamiento de Sevilla: Sevilla, Spain, 2017; p. 50. [Google Scholar]
- Ramos Vielba, I.; García Goñi, M. El reto de la obesidad infantil. la necesidad de una acción colectiva; Fundación IDEAS: Madrid, Spain, 2011; Volume 9, ISBN 978-84-15018-91-9. [Google Scholar]
- Instituto Nacional de Estadistica Producto Interior Bruto (PIB). Available online: https://www.ine.es/prensa/pib_tabla_cne.htm (accessed on 1 December 2019).
- Organization for Economic Co-Operation and Development Children Well Being: Health and Safety. Available online: https://stats.oecd.org/Index.aspx?ThemeTreeId=9# (accessed on 1 December 2019).
- Braga-Tavares, H.; Fonseca, H. Prevalence of metabolic syndrome in a Portuguese obese adolescent population according to three different definitions. Eur. J. Pediatr. 2010, 169, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranceta-Bartrina, J.; Pérez-Rodrigo, C. Factores determinantes de la obesidad infantil: A propósito del estudio ANIBES. Nutr. Hosp. 2016. [Google Scholar] [CrossRef] [Green Version]
- Albert Pérez, E.; Mateu Olivares, V.; Martínez-Espinosa, R.; Molina Vila, M.; Reig García-Galbis, M. New Insights about How to Make an Intervention in Children and Adolescents with Metabolic Syndrome: Diet, Exercise vs. Changes in Body Composition. A Systematic Review of RCT. Nutrients 2018, 10, 878. [Google Scholar] [CrossRef] [Green Version]
- DeBoer, M.D. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, E.; Montero-Alonso, M.; Schmidt-RioValle, J.; García-García, C.; Padez, C. Metabolic syndrome in Spanish adolescents and its association with birth weight, breastfeeding duration, maternal smoking, and maternal obesity: A cross-sectional study. Eur. J. Nutr. 2015, 54, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Vanlancker, T.; Schaubroeck, E.; Vyncke, K.; Cadenas-Sanchez, C.; Breidenassel, C.; González-Gross, M.; Gottrand, F.; Moreno, L.A.; Beghin, L.; Molnár, D.; et al. Comparison of definitions for the metabolic syndrome in adolescents. The HELENA study. Eur. J. Pediatr. 2017, 176, 241–252. [Google Scholar] [CrossRef]
- Mokha, J.S.; Srinivasan, S.R.; Dasmahapatra, P.; Fernandez, C.; Chen, W.; Xu, J.; Berenson, G.S. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Weili, Y.; He, B.; Yao, H.; Dai, J.; Cui, J.; Ge, D.; Zheng, Y.; Li, L.; Guo, Y.; Xiao, K.; et al. Waist-to-height ratio is an accurate and easier index for evaluating obesity in children and adolescents. Obesity (Silver Spring) 2007, 15, 748–752. [Google Scholar]
- Lee, C.M.Y.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Cecchini, M.; Lauer, J.; Chisholm, D. Improving Lifestyles, Tackling Obesity: The Health and Economic Impact of Prevention Strategies. OECD Health Work. Pap. 2009, 48, 107. [Google Scholar]
Variable | Sample (N = 265) | Boys (N = 144) | Girls (N = 121) | p-Value |
---|---|---|---|---|
BMI 2 | 20.5 ± 4.6 | 20.7 ± 4.5 | 20.2 ± 4.7 | NS 1 |
WC | 66.6 ± 11.5 | 68.8 ± 12 | 64.1 ± 10.3 | <0.01 |
WHtR | 0.454 ± 0.0061 | 0.46 ± 0.066 | 0.45 ± 0.054 | 0.11 |
BF% | 2438 ± 8.6 | 23.6 ± 8.7 | 26.3 ± 8.3 | <0.01 |
LB% | 32 ± 4.4 | 33.5 ± 4.8 | 30.2 ± 3 | <0.001 |
SBP | 111.4 ± 11.3 | 112.8 ± 11.3 | 109.6 ± 11 | <0.05 |
DBP | 68.5 ± 6.3 | 68.1 ± 5.9 | 69 ± 6.7 | NS 1 |
Normal BP | 190 (71.7%) | 103 (71.5%) | 86 71% | NS 1 |
Normal-High | 56 (21.1%) | 32 (22.2%) | 25 20.7% | NS 1 |
Hypertension | 19 (7.2%) | 9 (6.3%) | 10 8.3% | NS 1 |
Glucose (G) | 75.8 ± 6.7 | 76.3 ± 6.8 | 75.2 ± 6.6 | 0.64 |
HDL 3 | 56.8 ± 12.8 | 57.6 ± 13.7 | 56 ± 11.7 | NS 1 |
HDL < 40 | 17 (6.7%) | 8 (5.8%) | 9 (7.7%) | 0.29 |
Triglycerides | 65 ± 34 | 63 ± 37.3 | 66 ± 27 | NS 1 |
TG > 110 | 26 (10.2%) | 19 (13.8%) | 7 (6%) | <0.05 |
Cholesterol total | 166.2 ± 28.8 | 169.1 ± 27.4 | 162.9 ± 30 | 0.09 |
Cholesterol ≥ 200 | 35 (13.2%) | 22 (15.3%) | 13 (10.7%) | NS 1 |
PCR | 1.25 ± 4.3 | 1.3 ± 4.9 | 1.2 ± 3.4 | NS 1 |
Metabolic Syndrome | Sample (N = 265) | Boys (N = 144) | Girls (N = 121) | p-Value |
---|---|---|---|---|
MetS [32] | 13 (5.1%) | 8 (5.8%) | 5 (4.3%) | NS |
MetS [29] | 13 (5.1%) | 8 (5.8%) | 5 (4.3%) | NS |
MetS [31] | 4 (1.6%) | 2 (1.6%) | 2 (1.7%) | NS |
Yes | No | Total | |||
---|---|---|---|---|---|
Yes | 8 | 6 | 14 | ||
PPV: | NIM-METS | No | 5 | 235 | 240 |
Total | 13 | 241 | 254 | ||
Indicator | Value | CI 95% | |||
Sensitivity | 63.6% | 30.7–96.6 | |||
Specificity | 97.5% | 95.2–99.7 | |||
PPV 1 | 53.9% | 22.9–84.8 | |||
NPV 2 | 98.3% | 96.4–100 | |||
LH + 3 | 24.9 | 10.1–61.8 | |||
LH − 3 | 0.37 | 0.17–0.82 | |||
VI 4 | 95,9% | 93.3–98.6 | |||
JI | 0.61 | 0.3–0.9 |
Grouping Variables | Independent Variables | Variance-Covariance Matrices M Box (p-Value) | Wilks´s Lambda (p-Value) | Sensitivity (CI 95%) | Specificity (CI 95%) | Validity Index CI 95% | Youden Index CI 95% | PPV CI 95% | NPV CI 95% |
---|---|---|---|---|---|---|---|---|---|
Model 1. Grouping variables (Dichotomous variable: MetS Yes, No according to NCEP criteria) | |||||||||
MetS Yes | WHtR | 4.7 (p = 0.56) | 0.78 (p < 0.001) | 92.3% | 86% | 89.2% | 0.82 | 31.6% | 99.5% |
SBP | 74%–100% | 81.3%–90.6% | 85.1%–93.3% | 0.67–0.97 | 15.5%–47.7% | 98.4%–100% | |||
DBP | |||||||||
MetS No | |||||||||
Model 2. Grouping variables (Components of Metabolic Syndrome according to NCEP criteria) | |||||||||
0 | WHtR | ||||||||
1–2 | SBP | 73.3 (p < 0.001) | 0.53 (p < 0.001) | 84.6% | 91.3% | 90.9% | 0.76 | 34.4% | 99.1% |
≥3 (MetS yes) | DBP | 0.98 (p < 0.05) | 61.2%–100% | 84.5%–95% | 87.2%–94.7% | 0.56–0.96 | 16.4%–52.4% | 97.6%–100% | |
Model 3. Grouping variables (Components of Metabolic Syndrome according to NCEP criteria) | |||||||||
0 | WHtR | ||||||||
1 | SBP | 87.3 (p < 0.001) | 0.44 (p < 0.001) | 69.2% | 95% | 93.7% | 0.64 | 42.9% | 98.3% |
2 | DBP | 0.97 (p = 0.06) | 40.3%–98.2% | 92.1%–98% | 90.5%–96.9% | 0.39–0.89 | 19.3%–66.4% | 96.4%–100% | |
≥3 (MetS yes) | 0.998 (p = 0.44) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaquero Alvarez, M.; Aparicio-Martinez, P.; Fonseca Pozo, F.J.; Valle Alonso, J.; Blancas Sánchez, I.M.; Romero-Saldaña, M. A Sustainable Approach to the Metabolic Syndrome in Children and Its Economic Burden. Int. J. Environ. Res. Public Health 2020, 17, 1891. https://doi.org/10.3390/ijerph17061891
Vaquero Alvarez M, Aparicio-Martinez P, Fonseca Pozo FJ, Valle Alonso J, Blancas Sánchez IM, Romero-Saldaña M. A Sustainable Approach to the Metabolic Syndrome in Children and Its Economic Burden. International Journal of Environmental Research and Public Health. 2020; 17(6):1891. https://doi.org/10.3390/ijerph17061891
Chicago/Turabian StyleVaquero Alvarez, Manuel, Pilar Aparicio-Martinez, Francisco Javier Fonseca Pozo, Joaquín Valle Alonso, Isabel María Blancas Sánchez, and Manuel Romero-Saldaña. 2020. "A Sustainable Approach to the Metabolic Syndrome in Children and Its Economic Burden" International Journal of Environmental Research and Public Health 17, no. 6: 1891. https://doi.org/10.3390/ijerph17061891
APA StyleVaquero Alvarez, M., Aparicio-Martinez, P., Fonseca Pozo, F. J., Valle Alonso, J., Blancas Sánchez, I. M., & Romero-Saldaña, M. (2020). A Sustainable Approach to the Metabolic Syndrome in Children and Its Economic Burden. International Journal of Environmental Research and Public Health, 17(6), 1891. https://doi.org/10.3390/ijerph17061891